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Constitutive modelling of arteries
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This review article is concerned with the mathematical modelling of the mechanical
properties of the soft biological tissues that constitute the walls of arteries. Many
important aspects of the mechanical behaviour of arterial tissue can be treated on the
basis of elasticity theory, and the focus of the article is therefore on the constitutive
modelling of the anisotropic and highly nonlinear elastic properties of the artery wall.
The discussion focuses primarily on developments over the last decade based on the
theory of deformation invariants, in particular invariants that in part capture structural
aspects of the tissue, specifically the orientation of collagen fibres, the dispersion in
the orientation, and the associated anisotropy of the material properties. The main
features of the relevant theory are summarized briefly and particular forms of the elastic
strain-energy function are discussed and then applied to an artery considered as a thick-
walled circular cylindrical tube in order to illustrate its extension–inflation behaviour.
The wide range of applications of the constitutive modelling framework to artery walls
in both health and disease and to the other fibrous soft tissues is discussed in detail.
Since the main modelling effort in the literature has been on the passive response of
arteries, this is also the concern of the major part of this article. A section is nevertheless
devoted to reviewing the limited literature within the continuum mechanics framework
on the active response of artery walls, i.e. the mechanical behaviour associated with
the activation of smooth muscle, a very important but also very challenging topic that
requires substantial further development. A final section provides a brief summary of
the current state of arterial wall mechanical modelling and points to key areas that
need further modelling effort in order to improve understanding of the biomechanics and
mechanobiology of arteries and other soft tissues, from the molecular, to the cellular,
tissue and organ levels.
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1. Introduction

The mechanical behaviour of soft biological tissues has received an increasing
amount of attention in the literature in the last few years, and this is particularly
the case for arterial wall tissue, although the mechanics of other tissues are
also widely studied. The purpose of the present review article is to highlight
and summarize recent developments in the biomechanics and mechanobiology
of arterial walls, with particular reference to modelling the elastic properties
of the tissue based on an approach that focuses on invariants associated with
the directions of collagen fibres and their dispersion. Both the passive and the
active behaviour of the tissue are considered. In so doing, we have attempted
to refer to the contributions of the most recent papers, essentially from the last
10 years, although inevitably there will be important contributions that we have
overlooked, for which we apologize.

The content of this review is summarized as follows. In §2, we provide
an overview of the kinematical background relevant to the development of
constitutive laws for fibre-reinforced materials with particular reference to
the invariant formulation of constitutive laws for materials with one or
two families of fibres. Particular note is made of the equations governing
planar biaxial deformations since biaxial tests are commonly used protocols
in arterial mechanics that provide important information about the material
properties. However, it is emphasized that biaxial tests alone are not sufficient
to fully characterize the material properties of the anisotropic soft tissues,
as fully discussed by Holzapfel & Ogden (2009c), and that lack of sufficient
data means that some prior assumptions about the form of the constitutive
law are necessary to make progress in material characterization. With this
in mind, some specific forms of strain-energy function are discussed, some
merits of the particular constitutive structure are emphasized and conditions
for consistency with the linear theory of transversely isotropic elasticity
are noted.

Combined extension and inflation of a segment of an artery (a circular
cylindrical tube) provides data that are equivalent to data obtained from planar
biaxial tests. The theoretical basis for evaluating such tests is summarized in a
concise form and some recently obtained representative data from the Holzapfel
laboratory are illustrated. Specifically, experimental data from a human internal
carotid artery are shown with the emphasis on the dependence of pressure on
circumferential stretch (equivalent to the internal radius) of the artery initially
pre-stretched axially by various amounts in the absence of pressure. This is both
for an intact artery and for its separate media–intima composite and adventitia
layers and highlights the significant differences in the mechanical properties of
the different layers of the artery wall.

Section 3 provides an overview of the different applications of models based
on the invariant structure of constitutive laws that were developed primarily
for artery walls. The main applications are to arteries, of course, but the
range of applications is quite extensive. It includes modelling both healthy
and diseased arteries, accounting for viscoelastic effects, as appropriate for
muscular arteries, and the simulation of clinical procedures such as balloon
angioplasty. Angioplasty involves the description of three-dimensional fluid–
structure interaction, inelastic/plastic effects, plaque fissuring and dissection that
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occur during the intervention, and balloon–stent–artery interaction with the
focus on different stent designs. Further applications deal with the development
of cerebral and abdominal aortic aneurysms by considering fluid–structure
interactions and an intraluminal thrombus, with criteria for arterial failure and
the modelling and analysis of growth and remodelling, a key area nowadays
that requires both analytical and numerical (finite element) approaches. The
considered constitutive framework has also been used for modelling a wide range
of other soft tissues and we provide a short summary of these applications,
which include veins, intestine, the cornea, the annulus fibrosus and heart
tissue, inter alia. In the final part of §3, we also review the usage of the
considered constitutive framework in the analysis of some general aspects
of soft-tissue elasticity, and note that it is even used in the modelling of
textile composites.

In §4 the modelling of collagenous tissues based on preferred directions of
the fibres is extended to allow for dispersion of the fibre orientations, which
has a significant effect on the mechanical response of the tissue. Some novel
aspects relating to a dispersion parameter used in the theory are described. In
particular, at the upper limit of its allowable range of values it yields a planar
isotropic distribution of fibres normal to the preferred fibre direction, and the
consequences of this are discussed in some detail. In a representative example, we
examine the inflation of a fibre-reinforced thin-walled circular cylindrical tube.
For dispersion parameters that lie within the upper range of values the resulting
pressure versus circumferential stretch response is non-monotonic and increasing
radius can be associated with negative pressure. It is therefore concluded that
such values of the dispersion parameter are inappropriate for the modelling of
soft tissues. The relevant theory is provided for both two- and three-dimensional
fibre orientation distributions and applications for which the theory has been
used are discussed. These include modelling of the coronary artery (bypass
graft surgery, implantation of drug-eluting stents), carotid bifurcation (effect of
changes in lipid pool and calcification on wall stresses and on vulnerability),
abdominal aorta (aneurysm), adaptive artery growth, mitral and aortic valves
and the cornea.

In §§2–4 the focus is on the passive mechanical response of arterial tissues,
which has dominated the literature. Modelling of the active response associated
with smooth muscle activation has received relatively little attention but its
importance cannot be underestimated. For example, smooth muscle cells control
changes in arteries such as the lumen diameter and the extracellular matrix
turnover. We therefore provide, in §5, pointers to the background on smooth
muscle activation and a short discussion of the limited modelling that has
been conducted within the continuum mechanics context. This includes purely
phenomenological approaches and more recent work that combines continuum
theory with active response controlled by calcium concentration. In the latter
context, a meaningful approach, which is discussed briefly, is to couple a
strain-energy function with a chemical model that describes smooth muscle
contraction.

The concluding §6 summarizes the present situation and points to the
need for research to incorporate more features in the models and to
improve understanding of the interaction between mechanical, biological and
chemical responses.
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2. The basic building blocks of a structural model

(a) Kinematics, stress and constitutive structure

In some situations the mechanical behaviour of soft biological tissues can be
regarded as elastic under relatively large deformations.

Locally, the deformation is described in terms of the deformation gradient
tensor, denoted F, and the elastic material properties can be characterized in
terms of a strain-energy function, here denoted J, which, in general, is a function
of F. For reasons of objectivity the dependence on F is through the right Cauchy–
Green tensor C = FTF. Thus, J = J(C) and the associated Cauchy stress tensor
s is given by

s = 2J −1F
vJ

vC
FT, (2.1)

for a material without internal mechanical constraints, where J = det F. For an
isotropic material J depends on C only through its three principal invariants
I1, I2 and I3, which are defined by

I1 = trC, I2 = 1
2 [(trC)2 − tr(C2)] and I3 = det C. (2.2)

For further details of the basic kinematics of finite deformations see, for example,
the books by Ogden (1997) and Holzapfel (2000).

Many soft tissues can be treated as incompressible materials and justification
for this is provided in the studies by, for example, Carew et al. (1968) in relation to
arteries and Vossoughi et al. (1980) for myocardial tissue. For an incompressible
material the constraint I3 = det C = 1 holds and as a result the Cauchy stress
tensor (2.1) has to be modified in the form

s = −pI + 2F
vJ

vC
FT, (2.3)

where p is a Lagrange multiplier associated with the constraint and represents
a contribution to the hydrostatic stress. Note that equation (2.3) applies for
any incompressible elastic material without restriction on the specific material
properties. For an incompressible isotropic material J depends only on I1 and I2,
and equation (2.3) expands to

s = −pI + 2j1B + 2j2(I1B − B2), (2.4)

where ji = vJ/vIi , i = 1, 2, and B = FFT denotes the left Cauchy–Green tensor.
In soft tissues the collagen component endows the material with one or more

preferred directions. In the case of a single family of locally aligned collagen fibres
the preferred direction can be characterized by a unit vector, here denoted M, and
the material response is then transversely isotropic. This is reflected in the form
of J, which we now write as J(C, M). Moreover, if the material properties are
independent of the sense of M then J(C, −M) = J(C, M) and then J depends
on M only through the tensor product M ⊗ M. A transversely isotropic strain-
energy function J(C, M ⊗ M) can then be regarded as an isotropic function of C
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and M ⊗ M. With these two tensors are associated two additional independent
invariants, which typically are taken to be

I4 = M · (CM) and I5 = M · (C2M). (2.5)

The invariant I4 has a direct interpretation as the square of the stretch in the
direction of the fibre, but I5 does not have a similar immediate interpretation.

Then for an incompressible material reinforced by a single family of fibres, J
depends on the four invariants I1, I2, I4 and I5. In this case the Cauchy stress
has two extra terms associated with the anisotropic contribution and extends to
the form

s = −pI + 2j1B + 2j2(I1B − B2) + 2j4m ⊗ m + 2j5(m ⊗ Bm + Bm ⊗ m),

(2.6)

where m = FM is the push forward of M to the deformed configuration, while
ji = vJ/vIi , i = 1, 2, 4, 5.

An interesting alternative to I5 as the second transversely isotropic invariant,
which does have a direct interpretation, is defined by

I ∗
5 = M · (C∗M), (2.7)

where C∗ = I3C−1 (I3 = 1 for an incompressible material). The interpretation is
based on Nanson’s formula n da = JF−TN dA connecting an infinitesimal area
element dA, with unit normal N, in the reference configuration to the
corresponding area element da, with unit normal n, in the deformed configuration.
With N = M the ratio da2/dA2 is given by I ∗

5 , and hence I ∗
5 is a measure of

changes in area normal to the fibre direction. Note that in general m = FM does
not coincide with n either in magnitude or in direction. If we use I ∗

5 instead of I5
and write J = J∗(I1, I2, I4, I ∗

5 ) then the Cauchy stress has the same structure as in
equation (2.6), but with different, but equivalent, coefficients. Explicitly we have

s = −pI + 2(j∗
1 − I4j∗

5)B + 2(j∗
2 + j∗

5)(I1B − B2)

+ 2(j∗
4 − I1j∗

5)m ⊗ m + 2j∗
5(m ⊗ Bm + Bm ⊗ m), (2.8)

where j∗
i = vJ∗/vIi , i = 1, 2, 4, j∗

5 = vJ∗/vI ∗
5 . In principle the four constitutive

functions j1, j2, j4 and j5, equivalently j∗
1, j∗

2, j∗
4 and j∗

5, can be determined
on the basis of four independent test protocols (see Holzapfel & Ogden 2009c);
however, limitations of currently available experimental apparatus preclude
the possibility of performing such tests simultaneously on a single specimen.
Nevertheless, much valuable data can be obtained on the basis of planar biaxial
tests on thin sheets of material, uniaxial tests on strips of tissue or from shear
tests. In particular, we now describe a theory that provides the basis for analysing
data from biaxial tests.

