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Viscoelastic properties determine the dynamic behaviour of the arterial wall under pulsatile pressure and flow, suggesting
time- or frequency-dependent responses to changes in wall stress and strain. The objectives of the present study were: (i)
to develop a simplified model to derive simultaneously the elastic, viscous and inertial wall moduli; (ii) to assess Young’s
modulus as a function of frequency, in conscious, chronically instrumented dogs. Parametric discrete time models were
used to characterise the dynamics of the arterial system based on thoracic aortic pressure (microtransducer) and
diameter (sonomicrometry) measurements in control steady state and during activation of smooth muscle with the «-
adrenoceptor agonist phenylephrine (5 x#g kg™ min™, 1.v.), in eight conscious dogs. The linear autoregressive model and
a physically motivated non-linear model were fitted to the input—output (stress—strain) relationship. The aortic buffering
function (complex Young’s modulus) was obtained i vivo from the identified linear model. Elastic, viscous and inertial
moduli were significantly increased from control state ((44.5%7.7)x 10*Pa; (12.3 £4.7)x 10* Pas;
(0.048 £ 0.028) x 10* Pas?) to active state ((85.3*29.5)x10°Pa, P <0.001; (22.4 £8.3)x10*Pas, P <0.05;
(0.148 £ 0.060) x 10* Pas’, P <0.05). These moduli, obtained using the linear model, did not present significant
differences compared with those derived using the non-linear model. In control conditions, the magnitude of the
normalised complex Young’s modulus was found to be similar to that reported in previous animal studies ranging from
1 to 10 Hz. During vascular smooth muscle activation, this modulus was found to be increased with regard to control
conditions (P < 0.01) in the frequency range used in this study. The frequency-dependent Young’s modulus of the aortic
wall was obtained for the first time in conscious, unsedated dogs. The parametric modelling approach allows us to verify
that vascular smooth muscle activation increases the elastic, viscous and inertial moduli with the advantage of being able
to track their time evolution. Furthermore, under activation, the aortic wall remains stiff in the physiological frequency
range, suggesting the impairment of the arterial buffering function. Experimental Physiology (2001) 86.4, 519-528.

Today, there is a growing interest in the physical properties of
large arteries. Hence, an accurate characterisation of the
behaviour of these arteries could contribute to a better
understanding of the material and underlying dynamics.
Viscoelastic properties of the arterial wall determine the
response to dynamic forces such as pulsatile pressure and flow
(Milnor, 1982; Nichols & O’Rourke, 1990; Simon et al.
1991) and hence potentially cellular/molecular biological
responses (Davies, 1995). The presence of viscous components
in the arterial wall suggests time- or frequency-dependent
responses to changes in wall stress (Peterson et al. 1960;
Bergel, 1961; Milnor, 1982; Nichols & O’Rourke, 1990).
The dynamic behaviour of arteries at different frequencies is
an important element in both theoretical and practical
haemodynamics. When the Young’s modulus of the arterial
wall is determined as a function of frequency, a particular
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behaviour is found. For frequencies from 0.01 to 1.5 Hz, the
amplitude of the complex Young’s modulus rises steeply to a
quite constant level (Fung, 1981; Cox, 1984). This value is
reached at frequencies below heart rate. Hardung (1970) and
Goedhard er al (1973) have provided data in this low
frequency range from in vitro experiments. Sipkema (1979)
studied the viscoelastic behaviour by means of a servo-
controlled occluder system in vivo. Gow & Taylor (1968)
measured the viscoelastic properties of arteries in
anaesthetised animals in both the low and the high frequency
ranges using power spectrum analysis from pressure and
diameter data. The power spectrum method provides
frequency-response information, but it does not consider
explicitly mechanical properties of the arterial wall. Moreover,
tracking of time-varying dynamic properties is also difficult
using a non-parametric transfer function estimation method.
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On the other hand, smooth muscle cells, dominantly
responsible for wall viscosity, constitute one of the main
determinants of the dynamic behaviour of the arterial wall. It
must be pointed out that dynamic studies of large arteries
involving vascular smooth muscle (VSM) activation are
difficult to carry out in anaesthetised animals (Dobrin, 1984).

Several constitutive models describing arterial wall behaviour
were developed with the aim of estimating the physiological
parameters that mainly influence circulatory mechanics
(Westerhof & Noodergraaf, 1970; Fung, 1981; Langewouters
et al. 1984; Hayashi, 1993; Armentano et al. 1995a; Wuyts
et al. 1995). Most of these models spring from simple
anatomophysiological considerations such as incompressibility,
isotropy and linear elastic behaviour of the aortic wall. Our
group (Armentano et al 1995a) developed a complete
constitutive model description of the arterial wall taking into
account three main mechanical properties: elasticity, viscosity
and inertia. A sequential and iterative procedure was
proposed to estimate the model parameters. However, this
procedure lacks the possibility of obtaining estimates in real
time and of computing the frequency response due to the non-
linear elasticity.

System identification is a well-established methodology and
concerns the problem of designing mathematical models of
dynamical systems based on observed data. For these purposes,
a new method is presented, considering the arterial wall as a
dynamic system. We built a semiphysical physiologically
motivated model structure and the parameters were computed
using a system identification approach. To overcome the
problems described above, a parametric modelling and
identification procedure for simultaneous assessment of the
viscoelastic properties and the frequency response behaviour
is proposed in the present study. This procedure involves two
important steps: modelling and parameter estimation (system
identification). To solve the problem of real time identification,
recursive algorithms are employed.

Our main objectives were: first, to derive simultaneously
through the models the constitutive parameters that best
represent the system controlling the arterial wall dynamics;
and second, to obtain the frequency dependence of Young’s
modulus from the identified model in order to characterise the
aortic buffering function and its behaviour under VSM
activation in chronically instrumented conscious dogs.

