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ABSTRACT Calculations are presented of the transmission of oscillations through
an assembly of randomly branching elastic tutes, as a model of not only the
major arteries, but also a peripheral vascular bed. It appears that the viscosity
of the arterial wall must be the major source of attenuation in the larger
arteries, while the viscosity of the blood plays a significant role only in the
smaller vessels. In all situations, variations of cross-sectional area have a con-
siderable effect on wave transmission, causing a general decrease in amplitude
and an accentuation of reflection from the terminations. The effects of variation
in cross-sectional area are sufficiently great to indicate that they should be
included in future models of the arterial system. Finally, it is argued that be-
cause of the presence of random branching and elastic nonuniformity, the deter-
mination of the reflection coefficient for a system such as the arterial tree may be
quite misleading.

INTRODUCTION

In a previous paper [Taylor, 1966, which will be referred to hereafter as (I)],
computations were presented of the input impedance of a branching assembly as
a model of the arterial system, to show the manner in which the properties and
architecture of the system influenced its input characteristics. It was shown there
that the three most important factors were the elastic nonuniformity, the presence
of scattered terminations, and the reflections from these terminations. The effect
of the viscosity of the fluid or of the wall material was relatively slight, as was the
effect of changing cross-sectional area at branching. The present work extends
these calculations to show the manner in which the factors listed above determine
the propagation of oscillations through the system.

We shall be concerned here mostly with the travel of oscillations in a model of
the major arteries, where it will be shown that the important factors are the non-
uniform elasticity, reflections from the terminations, viscosity of the wall material,
and changing cross-sectional area at branches; fluid viscosity can be expected to
have only a slight influence on wave travel in the major arteries. Calculations have,
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however, also been made on a model “peripheral vascular bed” where it has been
found, as might be anticipated, that the effect of the fluid viscosity is much greater
and can contribute at least as much to the damping of traveling disturbances as
does the viscosity of the wall material.

COMPUTATION

We carried out the computations using the program described in the previous
paper (I), to which reference should be made for details. The following modifica-
tion was incorporated for finding the transmission over any segment or sequence
of segments in the assembly. As in (I), a branching of the assembly has been
treated purely as the junction of three lines; no account has been taken of the
details of fluid motion associated with a bifurcation.

For any uniform segment of elastic tube of length ! and propagation constant A,
with reflection coefficient R at the termination, the ratio of pressure at the termina-
tion P(I) to pressure at the origin P(0) is given by

P()/P(o) = (1 + R)/(€" + Re™)

For any given frequency, this quantity was computed and stored in complex form
(as modulus and phase), first for all the terminal segments of the assembly, and
then working backward to the origin. When the whole assembly had been covered,
it was possible to find the transmission along any pathway through it by multiplying
the appropriate transmission factors and adding the phase angles.

The assembly used was the same as that for most of the previous computations
(I) except that the first segment has been shortened to bring it somewhat closer
to the pattern of arterial lengths found in mammals. We have thus an asymmetrical
arrangement, with one set of terminations being considerably closer to the origin
than the other. This is analogous to the terminations of the arterial system, which
are asymmetrically distributed to the head and upper limbs, and to the more distant
viscera and hind limbs.

Two pathways have been chosen through the assembly, one “short” and one
“long.” These are shown in Fig. 1, with their segments labeled 1 to 8 in each case;
these numbers will be referred to in following illustrations.

The program was so constructed that all the parameters of interest could be
varied:

1. Terminal impedance, a pure resistance identical at all terminations, calculated
from the nominal reflection coefficient at the terminations for the case d = 1, i.c.,
no change in total cross-section area.

2. Fluid viscosity, included by way of Womersley’s (1957) nondimensional
parameter « = r (o/v)%, where r = vessel radius, o = circular frequency = 2xf,
v = kinematic viscosity of the fluid. In the calculations, a value of ao, was specified
for the first segment of the tube for » = 1, and values for other frequencies and in
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FIGURE 1 The assembly of branching tubes used in the calculation; lengths of
branches to scale, diameters not to scale. The numbers indicate the short (at left and
below) and long (at right and above) pathways over which transmission was studied.

other segments calculated on this basis. In the studies on the major arterial system
a9 = 15, while in the calculations on the peripheral vascular bed various values of
ao from 15 to 2.5 have been used.