Biaxial extension of a thin sheet of tissue is a commonly used test protocol.
For a thin sheet it is appropriate to adopt the membrane approximation, and
with reference to Cartesian axes e1 and e2 aligned with the edges of the sheet and
e3 normal to the plane of the sheet in the reference configuration the membrane
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approximation is expressed through the equations si3 = 0, i = 1, 2, 3. The in-plane
stresses are then (Holzapfel & Ogden 2009c)

s11 = 2(B11 − B33)j1 + 2[(B11 − B33)B22 − B2
12]j2 + 2m2

1j4

+ 4m1(B11m1 + B12m2)j5, (2.9)

s22 = 2(B22 − B33)j1 + 2[(B22 − B33)B11 − B2
12]j2 + 2m2

2j4

+ 4m2(B12m1 + B22m2)j5 (2.10)

and s12 = 2B12j1 + 2B12B33j2 + 2m1m2j4 + 2[m1m2(B11 + B22)

+ B12(m2
1 + m2

2)]j5, (2.11)

where Bij are the components of B, with B13 = B23 = 0, and m1 and m2
are the components of m, with m3 = 0. Equations (2.9)–(2.11) contain the
four independent constitutive functions j1, j2, j4 and j5. However, only three
independent components of deformation are included in these equations, namely
B11, B22 and B12 (note that by the incompressibility condition B33 is given in
terms of these three components). These are related to just three components of
stress. It is not possible, therefore, to solve the equations uniquely for j1, j2, j4
and j5. Thus, planar biaxial tests alone are insufficient to fully characterize the
elastic properties of the material.

In the specialization to pure homogeneous deformation the component matrix
of F is diagonal with entries l1, l2 and l3, which are the principal stretches.
We then have B11 = l2

1, B22 = l2
2 and B12 = 0 and by use of the incompressibility

condition, which yields l3 = l−1
1 l−1

2 , equations (2.9)–(2.11) simplify to

s11 = 2(l2
1 − l−2

1 l−2
2 )(j1 + l2

2j2) + 2m2
1j4 + 4l2

1m
2
1j5, (2.12)

s22 = 2(l2
2 − l−2

1 l−2
2 )(j1 + l2

1j2) + 2m2
2j4 + 4l2

2m
2
2j5 (2.13)

and s12 = 2m1m2[j4 + (l2
1 + l2

2)j5], (2.14)

and in terms of the principal stretches the invariants become

I1 = l2
1 + l2

2 + l−2
1 l−2

2 and I2 = l−2
1 + l−2

2 + l2
1l2

2 (2.15)

and

I4 = m2
1 + m2

2 and I5 = l2
1m

2
1 + l2

2m
2
2 . (2.16)

Note that since B12 = 0 there is no shear deformation but in general the shear
stress s12 is non-zero unless either m1 = 0 or m2 = 0, in which case the fibre
direction is aligned with one of the in-plane coordinate axes.

For some tissues, such as arterial wall tissues, two families of fibres can be
distinguished. These are then associated with two distinct preferred directions in
the reference configuration, and for the second one we denote the corresponding
unit vector by M′. This introduces three additional invariants; two are analogous
to I4 and I5 and denoted I6 and I7, and the third is a coupling invariant which
involves both M and M′. These are defined by

I6 = M′ · (CM′), I7 = M′ · (C2M′) and I8 = [M · (CM′)](M · M′). (2.17)
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Note that the factor M · M′ in I8 is included to ensure that I8 does not depend
on the sense of either M or M′. The strain-energy function J then depends
(in general) on I1, I2, I4, I5, I6, I7 and I8 for an incompressible material and we
may associate with equation (2.17) three further constitutive functions j6, j7,
j8 defined by ji = vJ/vIi , i = 6, 7, 8. The corresponding expanded form of the
Cauchy stress is not given here and we refer to, for example, Holzapfel (2000) or
Ogden (2009) for the details. In this case there are seven constitutive functions
and the six components of the (symmetric) Cauchy stress tensor s are given in
terms of the six components of the (symmetric) deformation tensor B. These
six connections are not enough to determine the seven constitutive functions
uniquely, a similar situation to the case of transverse isotropy in relation to planar
biaxial deformations.

The theoretical restriction alluded to above is to be considered in conjunction
with the fact that data from a range of different deformations on particular
tissues are scarce, and, indeed, there are insufficient data to be able to distinguish
between the effects of the different deformation invariants via the constitutive
functions. Therefore, in order to make the characterization of the material
properties tractable it is usual practice to adopt some specialization of the
functional dependence of J, in particular by reducing its dependence on the
number of invariants and hence reducing the number of constitutive functions.
In the following subsection we examine some examples of this reduction and
henceforth we restrict attention to incompressible materials.

(b) Specific strain-energy functions

Without loss of generality we may write the strain-energy function for a
material with a single preferred direction M (with no dependence on the sense of
M) in the form

J(C, M ⊗ M) = Jg(C) + Jf (C, M ⊗ M) (2.18)

by separating out part of J that is independent of M. Now, however, it
is convenient to specialize this by associating Jg with the non-collagenous
ground substance (indicated by subscript g) and Jf with the embedded family
of collagen fibres (indicated by subscript f), as was originally proposed by
Holzapfel & Weizsäcker (1998) and adopted subsequently by many authors. For
the transversely isotropic case, equation (2.18) can be represented in terms of
invariants as

J(I1, I2, I4, I5) = Jg(I1, I2) + Jf (I1, I2, I4, I5). (2.19)

A simple starting point, which captures both the isotropy of the ground
substance through I1 and the transverse isotropy associated with the fibres
through I4, is the reduced form

J(I1, I4) = Jg(I1) + Jf (I4). (2.20)

In order to relate this model to available experimental data, it is common
practice to treat the ground substance as a neo-Hookean material and this can
in part be justified by the study of Gundiah et al. (2007), which showed that the
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neo-Hookean model gives a satisfactory description of the mechanical response
of arterial elastin, an important constituent of the ground substance. Hence, we
may take

Jg(I1) = c
2
(I1 − 3), (2.21)

where c > 0 is a stress-like parameter, which for the neo-Hookean material in
isolation may be identified as the shear modulus of the material in the reference
configuration.

The strong stiffening effect of the tissue observed at higher loadings is almost
entirely due to collagen fibres and motivates the use of an exponential function
for the description of the strain energy stored in the collagen fibres, as originally
proposed by Fung (1967). Thus, as in Holzapfel et al. (2000a), we take

Jf (I4) = k1

k2
{exp[k2(I4 − 1)2] − 1}, (2.22)

where k1 > 0 is a stress-like material parameter and k2 > 0 is a dimensionless
parameter. An appropriate choice of k1 and k2 enables the histologically
based assumption that the crimped collagen fibres have little influence on the
mechanical response of the artery in the low loading domain under tension to be
modelled. Because of the wavy (crimped) structure it is generally assumed that
collagen is not able to support compression since the fibres would buckle under
the smallest compressive load. It is therefore assumed that the fibres contribute
to the strain energy in extension but not in compression. Hence in the model
(2.20), the anisotropic term should contribute only when the fibres are extended,
that is, when I4 > 1, and hence when I4 ≤ 1 the response of the tissue is purely
isotropic. This modelling assumption is not only physically based, but is also
essential for reasons of stability and consistency with inequalities such as strong
ellipticity, as discussed in, for example, Holzapfel et al. (2004). For the model
(2.20) with equations (2.21) and (2.22) the Cauchy stress tensor (2.6) reduces to

s = −pI + cB + 4k1(I4 − 1) exp[k2(I4 − 1)2]m ⊗ m. (2.23)

For small strains the stress–strain response should be consistent with the
linear theory of transverse isotropy, which for an incompressible material involves
three independent elastic constants. In terms of the classical Voigt notation cij
the independent constants are c11 − c12 and c11 + c33 − 2c13 and c44 when the
third direction is the direction of transverse isotropy. According to Merodio &
Ogden (2005) these constants are related to the first and second derivatives of J
evaluated in the reference configuration by

j1 + j2 = 1
4(c11 − c12), (2.24)

j1 + j2 + j5 = 1
4c44 (2.25)

and j44 + 4j45 + 4j55 = 1
4(c11 + c33 − 2c13 − 4c44), (2.26)

where jij = v2J/vIivIj , i, j ∈ {4, 5}; see also Ogden (2009). The strong ellipticity
condition requires that c11 − c12 > 0, c11 + c33 − 2c13 > 0 and c44 > 0, and the
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positivity of the material constants c and k1 is consistent with these inequalities
and we note the connections

1
4(c11 − c12) = c44 = c and c11 + c33 − 2c13 = c + 8k1. (2.27)

Since it involves only two independent constants the model consisting of the sum
of equations (2.21) and (2.22) therefore reduces to a special form of transversely
isotropic material in the linear specialization.

A simple counterpart of equation (2.20) for a material with two families of
fibres may be written in the form

J(I1, I4, I6) = Jg(I1) + Jf (I4, I6), (2.28)

where I6 represents the square of the stretch in the direction of the second family
of fibres, as defined by equation (2.17)1. A commonly used form of the energy
function (2.28), an extension of equation (2.22) to the two-fibre case in which the
two families have the same mechanical properties, is given by

J(I1, I4, I6) = c
2
(I1 − 3) + k1

2k2

∑
i=4,6

{exp[k2(Ii − 1)2] − 1}. (2.29)

Note that when I4 = I6 this reduces to the sum of equations (2.21) and (2.22).
Such a model is particularly appropriate for arteries because of the symmetrical
helical arrangement of the collagen fibres, with their directions M and M′ lying
in the tangent plane of the artery wall and making equal angles with the artery
axis. The associated Cauchy stress tensor is

s = −pI + cB + 2k1(I4 − 1) exp[k2(I4 − 1)2]m ⊗ m

+ 2k1(I6 − 1) exp[k2(I6 − 1)2]m′ ⊗ m′, (2.30)

generalizing equation (2.23), where m′ = FM′. This model is discussed in the
following subsection in connection with the extension and inflation of an artery.

(c) Application to the extension and inflation of an arterial segment

Extension–inflation tests on arterial segments provide an alternative means
of obtaining biaxial data. Let us consider an artery as a thick-walled circular
cylindrical tube, which in its unloaded configuration has internal and external
radii A and B, respectively, and length L. Its geometry may then be described
in terms of cylindrical polar coordinates (R, Q, Z ) by A ≤ R ≤ B, 0 ≤ Q ≤ 2p, 0 ≤
Z ≤ L. The corresponding deformed tube, with the circular cylindrical symmetry
maintained, is then described by cylindrical polar coordinates (r , q, z), with
a ≤ r ≤ b, 0 ≤ q ≤ 2p, 0 ≤ z ≤ l , where a, b and l are the deformed counterparts of
A, B and L and the deformation is given by

r2 = a2 + l−1
z (R2 − A2), q = Q and z = lzZ , (2.31)

where lz = l/L is the uniform stretch in the axial direction and the first equation
is a consequence of the incompressibility condition. Because of the symmetry
the component matrix of the deformation gradient with respect to the cylindrical
axes is diagonal and its entries are again the principal stretches, which we write as
l−1l−1

z , l, lz in the radial, azimuthal and axial directions, respectively, where l is
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the azimuthal stretch r/R and the radial stretch is given by the incompressibility
condition. The deformation is locally biaxial in the (q, z) tangential plane, with
l dependent on the radius.

Let 4 denote the angle between each of the fibre directions M and M′ and the
circumferential direction so that they are symmetrically disposed with respect to
the axis and have no component in the radial direction. Then, the invariants I1, I4
and I6 can all be expressed as functions of the two independent stretches as

I1 = l2 + l2
z + l−2l−2

z and I6 = I4 = l2 cos2 4 + l2
z sin2 4, (2.32)

and, for the considered deformation, J can be regarded as a function of l and
lz , which we write as Ĵ(l, lz). By a standard calculation using the components
of the Cauchy stress (2.30) we obtain the stress differences

sqq − srr = l
vĴ

vl
and szz − srr = lz

vĴ

vlz
. (2.33)

Because of the symmetry there is no shear stress and the normal stresses srr , sqq

and szz are principal stresses, and the equilibrium equation consists of just the
radial equation

dsrr

dr
+ 1

r
(srr − sqq) = 0. (2.34)

A standard experimental protocol involves application of an internal pressure
and an axial load to an arterial segment with closed ends. Let the internal
pressure be denoted by P and the resultant axial load by N . Then, integration
of equation (2.34) and application of the boundary conditions srr = −P on r = a
and srr = 0 on r = b leads to the expression

P =
∫ b

a
l

vĴ

vl

dr
r

≡
∫ la

lb

(l2lz − 1)−1ĵl dl, (2.35)

while, after some rearrangement using equation (2.34), the resultant axial load,
given by

N = 2p

∫ b

a
szz r dr , (2.36)

can be written in the form

F ≡ N − pa2P = pA2(l2
alz − 1)

∫ la

lb

(l2lz − 1)−2(2lz ĵlz − lĵl)l dl, (2.37)

where F is the so-called reduced axial force (the force applied in the axial direction
additional to that generated by the pressure on the closed ends of the tube),
ĵl = vĴ/vl, ĵlz = vĴ/vlz and la and lb are the values of l at r = a and r = b,
respectively. For detailed derivation of the formulae (2.35) and (2.37) see, for
example, Ogden (2009). In this connection, we note that it can be shown from
equation (2.31) that

l2lz − 1 = (l2
alz − 1)A2

R2
(2.38)

and hence that l2lz − 1 has the same sign throughout the wall thickness.
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Figure 1. Representative pressure–stretch response of an intact internal carotid artery. (a) Pressure
versus circumferential stretch for fixed values of the axial stretch. (b) Pressure versus axial stretch
for different starting values of the axial stretch. Modified from Sommer et al. (2010).

For a thin-walled tube, the formulae (2.35) and (2.37) can be approximated by

P = 3l−1l−1
z ĵl and F = 3pA2(2ĵlz − ll−1

z ĵl), (2.39)

where 3 = (B − A)/A.
The first part in equation (2.39) provides the theoretical background against

which the representative data from the recent study by Sommer et al. (2010),
shown in figure 1, may be discussed. In particular, in figure 1a the internal
pressure is plotted as a function of the circumferential stretch for several fixed
values of the axial stretch. These curves show the characteristic stiffening response
associated with the stretching of the collagen fibres following the relatively soft
response primarily associated with the deformation of the ground substance. As
can be seen, the response is stiffer for higher axial pre-stretches. For other types of
soft tissues, such as the myocardium, a similar stiffening response can be observed
(e.g. Dokos et al. 2002). Figure 1b shows the pressure as a function of the axial
stretch starting from an initial axial pre-stretch at zero pressure. These plots
show that the arterial tube elongates during inflation for low axial pre-stretches,
but for larger axial pre-stretches the tube length decreases with pressure. The
transition between these two behaviours corresponds to an axial pre-stretch of
about 1.15, for which there is no change in length due to changes in pressure.
This behaviour is typical for human arteries, as exemplified in Schulze-Bauer &
Holzapfel (2003).

It should be emphasized that the data in figure 1 are for an intact internal
carotid artery. The behaviours of the constituent layers are quite different, and
we illustrate this in figures 2 and 3, where the behaviour of each of the media–
intima composite and the adventitia is shown for the same artery on the same
basis as in figure 1. From figure 2, we highlight two features: with reference to
figure 2a the initial axial stretch has a negligible effect on the circumferential
stretch and it has only a small influence on the pressure versus circumferential
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Figure 2. Representative pressure–stretch response of the media–intima composite of an internal
carotid artery. (a) Pressure versus circumferential stretch for fixed values of the axial stretch.
(b) Pressure versus axial stretch for different starting values of the axial stretch. The media–intima
composite is from the same artery as in figure 1. Modified from Sommer et al. (2010).
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Figure 3. Representative pressure–stretch response of the adventitia of an internal carotid artery.
(a) Pressure versus circumferential stretch for fixed values of the axial stretch. (b) Pressure versus
axial stretch for different starting values of the axial stretch. The adventitia is from the same artery
as in figure 1. Modified from Sommer et al. (2010).

stretch plot for the range of axial stretches achieved. The inversion characterized
in figure 1b does not appear because the axial stretches reached were not as
large as those for the intact artery. In the case of the adventitia, as shown in
figure 3, the influence of the initial axial stretch was slightly more noticeable
for zero pressure, and the pressure response was more dependent on the axial
stretch (see figure 3a). From figure 3b we again see that there is no inversion
effect within the considered elastic range up to 20 per cent axial stretch. Further
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stretching was precluded because of the onset of damage and ultimate rupture
of this layer. As can be seen from figure 3 the pressure–stretch behaviour of the
adventitia stiffens more rapidly than for the media–intima composite shown in
figure 2. Similar experimental data and ultimate tensile stresses and stretches
from the individual layers of non-stenotic human left anterior descending coronary
arteries are documented in Holzapfel et al. (2005a). This study showed the need
to model non-stenotic human coronary arteries as structures composed of three
solid mechanically relevant layers exhibiting distinct mechanical properties.

3. Applications of the fibre–structure model

Modelling of soft tissues as fibre-reinforced elastic materials on the basis of the
invariant structure outlined in §2 is now well established and widely used. The
main application to date has been in the context of arterial wall mechanics but it
is also being used for a growing range of other tissues. In this section therefore we
focus first on describing the different aspects of the use of the invariant approach
for arteries but we then go on to discuss, albeit more briefly, some applications
to other tissues and then more general applications to soft tissues not specific to
particular tissues.

(a) Arterial wall modelling and its applications

An excellent starting point for the discussion of the mechanics of arteries and
more generally of the cardiovascular system is the text by Humphrey (2002),
wherein the basic constitutive structure for the description of the mechanics
of arterial walls is developed. This includes a review of strain-energy functions
available in the literature up to the year 2000, which are based mainly on the
Fung model (see Humphrey 2002, §7.5). Discussion of more recent contributions
can be found in the lecture notes edited by Holzapfel & Ogden (2003, 2009a)
and the conference proceedings volume edited by Holzapfel & Ogden (2006). In
the present section we focus on the development since 2000 of invariant-based
structural models of arterial walls because they have been widely used in the
literature since then and it has been recognized that this provides a general
framework on which to build more sophisticated models.

We begin by considering the modelling of healthy arteries. The structurally
based three-dimensional constitutive model developed by Holzapfel et al. (2000a,
2004) accounts for the collagen fibre orientation of each layer in the artery
and for residual stresses and fits representative experimental data on different
arteries. Moreover, it involves a relatively small number of material parameters
and is consistent with requirements of material stability and mathematical
considerations such as convexity and strong ellipticity. Figure 4 shows the
deformation behaviour of a carotid artery during inflation and torsion modelled
as a two-layer thick-walled tube (media, adventitia) with residual strains. The
same form of constitutive model (2.29) was adopted for the two layers but
a different set of material parameters was used for each layer. In particular,
based on equations (2.35) and (2.37), respectively, the internal pressure P
(figure 4a) and the reduced axial force F (figure 4b) are shown as functions of
the internal radius a. In addition, the dependence of the torsional couple Mt
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Figure 4. Deformation behaviour of a carotid artery during inflation and torsion using the
constitutive model (2.29). Solid curves are numerical results with residual strains included (a =
160.0◦) and the dashed curves are results without residual strains. Dependence of (a) the internal
pressure P and (b) the reduced axial force F on the internal radius a, without shear deformation
(gi = 0). Dependence of (c) the torsional couple Mt and (d) the reduced axial force F on the shear
gi at fixed internal pressure P = 13.33 (kPa). The shaded circles indicate the approximate central
region of the physiological state. Reproduced from Holzapfel et al. (2000a) with kind permission
of Springer Science and Business Media.

(figure 4c) and the reduced axial force F (figure 4d) on the shear gi at fixed
internal pressure P = 13.33 (kPa) are depicted. A method for determining the
parameters in this model on the basis of clinically registered pressure–radius
signals was discussed by Stålhand (2009), who treated the artery as a single-
layered membrane. The method developed was shown to be robust and yielded
unique values of the material parameters. A similar approach using the same
model was used by Masson et al. (2008). An extension of the model to include
viscoelastic effects applied to examples of an artery under static and dynamic
boundary loading conditions is documented in Holzapfel et al. (2002a). This
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model captures the typical viscoelastic properties of muscular arteries, which
are essentially insensitive to strain rate over several decades (nearly constant
damping, independent of frequency).

Within the constitutive framework for elastic arteries described above the
un-crimping of collagen fibres has been accounted for by use of an engagement
strain described in terms of a probability distribution function (Zulliger et al.
2004a). This model captures the actual unfolding of the collagen fibres but has
the disadvantage that the energy function associated with the fibres involves
an integral over the probability distribution, which makes the model difficult to
implement efficiently into numerical codes and therefore limits its applicability.
An engagement strain was also discussed by Speirs et al. (2008), who used a finite
element implementation to analyse the inflation and extension of a thick-walled
tube by using the models (2.21) and (2.22) and compared the results with those
from the engagement model of Zulliger et al. (2004a).

Baek et al. (2007a), Hu et al. (2007) and Zeinali-Davarani et al. (2009)
considered a model of the form of equation (2.29) but with four families of
fibres instead of two. This model is motivated by microscopic data on the
arterial collagen organization obtained from multi-photon microscopy (Wicker
et al. 2008). The additional two families, with equal material properties, are
said to describe the properties of fibres oriented in the circumferential and
axial directions. Gasser et al. (2002) and Chen et al. (2009) used the model
(2.29) in applications to the analysis of wall stresses and strains during the
clinically relevant procedure of arterial clamping. The first of these papers
adopted a two-layer model for the media and adventitia and showed, in
particular, that the axial stress increased very significantly during the clamping
procedure, while the second paper was concerned with fluid–structure interactions
and used a single-layer model to evaluate the effect of clamping on the
wall stresses.

We now turn attention to the modelling of arteries under pathological
conditions and the related clinical procedure of balloon angioplasty. The papers
by Tang et al. (2009) and Yang et al. (2009) describe three-dimensional fluid–
structure interaction in human coronary arteries with atherosclerotic plaques
using more advanced computational analysis. The solid model was based on
equations (2.21) and (2.22) with an additional exponential function in I1. One
conclusion was that cyclic bending and anisotropic properties may cause an
increase of between 50 and 800 per cent in the maximum principal stress values
at selected locations. The model has also served as a basis for examination of the
biaxial behaviour of carotid arteries from mice with muscular dystrophy (Gleason
et al. 2008). The four-fibre family model provided a good fit to the passive data
in this case.