3. Cross-sectional area ratio (d), being the ratio of the sum of areas after bifur-
cation to the area of the parent branch; values used were d = 1.0, 1.1, 1.2, 1.3.

4. Viscosity of the wall material, introduced by way of the phase angle (6)
of the complex elastic constant.

5. The approach of © to its asymptotic value ©, was approximated by the ex-
pression © = 6o. (1 — e~w). Here, as in (I), an appropriate value of y = 1 has
been taken. For arterial wall 6, has been found (Bergel, 1961) to be approximately
6° to 8° and almost independent of frequency; the values 8, = 0°, 2°, 4°,
6°, 8°, 12° have been employed in the calculations.

6. Wave velocity (c) in the various segments of the assembly has been specified
as in (I) according to the order of branching;

c=3—203)
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where n = 0O for the first segment. For the model of the peripheral vascular bed
¢ = 3 forall n.

7. Distribution of branch lengths. The same assembly (Fig. 1) was used for
all computations. The mean lengths of branches of order n were chosen equal
to 1/(n + 1) and the lengths of branches were distributed about their means
according to the second order I-distribution (see I), except for the zero-order
segment, which was fixed at 0.2 units. In calculations on the model peripheral vascu-
lar bed, all lengths were divided by four to keep the assembly in reasonable
proportion to the model of the major arterial tree.

8. Among the data upon which the program operated two lists of numbers
specifying the two pathways chosen through the assembly were included and
referred to as long and short.

At each value of frequency (0 = 0 — 4x by steps of x/20), the program
printed out:

1. Frequency.

2. Input impedance in modulus and phase.

3. Transmission ratio for pressure at each branch (1 to 8) along the two chosen
pathways; the pressure amplitude at the origin was always taken to be unity.

4. The progressive phase shift.

5. The apparent phase velocity over each segment along the two chosen pathways.

Computation time was about 1 sec per set of results for one value of .

RESULTS
Input Impedance

This will not be discussed in detail, having been dealt with in (I). Fig. 2 is included
here, however, to show the input properties of this particular assembly, with a
reasonable choice of area ratio (d = 1.2) and two values of the wall-viscosity
parameter 6, = 2°, 8°. The modulus of the impedance shows two minima close
together in the low-frequency range, which can be attributed to the asymmetrical
nature of the assembly. This double minimum is very similar to that observed in the
input impedance of the mammalian arterial system (O’Rourke and Taylor, 1966 b),
where the distribution of branches is likewise asymmetrical. As has been discussed
previously, the main features of the input impedance depend upon the architecture
and elastic properties of the system and, as can be seen from Fig. 2, are only
slightly affected by the presence of a viscoelastic wall. The inset curve shows the
remarkable stabilization of the input impedance which this system exhibits; for
o > Y27, the impedance modulus shows only slight fluctuations about the value 1.0,
which is the characteristic impedance of the first segment of the assembly.
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FiGUurRe 2 Input impedance of the assembly; modulus (above) phase angle (below).
The parameters are given in the upper panel, which also includes a small diagram of
the whole course of the modulus. Note that the impedance is only slightly changed
by a fourfold increase in wall viscosity (6o = 2°, 6, = 8°).
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Pressure Transmission through the Assembly

It has been shown elsewhere (Taylor, 1964, 1965) that in an elastic tube in which
wave velocity is increasing with distance from the origin, oscillations will undergo
“amplification” as they travel. In those papers, calculations were presented to show
the form of this amplification, as a function of frequency, with and without reflec-
tions from the termination, and attention was drawn to its role in the transformation
of pressure pulses traveling in the arterial system. The model chosen for those
calculations was of only a single elastic tube without branches, of constant cross-
section, and without viscous elements in either the fluid or the wall. In the follow-
ing sections of this paper we examine the influence of these various factors on trans-
mission through, first, a model major arterial system, and, secondly, a model
peripheral vascular bed.