The procedure of balloon angioplasty has received considerable attention in
the literature from the point of view of modelling. The first layer-specific three-
dimensional model of the mechanics of balloon angioplasty was developed by
Holzapfel et al. (2002b) following a preliminary study documented by Holzapfel
et al. (2000b). Figure 5a shows the distribution of the circumferential Cauchy
stresses (in kPa) in a representative cross section of a highly stenotic external
iliac artery (male, 68 years) in a configuration where the angioplasty balloon is
fully expanded. The three-dimensional analysis was also based on the model (2.21)
with (2.22) and included an extension to incorporate the inelastic effects that are
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Figure 5. Plots of the circumferential stresses (in kPa) at a representative cross section of a
highly stenotic artery in a loaded configuration corresponding to a fully expanded angioplasty
balloon. The plots are superimposed on the geometry of the load-free configuration. Comparison of
(a) reference simulation; (b)–(d) stress difference plots (reference model stresses minus simplified
model stresses) for the three model simplifications, namely (b) neglecting axial in situ prestretch,
(c) assuming plane strain and (d) isotropic material response. I-fl, collagenous cap (fibrotic part
at the luminal border); I-fm, fibrotic intima at the medial border; I-c, calcification; M-f, diseased
fibrotic media; I-nos, non-diseased intima; M-nos, non-diseased media; A, adventitia. Adapted from
Holzapfel et al. (2002b).

evidenced during the high-pressure response of an artery (reference simulation
in figure 5a); see also Holzapfel & Gasser (2007). The structural composition
formed by the different tissues is distinguished by the associated boundary
curves. Figure 5b–d shows circumferential stress difference plots, i.e. reference
model stresses minus simplified model stresses. The model simplifications are
characterized by, respectively, neglecting axial in situ prestretch, assuming a
plane strain state, and isotropic material response. Since these simplifications
led to maximum stress deviations of up to 600 per cent it was concluded that
the associated models are in general inappropriate. The plots are superimposed
on the load-free configuration. Inelastic effects that occur during the supra-
physiological artery loading of angioplasty were also captured in the finite element
model of Gasser & Holzapfel (2007a), which provided a detailed analysis of the
stress distribution through the different layers. They pointed out that the three-
dimensional stress states under physiological loading conditions before and after
balloon inflation differ significantly and that even compressive normal stresses
may occur in the media following dilation.

The study by Gasser & Holzapfel (2007b) models plaque fissuring and
dissection during balloon angioplasty intervention on the basis of the model
(2.29) for each of the intima, media and the adventitia, while the lipid pool
is treated as a neo-Hookean material. Results suggest that the plaque fissures
at both shoulders of the fibrous cap and stops at the lamina elastica interna
and that dissections between the intima and the media develop, causing localized
mechanical trauma, but protect the main portion of the stenosis from high stress
and further tissue damage. In the paper by Kiousis et al. (2007), a more complex
three-dimensional balloon–stent–artery interaction problem was modelled on
the basis of the constitutive equation (2.29). The simulations analyse different
stent designs, and a discussion of optimal stent designs for clinically relevant
parameters was provided. Rodríguez et al. (2008a) used the model (2.29) to
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describe the mechanical behaviour of the balloon, for which reinforcing fibres
were taken to run in the circumferential and axial directions, with different sets
of material parameters for the two directions.

An abnormal growth of the cross section of an artery is associated with the
development of an aneurysm. Aneurysms occur primarily in cerebral arteries and
the aorta. On the basis of the multi-layer model of Kroon & Holzapfel (2008b),
the study by Kroon & Holzapfel (2009) investigated the distribution of the elastic
properties of cerebral aneurysm tissue identified by an inverse finite element
analysis. The proposed algorithm is able to estimate the distribution and the
resulting maximum principal stress at physiological loading with satisfactory
accuracy. Another computational method for inverse analysis was introduced
by Lu et al. (2007) and applied to a simple example of a fusiform aneurysm.
Rodríguez et al. (2009) studied two patient-specific abdominal aortic aneurysm
(abbreviated as AAA) geometries at 120 mm Hg in order to determine the
wall stresses. They compared an isotropic model with the model (2.29) and a
generalization of that model which we discuss later in the paper (in §4), and
they analysed the significant differences in the predictions of the models. In
order to develop a criterion for assessing the risk of AAA rupture, Rissland
et al. (2009) considered fluid–structure interactions in patient-specific geometries
with and without intraluminal thrombus (ILT) using both an isotropic and an
anisotropic material model. They determined the dependence of the wall stress
distribution on the material model used with reference to the influence of ILT
and concluded that an anisotropic model offers a more reliable predictor of AAA
risk of rupture. A model that couples growth and rupture in AAA was developed
by Volokh & Vorp (2008).

Also concerning arterial failure, Volokh (2007, 2008) investigated a criterion for
failure of arteries during inflation using a two-layer model (media and adventitia)
on the basis of a stress-softening function combined with equation (2.29). In
addition, Gasser & Holzapfel (2006b) developed a three-dimensional cohesive-
zone model to analyse dissection in a human artery. The computational results
were compared with experimental data from Sommer et al. (2008), yielding
excellent agreement.

An important area which has attracted considerable attention in the last few
years is related to growth and remodelling of tissues, with particular emphasis
on artery walls in health and disease. We mention first those papers which make
use of the model (2.29). These include the study by Rodríguez et al. (2007),
who modelled volumetric growth due to shear wall stress on the inner wall. They
developed a three-dimensional finite element implementation and illustrated the
evolution of the maximum principal stress in a stenosis. In the work of Hariton
et al. (2007a,b), a simple finite element-based and stress-modulated framework
for collagen fibre remodelling in artery walls was postulated. Their simulation
for a human common carotid artery predicts a fibre morphology that correlates
well with experimental observations. The proposed algorithm is also able to
predict a fibre architecture in a human carotid bifurcation that correlates well
with histological observations reported by Finlay et al. (1998).

In the paper by Alford et al. (2008), a mathematical model for growth and
remodelling of arteries was presented for a thick-walled tube composed of a
constrained mixture of smooth muscle cells, elastin and collagen within the
framework developed by Humphrey & Rajagopal (2002) in combination with the
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Figure 6. First Piola–Kirchhoff stress in the initial loaded configuration (solid curves) and in
the grown configuration (dashed curves) through the deformed radius of a thick-walled cylinder.
Reprinted from Olsson & Klarbring (2008) with permission from Elsevier.

kinematic growth model of Rodriguez et al. (1994). Predicted pressure–radius
relations and opening angles show reasonable agreement with the experimental
results from the literature. A variant of the model using a (discretized) Gaussian
distribution for the fibre orientation concentration, documented by Driessen
et al. (2008), analyses the evolution of the mean fibre direction and the
dispersion about that direction in an arterial wall and in an aortic valve. The
remodelling law for the collagen architecture is based on that of Hariton et al.
(2007a,b). For the arterial wall, the model is able to predict the development
of two helically arranged families of collagen fibres. Olsson & Klarbring (2008)
constructed a thermodynamically consistent model for growth and remodelling
in elastic arteries and represented the interaction between the mechanics and the
biochemical control system by configurational forces in energetic duality with
growth and remodelling. The plots in figure 6 show the first Piola–Kirchhoff
stresses through the deformed radius of a (single layer) thick-walled cylinder.
The transmural tangential and axial stresses evolve towards a nearly constant
value. The work by Valentín & Humphrey (2009) is based on evaluating the
sensitivity of the predictions of the constrained mixture model of artery growth
and remodelling to variations in parameters that relate to the rate of turnover of
collagen fibres and smooth muscle in particular.

Discussion of growth and remodelling is particularly appropriate in the context
of the development of aneurysms, and there are several approaches in the
literature that aim to capture the growth and remodelling of aneurysms in
cerebral arteries or abdominal aortas. Approaches that are based on the structural
model of §2 are now briefly reviewed. Vena et al. (2008) proposed a time-
dependent model for growth of cerebral aneurysms in which the growth process is
the result of two competing mechanisms, specifically the changes in the collagen
fibre reference length and in the collagen fibre density, governed by evolution
laws. The two mechanisms were shown to have opposite effects on the stability
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of tissue growth. Eriksson et al. (2009) modelled aneurysm growth in a human
middle cerebral artery as a two-layer cylinder with the layers corresponding to
the media and the adventitia. The aneurysm is regarded as a development of the
adventitia following ideas from Kroon & Holzapfel (2007, 2008a), who suggested
that the production and degradation of collagen fibres depends on the wall stretch.
The anisotropy of the surrounding media was modelled using the strain-energy
function (2.29). It was shown that an alteration in the axial in situ stretch of the
artery has a significant effect on the steady-state shape of the aneurysm and the
resulting stresses in the aneurysm wall.

A mathematical model describing the growth of an abdominal aortic aneurysm
as a two-layer membrane was proposed by Watton et al. (2004). This uses
the strain-energy function (2.29) adapted to incorporate variable recruitment
and density of collagen fibres and so allowing the collagen to remodel during
aneurysm growth. Watton & Hill (2009) extended this model in order to
accommodate evolving mechanical properties which are clinically measurable
and consistent with experimental observations reported by Länne et al. (1992).
Another interesting application of equation (2.29), in which the anisotropic
exponential terms have different material constants for the collagen fibres
and smooth muscles, is to the analysis of the progression and resolution of
vasospasm in the work of Baek et al. (2007b). The constitutive relations used
combine information on the wall properties with haemodynamics and chemical
kinetics, and the results are consistent with the main features of clinically
reported vasospasm.

In the development of constitutive models, it is important to take account
of their mathematical structure with particular reference to the prediction of a
physically (in the present context biomechanically) reasonable response. This is
particularly related to notions of convexity and strong ellipticity and to material
stability, as was emphasized in the work by Holzapfel et al. (2000a, 2004) and in
the lecture notes by Ogden (2003, 2009). Against this background a framework for
the construction of anisotropic polyconvex models for soft biological tissues was
presented by Balzani et al. (2006). In this paper predictions of the model (2.21)
with (2.22) and polyconvex variants of the model are compared with experimental
data from uniaxial extension tests on circumferential and axial strips obtained
from the media of a human abdominal aorta.

(b) Modelling other soft tissues

The fibre–structure models that have been used so successfully for arterial
tissue have also been used, in one variant or another, to describe the elastic
properties of many other soft biological tissues. Those for which the invariant-
based framework has been used include veins, intestine, oesophagus, cornea,
intervertebral disc, ligament, cartilage and the myocardium, but this list in not
exhaustive. Here we comment briefly on each of these.

An application to the passive behaviour of ovine infrarenal vena cava
tissues was the subject of the paper by Alastrué et al. (2008b), in which the
modelling approach was based on equation (2.29) but with different constants
associated with I4 and I6. Their own experimental data showed the marked
anisotropic character of the tissue, which was reproduced accurately with
their model.
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The intestinal wall is a fibrous tissue with a layered structure. The main
structural layers are the submucosa, which is composed almost entirely of collagen
with two families arranged in a uniformly oriented cross ply. The muscular
layer consists essentially of circumferentially oriented muscle fibres surrounded
by a muscular coat with longitudinally oriented muscle fibres. This has been
modelled as a fibre-reinforced elastic material by Ciarletta et al. (2009) using
an extension of the model (2.29) that accounts for the contributions of the
muscle fibres.

Based on the same framework, a similar constitutive model was used to describe
the mechanical properties of oesophageal tissue by Yang et al. (2006). As with
the model in Zulliger et al. (2004a), they used an engagement stretch associated
with the un-crimping of collagen fibres.

The strain-energy function (2.29), with the neo-Hookean term replaced by
a Mooney–Rivlin term, was used to study the mechanical behaviour of the
human cornea in healthy conditions and in the presence of keratoconus for
increasing intraocular pressure in Pandolfi & Manganiello (2006). Exactly the
same constitutive model was used in Alastrué et al. (2006) and Lanchares et al.
(2008) for analysing surgical procedures such as photorefractive keratectomy
and limbal relaxing incisions, and for analysing the palpation of the cornea
(Niroomandi et al. 2008).

The constitutive model (2.29) was also successfully applied to the description
of the biomechanical response of the annulus fibrosus in the human lumbar
spine (Eberlein et al. 2001, 2004). The model is appropriate because a single
lamellar of the annulus fibrosus exhibits marked nonlinearity, anisotropy and
distinct regional fibre orientation (Holzapfel & Ogden 2006). In addition, several
ligaments connecting vertebrae in the lumbar spine are found to be transversely
isotropic and have been modelled accordingly by using the same model as above
(Holzapfel & Stadler 2006).

Recently the model (2.21) with equation (2.22) has been used as the basis for
describing cartilage morphology and its material response by incorporating the
collagen fibre fabric (Pierce et al. 2009).

Within the same general framework an extension of the model to the
passive mechanical response of the myocardium has been developed by
Holzapfel & Ogden (2009b). The model embraces the (orthotropic) morphological
structure of the myocardium and accounts for the muscle fibre direction and
the myocyte sheet structure and fits very well the available simple shear
data of Dokos et al. (2002). Figure 7, adopted from Holzapfel & Ogden
(2009b), shows a comparison of the constitutive model with simple shear
data (Dokos et al. 2002) obtained from tests that were conducted on cube-
shaped specimens from different orientations within the passive ventricular
myocardium from pig hearts. The pairs fs, fn and sn refer to the fibre-sheet,
fibre-normal and sheet-normal planes, and the enclosing parentheses indicate
the direction of shear within the plane; for example, (fs) indicates shear in the
s direction in the fs plane. The plots highlight the orthotropic behaviour of
the material.

The passive ventricular myocardium exhibits a regionally dependent and, as
is clear from the plots, highly nonlinear behaviour, and it is most resistant to
shear deformations that produce extension of the myocyte (f) axis in the fs and
fn planes (the upper two curves).
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Figure 7. Fit of the constitutive model of Holzapfel & Ogden (2009b) to simple shear data obtained
from tests that were conducted on cube-shaped specimens from the passive ventricular myocardium
of pig hearts; see Dokos et al. (2002). The pairs fs, fn and sn refer to the fibre-sheet, fibre-normal
and sheet-normal planes, and the direction of shear within each plane is identified by the ordered
pair enclosed in parentheses, as described in the text. Open circle, experimental data; solid line,
model. Reproduced from Holzapfel & Ogden (2009b).

It is worth highlighting here that for myocardial tissue in particular, but
also for most other biological tissues, there is a shortage of consistent test data
against which models can be reliably evaluated. There is thus a pressing need for
more data.

(c) Fibrous soft tissues in general

Apart from its application discussed in the foregoing, the constitutive
framework has also been used to analyse various general aspects of soft-tissue
behaviour without reference to specific tissues. One example is in the paper
by Karšaj et al. (2009), which considers time-dependent remodelling of fibre
reorientation under certain boundary conditions using the transversely isotropic
model (2.22) and the hypothesis that the fibres reorient towards a principal
direction of stretch.

An extension to multi-layered structures with the mean fibre alignments
distinguishing one layer from another was proposed in Kroon & Holzapfel (2008b).
Particular examples of such a structure include artery walls, quadriceps tendons
and airway walls.

Beyond purely elastic behaviour the model has been used within the context of
viscoelasticity, damage and plasticity. Its extension to viscoelasticity is discussed
in Holzapfel & Gasser (2001), which also includes computational implementation

Proc. R. Soc. A (2010)

 on June 21, 2011rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


1572 G. A. Holzapfel and R. W. Ogden

and applications to simple boundary-value problems. A further extension to the
mechanics of fibre-reinforced biological soft tissues to include three-dimensional
finite-strain damage with viscoelasticity is documented in Peña et al. (2008a,b).
The elastic part of the model used therein is a slight variant of equation (2.29).

A theoretical basis for including the model within the context of inelastic
strains was provided in Gasser & Holzapfel (2002), which was also used in several
applications, including those mentioned earlier, and allows for the possibility of
multiple-fibre families.

Finally, we mention that this type of model has also been used for the analysis
of textile composites, as illustrated in the papers by Nam & Thinh (2006) and
Milani et al. (2007).

4. Modelling fibre dispersion

In several tissues there is a strong alignment of the collagen fibres with little
dispersion in their orientation, but in other cases, such as in the adventitia of
the artery wall, the heart valves and myocardial laminae, there is significant
dispersion in the orientation, which has a significant influence on the mechanical
response. It seems that the seminal paper by Lanir (1983) was the first to take
account of fibre dispersion. This was accommodated by using a distribution
density function for the fibre splay in connective tissues. However, because of
the complexity of the model it has not proved to be a practical option for
efficient numerical implementation. More recently models based on invariants
have been adopted including those of Freed et al. (2005), Holzapfel et al. (2005a,b)
and Gasser & Holzapfel (2006a). The model of Freed et al. (2005), for example,
uses a structure tensor based on the Gaussian distribution of fibre directions for
both two and three dimensions, and the model is applied to bioprosthetic valves;
see also Freed (2008).

In what follows we discuss two other invariant-based models that account for
fibre dispersion. For each model it is a minor operation to obtain the associated
stress tensor and elasticity tensor, and finite element implementation of either
model is straightforward and computationally efficient.

(a) The r model

The model of Holzapfel et al. (2005a,b) uses a strain-energy function of the
form J(I1, I4) = Jg(I1) + Jf (I1, I4), with

Jf (I1, I4) = k1

k2
[exp{k2[(1 − r)(I1 − 3)2 + r(I4 − 1)2]} − 1], (4.1)

where k1 > 0 and k2 > 0 are stress-like and dimensionless parameters, respectively,
to be determined from mechanical tissue tests. The parameter r ∈ [0, 1] is a
weighting factor between full isotropy and full alignment (transverse isotropy)
and is therefore a measure of dispersion in the fibre orientation. The limit r = 1
corresponds to ideal alignment of collagen fibres (0% weight on the isotropic
distribution), while in the limit r = 0 an isotropic distribution is obtained. In
Holzapfel et al. (2005a) the model was shown to fit the layer-specific mechanical
properties of human coronary arteries very well, while in Holzapfel et al. (2005b)
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the model was related to the individual components of stenotic arteries and used
to study the effect of angioplasty combined with stenting on the mechanical
environment of the wall. The proposed methodology allows variations in a set
of stent parameters that enables the difference in the mechanical environment
within the wall before and after angioplasty with stenting to be evaluated.

A slight variant of equation (4.1), due to Rodríguez et al. (2008b), is

Jf (I1, I4) = k1

k2
[exp{k2[(1 − r)(I1 − 3)2 + r(I4 − I 0

4 )2]} − 1], (4.2)

where I 0
4 > 1 is a dimensionless parameter that is interpreted as a threshold

value of I4 beyond which the collagen fibres are un-crimped, and the anisotropic
term therefore contributes only when I4 > I 0

4 . This model accurately captures the
strong stiffening of collagenous tissue.

The model (4.1) served as a basis for the simulation of coronary artery bypass
graft surgery, where the artery was modelled as a three-layer thick-walled tube
and the finite element method was employed to predict the deformation and
stress distributions at various stages of surgery (Cacho et al. 2007). It was found
that the incision length has a critical influence on the graft shape and the stress
in the graft wall, and that changes in the mechanical environment are severe,
with stress concentrations occurring at the incision ends. Based on the same
constitutive framework, Mortier et al. (2010) investigated and compared three
different second-generation drug-eluting stents during implantation in the curved
main branch of a coronary bifurcation in order to obtain insight into the changes
of the mechanical environment. It turns out that the resulting distributions of
the wall stresses are strongly dependent on the stent design, and it was shown
how a stent design should be modified to reduce the maximum wall stresses. In
addition, Kiousis et al. (2009) proposed a computational methodology to analyse
the effect of changes in the lipid pool and calcification on wall stresses and on
the collagenous cap vulnerability in a human carotid bifurcation. They found a
positive correlation between the increase of lipid pool and the mechanical stress
in the collagenous cap, and hence an increased risk of cap rupture. As a result of
their analysis these authors were able to propose a novel vulnerability index to
assess the risk of collagenous cap rupture. Figure 8 shows the distributions of the
maximum principal Cauchy stress in the deformed configurations of characteristic
cross sections in a carotid bifurcation at 140 mm Hg. In the reference model
RM, the plaque volume consists of 25 per cent lipid pool I-lp and 75 per cent
calcification I-c, while in a modified model MM these plaque-forming tissues are
interchanged. In both models the highest stresses are identified at the thinnest
part of the non-diseased wall, in the vicinity of the shoulders of the collagenous
cap and in the calcification. Figure 8c shows the stress differences between these
models and highlights the fact that for the internal carotid artery (ICA) the stress
inside the collagenous cap I-fl for model MM is almost 50 kPa larger than that for
model RM, thus indicating a more rupture-prone stenosis.

The two papers of Rodríguez et al. (2008a, 2009) analyse AAAs using models
based on equations (4.1) and (4.2). In particular, in Rodríguez et al. (2008b), it
is shown that with the modified model (4.2) a very good agreement with biaxial
stress–stretch data from AAAs provided by Vande Geest et al. (2004) can be
obtained. The results suggest that shorter aneurysms are more critical when
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Figure 8. Maximum principal Cauchy stress in the deformed configurations of characteristic cross
sections in a stenotic human carotid bifurcation (ICA, internal carotid artery; ECA, external carotid
artery; CCA, common carotid artery) at a blood pressure of 140 mm Hg. (a) Reference model RM
where the volume of the lipid pool I-lp constitutes 25% of the plaque volume and the volume of the
calcification I-c constitutes the remaining 75%. (b) Modified model MM where the material models
and parameters of the plaque-forming tissues (I-lp and I-c) are interchanged; stress difference
between the models MM and RM in the unloaded configuration of the considered cross sections
(c). For the sake of clarity, the boundaries of the collagenous cap I-fl, then I-lp and I-c are shown.
Adapted from Kiousis et al. (2009).

asymmetries are present and they show the strong influence of anisotropy on
the magnitude and distribution of the peak wall stress in AAAs. Rodríguez et al.
(2009) compare the models (2.29) and (4.2) and an isotropic model on the basis
of two patient-specific AAA geometries.

Modelling and analysis of the mechanical behaviour of mitral valves with
their attached chordae tendineae on the basis of the models (4.1) and (4.2) was
conducted by Prot et al. (2007, 2010) and Prot & Skallerud (2009). An application
to a membrane shell using a finite element implementation was illustrated, and
a comparative study of healthy and diseased valves was documented. In Prot &
Skallerud (2009) it was shown that if the leaflet is modelled as a layered structure
using layers with different material properties then the stresses in the fibre
direction and the resistance to bending are reduced. The model (4.1) was used
by Alastrué et al. (2008a) in the context of the modelling of adaptive growth of
arteries with residual stresses incorporated.