Area Ratio. The transmission of pressure oscillations was calculated for
passage through the assembly by paths shown, to the terminations of the long and
short pathways (see Fig. 1, where these are labeled 8). The amplitude at the origin
was taken to be unity. Two cases were chosen, one with no viscous element in the
wall (6, = 0°, Fig. 3) and the other with a reasonable value for this (6, = 8°,
Fig. 4). In both cases ey = 15, R = 0.6. The behavior of the transmission ratio is
shown for various values of the area ratio d (1.0, 1.1, 1.2, 1.3) at the bifurcations.

It will be noted that the curves do not start at 1.0 for zero frequency; this is due
to viscous losses in the fluid, and represents the dc pressure drop along the system.
It will be seen that this is less when d is large, which would be expected from the
decreased pressure drop through a system of increasing cross-sectional area. In the
absence of wall-damping and for a system of constant cross-sectional area (Fig. 3,
d = 1.0, solid line) transmission is similar to that previously calculated for a single
nonuniformly elastic tube (Taylor, 1965). The maxima and minima are due to the
presence of reflected components, but the fact that the minima do not return to the
value unity is due to the presence of elastic nonuniformity, with higher wave velocity
in the more distant branches. The gradual decline in transmission at higher fre-
quencies is due to the attenuation by fluid viscosity, but this is slight in comparison
with the influence of wall viscosity. When wall-damping is present, (Fig. 4) the
amplification and reflection effects are considerably reduced, and at high frequencies
the attenuation due to the viscous loss is very marked and the transmission falls
below unity.

Increasing the cross-sectional area ratio (larger values of d) accentuates the
effects of reflections at low frequencies, but otherwise generally reduces the trans-
mission. For a large area change (d = 1.3) such that the total cross-sectional area
of the seventh-order branches is more than six times the original value, we find that
in the absence of wall-damping the effect of reflection is marked, giving a high
initial peak and a deep minimum, with considerable fluctuation thereafter. This is
partly because the calculations were carried out, as explained under item 1 of the
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FiGURE 3 Transmission over short (upper panel) and long (lower panel) pathways
through the assembly; parameters as shown; fluid viscosity only. Note that with in-
creasing area ratio (d) at the bifurcation there is accentuation of the effects of reflec-
tions but otherwise a general decrease in transmission.
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FIGURE 4 As for Fig. 3 except that wall viscosity is now also included (6, = 8°).
Transmission is reduced at higher frequencies and the effects of reflections are also
less marked.
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FIGURE 5 As for Figs. 3 and 4, to show the influence of various degrees of wall
viscosity (6, = 0°, 4°, 8°) on transmission through the assembly.
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computational methods, with a fixed value of the terminal impedance, calculated
from the specified reflection coefficient for d = 1.0. For d = 1.0 the increased cross-
sectional area of the terminal branches reduces their characteristic impedance
proportionately, so that for d = 1.3, the actual reflection coefficient increases from
0.6 to 0.95.

A second cause of the changed behavior with increasing values of d was dis-
cussed in (I), and is related to the loss of reflections from the intervening junctions
(Womersley, 1957), so that the “effective” termination moves away from the origin;
thus the resonant frequency of the system, which gives rise to the first maximum of
transmission, is decreased.

An expansion of the total cross-sectional area of the system results in a general
fall in amplitude of oscillations traveling in it, as is clearly seen in these examples.
It is particularly clear in Fig. 4, where the effect of reflections is diminished by the
viscous losses at higher frequencies.

Viscoelastic Wall. The influence of viscous losses in the walls of the
tubes can be seen by the comparison of Figs. 3 and 4, but to make this clearer,
three cases are shown in Fig. 5. The calculations here were for the parameters
d=12,R = 0.6 (ford = 1) with &y = 15, and 6, = 0°, 4°, 8°. As can be seen, a
relatively small phase angle in the dynamic elastic constant has a marked effect on
transmission. The amount of wall viscosity present in arteries can thus be expected
to provide significant attenuation of traveling waves although the final behavior is,
of course, also determined by the other properties of the system.