(b) The k model

The model of Gasser et al. (2006) is based on a generalized structure tensor H
defined by

H = 1
4p

∫
u

rM ⊗ M du, (4.3)

which is the mean of the structure tensor M ⊗ M over the unit sphere u weighted
by the orientation distribution density r (not to be confused with the r in the
previous subsection), where M is the local fibre direction and r is normalized
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according to

1
4p

∫
u

r du = 1. (4.4)

Clearly, H is symmetric and in general it has five independent components
since, by equation (4.4), trH = 1. Here, however, we consider only the case of
a transversely isotropic distribution r = r(Q), for which H involves only a single
constant and is given by

H = kI + (1 − 3k)M ⊗ M and k = 1
4

∫p

0
r sin3 Q dQ, (4.5)

where k is a dispersion parameter, M is the mean fibre direction and Q is the
angle between M and M. In this case equation (4.4) becomes

∫p

0 r sin Q dQ = 2.
Associated with H we define the invariant I ∗

4 as tr(CH) which, by equation
(4.5)1, yields

I ∗
4 = kI1 + (1 − 3k)I4, (4.6)

where I4 = (CM) · M. The k model is a strain-energy function of the form
J(I1, I4) = Jg(I1) + Jf (I1, I4) with

Jf (I1, I4) = k1

k2
{exp[k2(I ∗

4 − 1)2] − 1}, (4.7)

where k1 > 0 and k2 > 0 are again stress-like and dimensionless material
parameters, respectively.

(i) The influence of the dispersion parameter k

In the paper by Gasser et al. (2006) the range of the dispersion parameter k

was considered to be [0, 1
3 ]. The limits k = 0 and 1

3 correspond, respectively, to
no dispersion (transverse isotropy) and a three-dimensional isotropic distribution
of fibre orientation. It was pointed out by Li & Robertson (2009), however, that
the absolute upper limit on k is 1

2 . It is therefore interesting to consider the effect
of values of k between 1

3 and 1
2 , and for this purpose we consider again the von

Mises distribution in the form

r(Q) = 4

√
b
2p

exp[b(cos(2Q) + 1)]
erfi(

√
2b)

, (4.8)

where b is the so-called concentration parameter associated and erfi(x) =
−i erf(ix) denotes the so-called imaginary error function (Weisstein 2010), the
error function itself being given by the standard formula

erf(x) = 2√
p

∫ x

0
exp(−t2) dt. (4.9)

If b ≥ 0 then k is restricted to the range 0 to 1
3 ; however, the right-hand side of

equation (4.8) is also real for b < 0 and then it is easy to show that the range
of values −∞ to +∞ for b corresponds to k ∈ [0, 1

2 ]. A plot of the (monotonic)
relationship between b and k is shown in figure 9. For a set of values of k within

Proc. R. Soc. A (2010)

 on June 21, 2011rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


1576 G. A. Holzapfel and R. W. Ogden

∞

−∞

0 5 10 15 20−5−10−15−20

0

0.1

0.2

0.3

0.4

0.5

concentration parameter, b
di

sp
er

si
on

 p
ar

am
et

er
, k

Figure 9. Plot of the concentration parameter b against the dispersion parameter k based on the
combination of equations (4.5)2 and (4.8).
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Figure 10. Plot of the (transversely isotropic) von Mises density function (4.8) against Q with the
centre shifted to Q = 0 for k between 1

3 and 1
2 corresponding to a negative concentration b.

the range [0, 1
3 ] plots of the density function r(Q) were shown by Gasser et al.

(2006). Here, in figure 10, we show a corresponding plot of r(Q) versus Q centred
on Q = 0 for 1

3 ≤ k ≤ 1
2 , with k > 1

3 corresponding to ‘negative concentration’ b.
This shows that the fibres are dispersed towards the peripheral angles.

In the limiting case k = 1
2 we have from equation (4.6)

I ∗
4 = 1

2(I1 − I4), (4.10)
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which corresponds to a planar isotropic distribution of fibres with a preferred
direction normal to that plane. Figure 11 shows a graphical representation of
the surface of revolution about the mean fibre direction defined by the density
function r(Q), analogous to fig. 4 in Gasser et al. (2006), but for seven different
fibre distributions, corresponding to k = 0, 2

15 ,
4
15 ,

1
3 ,

3
8 ,

11
24 and 1

2 .
As indicated above, the lower limit k = 0 corresponds to all the fibres

directed in the same direction, k = 1
3 provides an isotropic three-dimensional

distribution, while the upper limit k = 1
2 gives an isotropic distribution in

the plane normal to the preferred direction. For representation purposes the
surfaces shown in figure 11 are scaled differently. As k increases from 1

3 to
1
2 the fibre distribution becomes flatter and flatter, spreading towards the
peripheral angles and in the limit it becomes planar, extending to infinity. Hence,
the distribution changes from one-dimensional to three-dimensional down to
two-dimensional.

As an illustration of the effect of values of k between 1
3 and 1

2 we consider
the pressure–stretch behaviour of a thin-walled circular cylindrical tube with
two families of fibres distributed tangentially to the cylinder and symmetrically
disposed with respect to the axis. The mean orientation of each family is at
angle 4 relative to the circumferential direction, as described in §2c. The plots in
figure 12 show the relation between the dimensionless internal pressure P∗ = P/c3
and the circumferential stretch l for a thin-walled (membrane) with the axial
stretch lz = 1 calculated on the basis of equation (2.39)1, where c is the material
constant introduced in equation (2.21). The plots are based on the strain-energy
function

J = c
2
(I1 − 3) + k1

k2
{exp[k2(I ∗

4 − 1)2] − 1}, (4.11)

where I ∗
4 = kI1 + (1 − 3k)I4 and I1 and I4 are given by equation (2.32), and are

for different mean fibre orientations described by the angle 4 and for k = 0, 0.226,
1
3 and 1

2 . As can be seen from figure 12 the mechanical response is stiffest for
an isotropic material assumption and it is weakened by the dispersion. For k = 1

2
it is significantly weaker for 4 = 45◦ and 4 = 30◦, and we note that the ordering
of the curves for the different angles for k > 1

3 is the opposite of that for k < 1
3 .

What is not clear from figure 12a is that the k = 1
2 curves are non-monotonic, and

in some cases yield negative values of the pressure during the tube inflation. To
clarify this the curves for small values of the pressure are shown on an enlarged
scale in figure 12b. Clearly, values of k between 1

3 and 1
2 yield undesirable effects

and such values are therefore inappropriate for use in the present context of
modelling soft tissues.

Note that for an incompressible material I1 ≥ 3, while if the mean fibre
direction is stretched we have I4 ≥ 1. Then, provided 0 ≤ k ≤ 1

3 , we have I ∗
4 ≥ 3k +

(1 − 3k) = 1. However, if 1
3 < k ≤ 1

2 then it is possible that I ∗
4 < 1, as we

illustrate below.
As in §2c we now consider equation (4.11) as a function of l and lz :

Ĵ(l, lz). For the problem of extension and inflation of a thick-walled circular
cylindrical tube the inflating internal pressure P is given by equation (2.35).
We now investigate the sign of the integrand in equation (2.35), which, from
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Figure 11. Three-dimensional graphical representation of the orientation density of the collagen
fibres based on the transversely isotropic density function (4.8) for a representative set of values
of the dispersion parameter k.
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Figure 12. Plot of the dimensionless pressure P∗ = P/c3 against the circumferential stretch l

for fixed axial stretch lz = 1 for the constitutive model (4.11) using the formula (2.39)1 and
representative parameter values; k = 0 is the thick dashed curves, k = 0.226 the thin dashed curves,
k = 1

2 the dotted curves separately for the mean fibre angles 4 = 30◦, 45◦ and 60◦, and k = 1
3 is the

solid curves. Figure (b) is a zoom of (a) for small values of the pressure.

equations (4.11) and (2.32), gives

lĵl = c(l2 − l−2l−2
z ) + 2k1 exp[k2(I ∗

4 − 1)2](I ∗
4 − 1)l

vI ∗
4

vl
, (4.12)

with
l

vI ∗
4

vl
= 2[k(l2 − l−2l−2

z ) + (1 − 3k)l2 cos2 4]. (4.13)
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As noted in §2c, l2lz − 1 has the same sign at every point of the wall thickness.
Thus, since the neo-Hookean shear modulus c is positive the contribution of
the neo-Hookean term to equation (4.12) is positive during inflation provided
l2lz − 1 > 0 (= 0 in the reference configuration). For lz = 1 this is clearly the
case since increasing radius corresponds to l > 1. Also k1 > 0 and the exponential
is positive. Thus, we examine the signs of I ∗

4 − 1 and vI ∗
4 /vl.

First, for 0 ≤ k ≤ 1
3 we have vI ∗

4 /vl ≥ 0 and we have already noted that
I ∗
4 − 1 ≥ 0. Now consider 1

3 < k ≤ 1
2 . For illustration we take k = 1

2 and lz = 1.
Then, with l > 1 we obtain

I ∗
4 − 1 = 1

2
l−2(l2 − 1)(l2 sin2 4 − 1) and l

vI ∗
4

vl
= l−2(l4 sin2 4 − 1), (4.14)

so that I ∗
4 − 1 < 0 for l < 1/ sin 4 and vI ∗

4 /vl < 0 for l2 < 1/ sin 4. Thus the
exponential term in (4.12) is negative for

1√
sin 4

< l <
1

sin 4
. (4.15)

As inflation proceeds from l = 1 there will be parts of the integrand that are
negative and this is sufficient to generate not only a maximum in P followed
by a minimum but also a negative value of P, which is physically unrealistic.
This is even more apparent in the membrane approximation since the pressure
is then proportional to the expression in equation (4.12), which is negative for l
satisfying equation (4.15).

The study by Freed (2008) also discussed an equivalent of the structure tensor
(4.5) for the three-dimensional case. The latter was used in the analysis of some
simple modes of deformation by Freed (2009). Similar ‘structure-like’ tensors
were also discussed by Federico & Herzog (2008a) in describing anisotropy of
permeability in porous media. In addition, the model (4.11) was also used to
capture the mechanical properties of pulmonary alveoli, which consist of collagen
of types I and III, elastin and proteoglycans (Wiechert et al. 2009). In a recent
paper by Haskett et al. (in press) the model was also used to fit data on abdominal
aortas in order to evaluate the change in stiffness and anisotropy with age. A
variant of the model that uses a (discretized) Gaussian distribution for the fibre
orientation concentration has been used to model human aortic valve leaflets
(Driessen et al. 2007, 2008; Balguid et al. 2008).

The recent study by Cortes et al. (in press) uses the formulation based on the
generalized structure tensor (4.3) for quantitative comparisons with an angular
integration formulation in which the strain energy and stresses are calculated
by integrating the energy and stresses of the individual fibres, as in, for example,
connective tissues (Lanir 1983), aortic valve cusps (Billiar & Sacks 2000), corneal
stroma (Nguyen et al. 2008), articular cartilage (Ateshian et al. 2009) or the
posterior sclera (Girard et al. 2009). Cortes et al. (in press) derived analytically
the differences between the general structure tensor and angular integration
formulations. On the basis of the strain-energy function (2.22) and the von Mises
distribution in the form (4.8) they also illustrated numerical comparisons for
three loading configurations, specifically uniaxial tension, (equi)biaxial tension
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and simple shear, vis-à-vis the angular distribution. In particular, they found
that for equibiaxial deformation and planar distributions the two formulations
give equivalent results.

However, it should be mentioned that Cortes et al. (in press) assert, following
Federico & Herzog (2008b), that the structure tensor approach is limited to
situations in which the fibres are in tension and the angular distribution of
the fibres is small. However, this assertion is unfounded and is based on a
misinterpretation of the discussion of the generalized structure tensor introduced
in Gasser et al. (2006). In the last paper it was stated that in a fibre distribution
the anisotropic part of the structure tensor contributes to the strain energy
only if the mean fibre direction is extended. It was not required that all fibres
in the distribution be extended or be under tension. This distinguishes a fibre
distribution from the situation in which fibres are aligned. Indeed, the mechanics
of fibres within a distribution are quite subtle, and it is appropriate to illustrate
this briefly with a simple example.

Consider a homogeneous material with a transversely isotropic distribution of
fibres and mean fibre direction M in the reference configuration. Suppose that
the material is subject to a homogeneous deformation corresponding to simple
tension s > 0 in the direction M, so that the Cauchy stress tensor is s = sM ⊗ M.
Let l be the stretch in the direction M. Then, by symmetry and incompressibility,
the two transverse stretches are equal to l−1/2. Now consider a fibre within the
distribution whose direction in the reference configuration, A say, makes an angle
a with the mean direction, so that A · M = cos a. Then, the stretch la in the
direction of this particular fibre is given by l2

a = l2 cos2 a + l−1 sin2 a. This fibre
is stretched under the deformation if la > 1. For l > 1, after removal of a factor
l − 1, this inequality can be written as tan2 a < l(l + 1). Thus, all fibres whose
initial direction is such that tan a <

√
2 are stretched during the deformation.

This gives a value of a of about 55◦, which cannot be considered as ‘small’. Of
course, for other deformations, fibres within a distribution may be stretched only
for smaller angular distributions. But this is not the real issue since we do not
require all fibres in a distribution to be stretched. A telling point is that for this
simple tension problem the stress along the considered fibre is (sa) · a, where a
is a unit vector in the deformed fibre direction and laa is the ‘push forward’ of A
under the deformation, so that the component of a in the direction M is l cos a/la .
This results in the fibre stress sl2 cos2 a/l2

a , which is non-negative for all a. Thus,
for the considered deformation, all fibres in the distribution are under tension.
But, as shown above, fibres for which a is greater than tan−1

√
2 are nevertheless

subject to contraction initially as l increases from 1.
An interesting application of the dispersion model is to the human cornea, for

which it was found to be important to account for the dispersed collagen fibrillar
structure (Pandolfi & Holzapfel 2008). This was modelled using two families of
dispersed fibrils with the strain-energy function

J(I1, I ∗
4 , I ∗

6 ) = c
2
(I1 − 3) +

∑
i=4,6

k1

2k2
{exp[k2(I ∗

i − 1)2] − 1}, (4.16)

where, similarly to I ∗
4 , I ∗

6 is defined as kI1 + (1 − 3k)I6. Figure 13 shows the
influence of the dispersion parameter k on the mechanical response of a cornea
at an intraocular (physiological) pressure of 16 mm Hg. ‘Baseline’ refers to a
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reference simulation using two families of collagen fibrils considering dispersion
according to equation (4.16), ‘isotropic’ uses the neo-Hookean model (k = 1

3),
‘fibres’ refers to the case k = 0 and ‘mixed’ uses the baseline distribution
along the superior–inferior meridian (north–south direction) and k = 0 along
the nasal–temporal meridian (west–east direction). As can be seen the stress
patterns change considerably with the assumptions made regarding the degree of
fibril dispersion.

(ii) The case of a planar fibre distribution

For thin lamellar tissue structures, which may be treated on the basis of
membrane or thin shell theory, it is appropriate to consider a planar distribution
of fibres within the membrane. Then, in this two-dimensional situation we
consider a distribution with the fibre direction

M = cos Q e1 + sin Q e2, (4.17)

as indicated in figure 14, for Q between −p/2 and +p/2, where e1 and e2 are
rectangular Cartesian basis vectors. The counterpart of the three-dimensional
structure tensor defined in equation (4.3) has in general three (in-plane)
components, but for a fibre distribution that is symmetrical about the e1 direction
the orientation density function satisfies r(−Q) = r(Q), the mean fibre direction
is e1 and only one independent component remains, as in the three-dimensional
situation. The normalization condition can be written as

1
p

∫p/2

−p/2
r(Q) dQ = 1, (4.18)

and the two-dimensional structure tensor is now defined by

H = 1
p

∫p/2

−p/2
rM ⊗ M dQ = kI + (1 − 2k)e1 ⊗ e1, (4.19)

where I is here the two-dimensional identity and

k = 1
p

∫p/2

−p/2
r(Q) sin2 Q dQ. (4.20)

Now, for k = 0 all the fibres are in the e1 direction, i.e. there is no dispersion,
while for k = 1

2 the fibres are uniformly distributed in all in-plane directions
(planar isotropy).

Finally in this section we note that the analogue of equation (4.6) for two
dimensions is

I ∗
4 = kI1 + (1 − 2k)I4, (4.21)

where I4 = e1 · (Ce1). This two-dimensional case was discussed in Ogden (2009)
and an equivalent form was derived by Freed (2008, eqn 21). The relation (4.19)2
was also mentioned in the recent work by Cortes et al. (in press).
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Figure 13. Stress distribution in a cornea at an intraocular pressure of 16 mm Hg using four different
constitutive models (described in the text). (a) von Mises stress. (b) Maximum principal Cauchy
stress. Stresses are given in MPa. Adapted from Pandolfi & Holzapfel (2008).

e1

e2

Q

M = cos Q e1 + sin Q e2

Figure 14. Characterization of an arbitrary unit direction vector M by means of the angle Q ∈
[−p/2, +p/2] in a two-dimensional Cartesian coordinate system {e1, e2}.

5. Active response of artery walls

The models discussed so far have all been based on the passive behaviour, i.e.
without consideration of the activation of smooth muscle cells. Relatively little
work has been done on the modelling of activation in the continuum context.
Smooth muscle cells, which are contained in the middle layer of an artery,
are important constituents of the vascular system and they are responsible for
control of short-term changes in lumen diameter and of long-term changes in the
extracellular matrix turnover (e.g. Li et al. 1998).

In this section we provide an overview of the relevant continuum modelling
aspects. First, however, we briefly refer to the history of the theory of muscle
activation, which dates back to the work of Hill (1938). Based on the three-
element Hill model several models have been developed; here, however, we
mention in particular the papers by Ettema & Meijer (2000), Lloyd & Besier
(2003) and Lichtwark & Wilson (2005), which collectively provide an overview of
the literature although they do not particularly focus on the contraction of smooth
muscle cells. Papers which capture smooth muscle contractions and related
models, also based on the Hill model, are those by Gestrelius & Borgström (1986),
Yang et al. (2003a) and Zulliger et al. (2004b), which are now summarized briefly.
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Gestrelius & Borgström (1986) proposed a one-dimensional dynamic model
of smooth muscle contraction. The model describes the energy transfer via
cross-bridges and takes account of experimental observations that could not be
captured by the classical Hill model. Yang et al. (2003a) presented an integrated
electrochemical and mechanochemical model of the smooth muscle cell. The
mechanochemical component, in particular, couples the model of Hai & Murphy
(1988) with a mechanical model based on that of Hill. The mechanical model is
similar to that of Gestrelius & Borgström (1986) but is extended to incorporate
viscoelasticity.

A different approach to modelling the vascular smooth muscle tone was
proposed by Zulliger et al. (2004b). Their phenomenological model is based
on three-dimensional continuum mechanics and uses a pseudo-strain-energy
function that incorporates parameters describing the mechanical properties.
The pseudo-strain energy is decomposed into the sum of contributions from
collagen, elastin and vascular smooth muscle. The model captures the interaction
between mechanical stretch and myogenic contraction and was used in particular
to illustrate localized reduction of the circumferential stress in an arterial
wall due to vascular smooth muscle tone. This follows the earlier work of
Rachev & Hayashi (1999) in which a simpler phenomenological model was
developed based on an elastic strain-energy function and a proposed model for
the active circumferential stress. In particular, the results of this work show that
incorporation of the basal muscular tone into the model reduces the computed
stress gradients in the wall beyond the reduction due to residual stress, which
is consistent with experimental findings documented by Matsumoto & Hayashi
(1996). The active response is assumed to be controlled by the concentration of
free intracellular calcium (Ca2+) together with the muscle fibre stretch, l̄ say,
relative to a reference sarcomere length. The active stress sa may therefore be
given in the form

sa = A(Ca2+)l̄

⎡
⎣1 −

(
lm − l̄

lm − l0

)2
⎤
⎦ m ⊗ m, (5.1)

where m is a unit vector in the direction of the deformed muscle fibre, A is an
activation function, lm and l0 are stretches at which the active force generated
is a maximum and a minimum, respectively. In Rachev & Hayashi (1999) the
passive state was described by A = 0, the basal state by A ≈ 50 kPa and the fully
activated state by A ≈ 100 kPa. The same activation was used in the study by
Baek et al. (2007a) in conjunction with a constitutive law of the type (2.29). They
developed a theory of small deformations superimposed on a large deformation in
the context of fluid–solid interactions, and they showed that the theory predicts
that the stiffness of the wall decreases with increasing vasoconstriction.

The more recent paper by Stålhand et al. (2008) uses an explicit connection
between the calcium ion level and the active stress–stretch response in a one-
dimensional model. The thermodynamically consistent model uses the chemical
state law of Hai & Murphy (1988) and a model for smooth muscle contraction
that reduces to the model of Yang et al. (2003a,b) in the linear limit of small
deformations. It appears that the approach of Stålhand et al. (2008) is the first
to use a strain-energy function involving the chemical kinetics of smooth muscle
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Figure 15. Stress versus stretch as a function of the calcium ion concentration given in micromoles
per litre (mM). The stress is normalized with respect to the minimum stress in the maximally
activated state, denoted by T0. Data are taken from Hunter et al. (1998); solid curves represent
results from the model. Reprinted from Stålhand et al. (2008) with permission from Elsevier. Red
curve and red plus symbol, [Ca]2+ = 1.9 mM; green curve and green cross symbol, [Ca]2+ = 2.7 mM;
blue curve and blue open circle, [Ca]2+ = 4.3 mM; pink curve and pink square, [Ca]2+ = 8.9 mM;
black curve and black open diamond, [Ca]2+ > 10 mM.

contraction and nonlinear kinematics. This approach can easily be extended to
other constitutive models, including three-dimensional models, and facilitates
implementation in finite element codes. Figure 15 shows the dependence of the
active stress ratio T/T0 on the stretch l in terms of the calcium ion concentration
Ca2+, where T0 is the minimum stress in the maximally activated state. The
experimental data are taken from Hunter et al. (1998). For maximally activated
muscles, the stress is a linear function of the stretch, unlike the situation for lower
activation levels.