A Peripheral Vascular Bed. In the previous two sections we have dealt
with transmission through a model of the major arteries, and attention has been
focused on the influence of wall-viscosity and area changes. For purposes of com-
parison, the calculations have been extended to a vascular bed where, by reason of
the smaller diameters of the vessels, the fluid viscosity might be expected to play
a larger role. As was done in the previous paper (I) we have therefore considered
an assembly in which the wave velocity is constant in all segments of (¢ = 3 units)
and which has been suitably scaled down in length, (see paragraph 7 under Com-
putation).

Fig. 6 shows the transmission ratio for oscillations traveling through the long
path of this assembly, where the effects of fluid viscosity have been made very small
by choosing the quite unrealistic value of e = 15. A high reflection coefficient
(R = 0.8) was used here, since a value of this order has been found appropriate for
regions such as the femoral vascular bed (O’Rourke and Taylor, 1966 a). The

FIGURE 6 Input impedance (above) and transmission ratio for the long pathway
(below) for a model regional vascular bed, to show the influence of various degrees
of wall-damping (6, = 4° to 12°). Fluid viscosity is effectively very small in these
examples (a0 = 15).
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progressive attenuation with increasing values of 6, = 0°, 4°, 8°, 12° is clearly
shown.

Fig. 7 shows the effect of decreasing «, in the absence of wall viscosity (6o = 0°).
With values of a, appropriate to such a vascular bed (a« = 5, 2.5), the attenuation
which a traveling wave undergoes is of the same order as or greater than that due
to the presence of a viscoelastic wall.

The combined influence of these two sources of attenuation is considered in
Fig. 8, where two cases are taken, d = 1.0 and d = 1.2 with R = 0.8, ap = 2.5,
©o = 8°. One sees that in the second case (d = 1.2) where all the parameters of the
system have reasonable values, such as would be found for a regional arterial bed
in an animal, the transmission to the terminal branches increases slowly over the
low frequencies to reach only a low maximum, after which it falls off rapidly at the
higher frequencies. It should be pointed out that in these cases we are dealing with
transmission into quite small vessels. If, for example, we take the radius of the
parent branch to be 2 mm then the radius of a terminal branch of the assembly,
(ford = 1.2) is 2(1.2/2)% mm = 0.33 mm. This is rather smaller than the vessels
in which pressure and flow are usually examined. These three figures (6 to 8) also
include plots of input impedance, which are very similar in form to those previously
computed (I, Fig. 12). It is clearly shown in Figs. 6 and 7 that while viscous
damping may have marked affects on transmission, the input impedance remains
relatively unchanged. If fluid viscosity is increased (small a) then the dc resistance
of the system is increased and the impedance rises further at zero frequency (Fig. 7)
but otherwise there is little change. The results emphasize once again the dominance
of architectural and elastic structure of the system in determining the input imped-
ance.

Transformation of a Pressure Pulse in Travel. One of the striking fea-
tures of pressure pulses in arteries is the manner in which they undergo changes in
shape during their travel along the aorta and into the peripheral arteries. As has
been discussed in earlier publications (Taylor, 1964, 1965) these transformations
are largely explicable on the basis of reflections and elastic nonuniformity. The
opportunity has been taken, however, to calculate the behavior of pressure pulses
traveling in the model assembly for the major arteries. The parameters of the
model wave ap = 15, d = 1.2, 6o = 8°, R = 0.6. The input to the system was a
typical aortic flow-pulse in a dog, recorded by an electromagnetic flowmeter, and
resolved into its first five Fourier components. The value o; = 0.39 was chosen for
the fundamental. In Fig. 9 the transmission ratios are shown for the five pressure

FIGURE 7 Input impedance (above) and transmission ratio for the long pathway
(below) for a model regional vascular bed, to show the influence of various degrees
of fluid viscosity; a value of @ = 5 or 2.5 is appropriate to such a region. Wall
viscosity is excluded (6, = 0°).
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FIGURE 9 Transmission ratios for the first five harmonic components («; = 0.39) of
a pressure wave plotted along the two pathways through the assembly; the parameters
are given in the text.

harmonics concerned, plotted at the eight points along the two pathways. There is
a close resemblance to the results of similar analysis of pressure pulses in the arterial
system. Fig. 10 shows pressure pulses synthesized at several points along the
pathways. The “peaking” of the pulse traveling along the long pathway is very