A thermodynamically consistent mechanochemical model for the prediction
of force generation in smooth muscle was proposed recently by Murtada et al.
(in press). It is a simple model incorporating only a few material parameters, each
of which has a clear physical meaning. In this model the strain-energy function
is expressed in the form

J = Jp + Ja, (5.2)

where Jp describes the passive elastic response and Ja describes the active
response, which is the energy stored in the network of contractile units.
Specifically, Jp was taken to be the neo-Hookean model but could be replaced by
a more general elastic model such as that in equation (2.29), while Ja was used
in the form

Ja = ma

2
(nC + nD) (lf + ūrs − 1)2, (5.3)
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Figure 16. Relationship between the active stress in per cent of the maximum active stress and
the external calcium concentration [Ca2+]. Solid black line, model; open circle, experimental data
(Arner 1982).

where ma is a parameter related to activation, nC and nD are fractional
concentrations of the force-generating states C and D, which correspond to myosin
heads attached or unattached, respectively, to the actin filaments (see the model
of Hai & Murphy 1988), lf is the stretch of the contractile unit and ūrs is the
normalized relative sliding displacement between the myosin and actin filaments.
The internal state variable ūrs is governed by an evolution equation, details of
which can be found in Murtada et al. (in press). The results of the coupled
mechanochemical model are consistent with isometric and isotonic experiments
on smooth muscle tissue. For example, figure 16 shows the relationship between
the active stress (Pf/Pmax) as a percentage of the maximum active stress versus
the external calcium concentration [Ca2+] based on the model and data from the
paper by Arner (1982), which involved activation of intact smooth muscle
tissues with different external calcium concentrations. The correlation with the
data is excellent.

The aforementioned model was extended by Murtada et al. (submitted) to
account for the dispersion in the orientation of contractile fibres in smooth
muscles so as to capture available experimental data. Therein it is shown that
the orientation of smooth muscle myofilaments has a strong influence on the
contraction response.

6. Conclusions and future directions

It is well known that arteries are subject to finite deformations and that
their mechanical behaviour is highly nonlinear, anisotropic and essentially
incompressible in the physiological domain.

It is also the case that the mechanical response can be regarded as purely
elastic in many circumstances and that the constitutive properties of artery
wall tissue can be characterized in terms of strain-energy functions. There is
now a well-established theoretical framework for treating the elastic behaviour
of arteries on the basis of deformation invariants that reflect aspects of the
structure of arteries, in particular the directions distinguished by the collagen
fibre structure, in which sense the framework can be regarded as structural, or
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at least structurally motivated. The present review article has focused on the
development of constitutive laws constructed within this framework and it is
therefore limited by the geometrical assumptions embodied by the framework
and hence modest in its objectives.

Nevertheless, it provides an overview, covering essentially the last 10 years, of
the state of the art in the constitutive modelling of the passive response of arteries
together with a brief account of the much less well-developed modelling of the
active response. The structure of soft tissues is, of course, far more complex than
is suggested by the relatively simple model based on collagen fibres embedded in
an isotropic matrix of ground substance, and much remains to be done in terms
of modelling.

The increasing effort devoted to studies of mechanical models for the
cardiovascular system and their applications aimed at refining basic and clinical
analyses demonstrates the vitality of the field of biomechanics. Some future
directions on which research on arteries might focus are discussed below.

In this regard we have the excellent review by Humphrey (2003) to guide
our hand. This covers many aspects of the biomechanics of soft tissues,
including artery wall tissue, and identifies open problems that call for a multi-
disciplinary approach involving applied mechanics, biomechanics, mathematics
and mechanobiology. The needs he identifies are embraced by the sentence
‘Because of the inherent complexities of the microstructure and biomechanical
behaviour of biological cells and tissues, there is a need for new theoretical
frameworks to guide the design and interpretation of new classes of experiments’.

Whilst Humphrey’s review covers a wide range of soft tissues, that of
Humphrey & Taylor (2008) is more specific in that it compares and contrasts
the biology and mechanics of intracranial and abdominal aortic aneurysms. They
emphasize the need to couple more effectively the wall biosolid mechanics with
the biofluid dynamics of blood flow, vascular biology and medical imaging in
order to improve understanding of the mechanobiology and pathophysiology
of aneurysms and their treatment. The very recent review by Taylor &
Humphrey (2009) has a more general focus on the role of computational
approaches within vascular biomechanics and also emphasizes the need for multi-
disciplinary research towards improving understanding of vascular physiology
and pathology along with improving the design of medical devices and
clinical interventions. Throughout these reviews the important roles and further
potential of nonlinear continuum biomechanics and computational mechanics
are emphasized.

The study of the biomechanics of artery walls and other soft tissues is really in
its infancy and there is much more research needed in order to gain understanding
of the interactions between the constituents within the complex structure and
their influence on the mechanical and mechanobiological behaviour in both
healthy and diseased tissue. Here we highlight a few key issues that deserve to
attract much research effort over the next few years. Our discussion is confined
to artery wall mechanics, although many issues can be considered more broadly
applicable to soft tissues.

First, at the macroscopic level, the development of constitutive laws that
model the (three dimensional) active response of arteries is very important
since contraction of the smooth muscle cells within the wall can change
significantly the artery cross section and thereby regulate blood flow. It is
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therefore essential to couple the mechanics with the biochemistry by focusing
on the structure of the contractile units, but it is also important to incorporate
in the constitutive law only a few material parameters, each of which has a clear
physical meaning. The consistency of the model then needs to be demonstrated
by comparison with experimental data obtained from activating smooth
muscle cells.

In order to better understand the changes of the artery cross section due
to smooth muscle activation there is also a need to consider in more detail
the coupling of arterial wall mechanics and haemodynamics, i.e. fluid–solid
interactions. This inevitably requires a computational mechanics approach, as
argued so eloquently by Taylor & Humphrey (2009). In this respect computational
methods such as finite element methods have a key role to play in order to
provide more realistic simulations of clinical interventions and patient-specific
geometric modelling, which should also take account of the influence of the
surrounding (perivascular) tissue with appropriate boundary conditions. This
requires more information about the evolution of in vivo material properties and
a better understanding of the in vivo conditions. Computational biomechanics,
now a well-defined field in its own right, is increasing our ability to address
multi-disciplinary problems of academic, industrial and clinical importance.
In particular, it is bridging the gap between the different length scales and
between basic research and clinical application, thereby aiding the transfer
of biomechanics from the laboratory bench to the bedside. Computational
models, when based on appropriate three-dimensional constitutive laws, have the
potential to realistically predict physiological functional interactions, to better
repair injuries, to improve diagnostics, treatment of disease, surgical planning
and intervention, and to improve the success of implanted prostheses, whether
manufactured or tissue engineered. Computational methods will increasingly
assist the development of refined models by, for example, incorporating
spatial variations of tissue properties. As with any simulation, computational
biomechanical models need to prove both their accuracy and their worth, i.e.
numerical results need to correlate well with experimental data at the tissue,
cellular and molecular levels. For a review of the application of computational
mechanics to the diagnosis and treatment of cardiovascular disease, see del
Álamo et al. (2009). A more specific review of computational modelling
involving fluid–structure interactions in vascular anastomoses is provided by
Migliavacca & Dubini (2005).

More refinements in the modelling are needed at the structural level, taking
us beyond the influence of collagen fibre orientation to include the separate
properties and contributions of other key constituents, such as elastin and
smooth muscle, and their mutual interactions, to build more comprehensive
mechanical models. Much more data are needed to inform the modelling, in
particular stress–strain data from multi-axial tests. Ultimately, the behaviour
of tissues derives from their constituents at the mesoscopic level, which in turn
derive from the aggregate of the molecules that form them. Thus, knowledge
of the biomechanical properties of individual molecules will be an important
ingredient in building multi-scale models from the microscopic to the mesoscopic
to the macroscopic level. For example, drug therapy or biocompatible body part
replacement depends on knowing how proteins and cells behave in context and
in their interaction with surrounding tissues so as to generate function at a
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higher level. Hence multi-scale approaches provide ongoing challenges in vascular
biomechanics, where simulation and experiment must go hand-in-hand to achieve
this integrative knowledge.

The above considerations apply in the first instance to healthy tissue,
and provide a starting point for understanding the biomechanics and
mechanobiology of tissues in general, both healthy and diseased. Biomechanics
and mechanobiology have particularly important contributions to make to the
understanding of changes in the vascular system associated with ageing and
disease. Associated with ageing there is, in particular, a degradation of elastin
and consequent loss of arterial elasticity, an increase in collagen density and hence
stiffness of the artery (decreased distensibility), and reduction in smooth muscle
contractility. Elastin degradation that links to, for example, deviations of wall
shear stresses from normotensive levels, remodelling of collagen that maintains
an equilibrium level of strain, and reduction of smooth muscle cell contraction
is also a feature in the development of aneurysms. There is therefore a need to
better understand these changes by using suitable constitutive models, patient-
specific arterial geometries and a link of the chemomechanics of arterial growth
and remodelling to mechanical stimuli resulting from circulatory pressure and
flow. Research in this direction will provide the basis for further elucidating the
aetiology of aneurysmal disease. In hypertension arteries increase (or decrease)
their wall thickness in response to sustained increases (or decreases) in blood
pressure, and there is also an important effect associated with changes in blood
flow-induced wall shear stress—the lumen diameter increases (decreases) with
sustained increases (decreases) in wall shear stress. In addition, shear stresses
affect plaque composition and induce atherogenesis, and low and oscillatory shear
stresses induce atherosclerotic plaques. This once again brings to the fore the need
to better understand the coupling of the wall solid mechanics with the blood
fluid dynamics.

Other (pathological) changes in the artery wall are associated with
atherosclerosis, commonly referred to as ‘hardening of the arteries’, which
is a widespread vascular disease caused by thickening of the intima due to
deposition of, for example, fatty substances, collagen fibres and cellular waste
products (collectively called plaque). These pathological changes are associated
with significant alterations in the material properties of the arterial wall. In
order to access the heterogeneous morphologies of such plaques specific imaging
modalities are required. The combination of image analysis, biomechanics and
mechanobiology provides then an efficient basis for a thorough patient-specific
study of the relationship between morphological, structural and (in)elastic
constitutive data under various loading conditions. There is some evidence that
such computational approaches, when based on in vivo imaging, can provide
reliable answers to clinical questions raised by, for example, cardiologists and will
play a larger role in cardiovascular research and medicine in the near future.

A general feature of all these changes is that the material properties and
geometry evolve in time, and to understand these diseases in more detail it
is important to be able to model this evolving histology and mechanobiology,
which involves growth, remodelling and adaptation. The modelling of growth
and remodelling is receiving much attention in the literature, but it is fair to
say that the theory is as yet not well established and the underlying mechanisms
are not well understood, so there is much to be learned about the processes
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involved, such as the changing material properties and the turnover, production
and removal of constituents. Changes that occur in adaptation to changes in
the mechanical environment associated with damage and repair will also require
similar modelling approaches.

In addition, there is a need to understand the influence of growth and
remodelling on the development of residual stresses and to incorporate residual
stresses within the constitutive modelling framework. In particular, it is
emphasized that quantitative data on residual stresses are difficult to obtain so
that new methods are required for gathering such data, which are needed to
inform the modelling process.

In fact, it is not generally clear what the origin of residual stresses is, and
this therefore requires further investigation. One suggestion of a possible factor is
contained in the recent study by Azeloglu et al. (2008), in which it is hypothesized
that the transmural distribution of the fixed charged density of the proteoglycans
has a significant role in regulating residual stresses.

This hypothesis was tested theoretically and implemented in a finite element
model and it was confirmed that the hypothetical mechanism yielded opening
angles in the range reported in the literature.

Based on a constrained mixture model the influence of elastin, collagen and
smooth muscle cell contributions to residual stresses of artery walls has been
analysed in a recent theoretical paper by Cardamone et al. (2009), while an initial
analysis of three-dimensional residual stresses in a layered artery was recently
documented by Holzapfel & Ogden (2010).

These recent contributions form important steps towards an integrated
understanding of the biomechanics and mechanobiology of residual stresses.
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