FiGURE 8 Input impedance (above) and transmission ratio for the long pathway
(below) for a model “regional” vascular bed. Both fluid viscosity and wall viscosity
are present (a0 = 2.5, 6, = 8°), two cases are given for d = 1 (constant total cross-
section) and d = 1.2 (expanding total cross-section).
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FIGURE 10 Synthesized pressure pulses at various points in the assembly, using as
input at the origin a normal cardiac ejection pulse recorded from a dog. The numbers
refer to the points in the assembly (see Fig. 1). Note the greater “peaking” of the
wave form in its passage through the long pathway.

marked and is greater than that shown by the pulse in the short pathway. These
examples agree with the well known differences in form between the pulse waves
in the femoral and brachial arteries (Wiggers, 1928,: Kroeker and Wood, 1955).

Apparent Phase Velocity. In the previous paper (I) there was some
discussion of the behavior of the apparent phase velocity in various parts of the
assembly. It was stated that because of the presence of scattered terminations, one
would expect to find the apparent phase velocity in the distant branches to be
strongly influenced by reflections, but to be relatively stable in the more central
segments. .

Fig. 11 shows a selection of results for the present assembly (R = 0.6,d = 1.2,
00 = 8°, ay = 15); the ringed numbers denote the termination of the segment
over which the apparent phase velocity has been computed (cf. Fig. 1). In each
case the true phase velocity for that segment is indicated by a thin line. It is clear
that in the “central” regions [(1), short (2) and long (2)], for values of » greater
than about /4 the apparent phase velocity becomes relatively stable and almost
equal to the nominal value for those regions. In the more peripheral extensions of
the assembly [short (5) and long (6)] the deviation of the apparent phase velocity
from its true value is much greater, and persists to higher frequencies.

These results are not strictly comparable with those which might be obtained in
an animal experiment, because they have been computed from the phase differences
over whole segments of the assembly, of different length. Thus some smoothing out
may well have occurred in those estimations which are over segments such as long
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FIGURE 11 Apparent phase velocities over various segments of the assembly; true
phase velocities indicated by a thin line. Note the rapid stabilization of apparent phase
velocity in the central region. In all instances the abscissa is circular frequency (w).

(2) and long (3). In an animal experiment it is usual to compute apparent phase
velocity from measurements of phase differences made over a small fixed interval
(McDonald and Taylor, 1959), but it would not have been very convenient to
incorporate such a procedure in the present computational scheme. The results are
presented only briefly, but their general interpretation is clear, and they serve as
an illustration of the behavior to be expected in systems of this kind.

DISCUSSION

Four main conclusions may be drawn from the results presented in this paper.

1.

2.

M

Although viscous properties have only minor effects upon input impedance, they
have marked effects on the behavior of traveling waves.

Transmission along larger vessels is mainly influenced by wall viscosity, and only
slightly by fluid viscosity; in smaller, “peripheral” vessels the influence of fluid
viscosity becomes progressively greater.

The presence of scattered terminations and elastic nonuniformity severely inter-
feres with the estimation of the terminal reflection coefficient.

The changes in cross-sectional area must always be considered.
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On examining the relation between transmission and input impedance, one finds
that as the frequency is increased, the input impedance becomes almost constant;
this is because the elastic properties are nonuniform and the terminations are
randomly scattered. For sufficiently high frequencies the input impedance becomes
stabilized and the addition of viscous damping makes very little difference. On the
other hand, if we follow an oscillation along any particular pathway from the origin
to one of the terminations, we see that its amplitude depends upon the degree to
which it is attenuated in travel, and also upon the presence of reflected components.
It is clear from the results presented in Fig. 5 that only a small amount of damping
was provided by fluid viscosity in the larger vessels (large «). The insertion of an
appropriate amount of wall viscosity (6o = 8°) produced a considerable reduction
in the transmission peaks at resonance, and largely abolished the subsequent varia-
tions. In a model of the peripheral vessels, however, it was found that fluid viscosity
and wall viscosity could play large and approximately equal roles in the attenuation
of oscillations. When taken together (Fig. 8) it was found that only small resonance
effects could be expected. Some unpublished observations from this laboratory (Fox,
1961) on the transmission of the pulse wave from the aorta to the small mesenteric
arteries in the cat, have shown a similar form, the maximum of the transmission ratio
being between 1.2 and 1.4 at about 14 cycle/sec. One may therefore conclude that
the present calculations are based on a reasonable description of this type of vascular
bed, even though the o-values in the mesenteric vessels were smaller than those
employed in the present calculations.

When considering the influence of area changes, the previous study (I) showed
that if the area ratio at branching was greater than unity, the minimum of the
impedance modulus was moved to a lower frequency, but the general behavior of
the impedance was otherwise little changed. These mild effects are seen in the upper
part of Fig. 8. When the total cross-section was increased with branching, the dc
resistance of the assembly was reduced, as would be expected, and the shallow
minimum moved to the left. The effects on transmission were more pronounced,
and the resonant frequency, for the maximum transmission ratio, was decreased.
For frequencies above the resonant one (Figs. 3 and 4), the general effect of an
expanding cross-section was to reduce the amplitude of the oscillations.

As was discussed under Area Ratio, this dependence on area ratio can be
attributed to the changing reflection coefficient at the branching; the “effective re-
flection site” is shifted further from the origin if the intermediate reflections are
reduced by the increased area ratio. This brings up the whole question of what is
meant by the term reflection coefficient in this situation. While it can properly be
applied to any particular discontinuity in the assembly, such as a branching or a
termination, its use in a more general fashion is by no means straightforward.
Knowing the characteristic impedance, wave velocity and length of a single, uniform
elastic tube, it is possible to estimate the reflection coefficient at its termination by
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measuring the input impedance or the apparent phase velocity. If the input imped-
ance of an assembly (Fig. 2) were used in this way, assuming the system to be
single, with a single termination, the estimated reflection coefficient would approach
zero as the frequency was increased. This is made still clearer by Fig. 11. Estimates
of the reflection coefficient, based on measurements of the apparent phase velocity
made near the origin, would indicate that for » > %= the reflection coefficient was
very small; the same measurements, made near the terminations, e.g. long (6),
would indicate a much larger value. While for a uniform tube the input impedance
or apparent phase velocity depends, at all frequencies, upon the terminal conditions,
this is not true for a nonuniform tube or a branching assembly. As the frequency is
increased, the terminations and their reflections have less and less influence upon
the input impedance, and the analysis in terms of a single-tube analogy must yield
misleading results. To imitate the behavior of the input impedance of an assembly
such as that given in Fig. 2, or such as the arterial system, by means of a single
uniform model, one would have to prescribe either a nonexistent frequency depend-
ence in the terminal impedance, or an equally unrealistic and extreme degree of
attenuation of the traveling waves. It is thus clear that considerable caution will
have to be exercised in making and interpreting measurements of the reflection
coefficient of the arterial system.

The final form of the relationship between transmission and frequency depends
upon the interaction of a number of factors. First, if reflections are present, then
at certain resonant frequencies the transmission ratio will have maxima and minima.
In a single, ideal, uniformly elastic system the minima of transmission will occur
whenever there is an antinode of pressure at the origin, and will have the value
unity. In a nonuniformly elastic system, as has been shown previously, this minimum
value will not be unity, but will tend to the value of the square root of the nominal
characteristic impedance of the terminal segment. In the arterial system, because
of the increase in wave velocity in the peripheral arteries, we may expect this to lead
to “amplification” of a traveling wave. Attenuation due to viscous losses will cause
a reduction in transmission, with a less marked resonant peak and a progressive
decrease at higher frequencies. However, in a nonuniformly elastic system, if the
damping is not too great, the first minimum of the transmission ratio may still be
greater than unity. Finally, if we take account of the expanding total cross-sec-
tional area of the system, we find that this not only leads to an accentuation
of reflections, with consequently more marked maxima and minima, but also to
a general decrease in transmission, which may be sufficient to offset the amplifica-
tion arising from the elastic nonuniformity. These effects are sufficiently striking
to make it clear that allowance for area changes should be incorporated in future
model building in relation to the arterial system.
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