METHODS

Surgical preparation

Eight male mongrel dogs aged 4.9 = 1.9 years and weighing
22.2 £ 2.9 kg were prepared for this study. On arrival to the
animal house, the dogs were vaccinated against common canine
diseases and were treated for skin and intestinal parasites.
During the 20 days before surgery they were appropriately fed
and watered and assessed for adequate clinical status.

Anaesthesia was induced with intravenous thiopental sodium
(20 mg kg™") and, after intubation, maintained with 2%
enflurane carried in pure oxygen (4 1 min™') through a Bain tube
connected to a Bird Mark VIII respirator. A sterile thoracotomy
was made at the left fifth intercostal space. A pressure
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microtransducer (Konigsberg P7) and a fluid-filled polyvinyl
chloride catheter (2.8 mm o.d.) for later calibration of the
microtransducer were implanted in the descending thoracic
aorta through an incision in the left brachial artery. A pair of
ultrasonic crystals (5 MHz, 4 mm diameter) was sutured on the
adventitia of the aorta, after minimal dissection, to measure
external aortic diameter. The transit time of the ultrasonic signal
(1580 m s") was converted into distance using a sonomicrometer
(Triton Technology Inc.) and observed on the screen of an
oscilloscope (Tektronix 465B) to confirm optimal signal quality.
A polyvinyl chloride catheter (2.3 mm o.d.) was advanced
through the left mammary vein to lie in the superior vena cava
or right atrium for drug administration.

Before repairing the thoracotomy, all cables and catheters were
tunnelled subcutaneously to emerge at the interscapular space.
All animals were allowed to recover under veterinary care.
Ampicillin (20 mg kg™' day™!, per os) was given for 7 days after
surgery. The catheters were flushed daily with heparinised saline.
The experiments were performed in accordance with the Guide
for the Care and Use of Laboratory Animals published by the US
National Institutes of Health (NIH Publication no. 85-23,
revised 1996).

Experimental protocol

Experiments were performed starting on the seventh
postoperative day. Each study was performed with the dog
resting quietly on its right side in the conscious, unsedated state.
The aortic pressure was measured using the pressure
microtransducer, which had been calibrated against a Statham-
P23 transducer connected to the aortic fluid-filled catheter. The
zero reference point was set at the level of the right atrium.
Instantaneous pressure-diameter loops were displayed on-line
and stored on a computer (PC Pentium 200 MHz MMX using
an analog—digital converter card (National Instruments Lab-PC.
Sample frequency was set at 200 Hz. A 5% dextrose drip
(0.25 ml min") was started through the mammary vein catheter.
Each steady state comprised the recording of aortic pressure and
external diameter under control conditions and during
administration of phenylephrine (5ugkg™' min™) infused in
parallel with the dextrose drip.

After a period in the control state, VSM was activated by
infusion of phenylephrine. The instantaneous pressure—diameter
loops were monitored until stabilisation was achieved. We
waited 15-20 min to ensure a steady state under phenylephrine
infusion, and confirmed by visual inspection that the pressure—
diameter loops shifted towards a higher pressure level with
respect to control conditions. Two days later, the dogs were
killed with an overdose of thiopental sodium followed by
potassium chloride. The correct positioning of the dimension
gauges in all dogs was verified at necropsy.

Data collection

Approximately 20 consecutive beats during basal conditions and
during activation of VSM were averaged to obtain mean,
systolic, diastolic and pulse aortic pressures and diameter, and
heart rate. Diastolic onset was detected by analysing the first
derivative of the pressure waveform as can be seen in Fig. 1. We
considered diastolic onset as the maximum value of pressure
between the first local maximum following the negative peak of
the derivative (point A) and the onset of the rapid upstroke of
the derivative of aortic pressure (point B).

The procedure to determine the aortic dynamic behaviour was
developed in our laboratory under Matlab (The Mathworks, Inc.,
MA, USA). Aortic wall thickness was calculated as the
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difference between the external aortic radius r. and the internal
aortic radius r;. To estimate r; we used a procedure that assumes
the non-variability of the wall volume (Dobrin & Rovick, 1969;
Armentano et al. 1995a). Strain e was obtained from the ratio of
midwall radius

R= (r.+n)2

to the non-stressed midwall radius R, measured approximately
at 25 mmHg of aortic pressure (Armentano et al. 19954) during
necropsy:

€= R/RO

Stress o was assessed using a linear elastic theory and assuming
an isotropic, homogeneous elastic material for the aortic wall
(Pagani et al. 1979; Vatner et al. 1984)

2P(r 1 )* 1
O" e —
re—r? R
where P is aortic pressure.

System modelling and identification

The problem of identifying a mathematical model of an
unknown system from a sequence of empirical data is a
fundamental one, which arises in many branches of science and
engineering. The complexity of solving such a problem depends
on many factors, such as a priori knowledge, quality and
completeness of the data sequence, and required model form and
accuracy. After experiment design, the problem can be split into
two parts: model structure selection and parameter estimation.
Various least-squares types of algorithms are predominant for
parameter estimation. There is a large spectrum of model
structure approaches to choose among (Sugeno & Kang, 1988;
Ljung, 1999). The aim of this study was to handle the given
system using physical and physiological evidence about the
system in order to solve the structure selection problem. In the
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next subsections, a theoretical background concerning the
viscoelastic models as well as the basic tools of system
identification are summarised.

Linear viscoelastic model

The continuous-time linear viscoelastic behaviour can be
modelled by the following differential equation (Westerhof &
Noordergraaf, 1970; Christensen, 1971):

Z‘Bci die/dr = Zoag dlo[d, (1)
= J=

where € is the strain and o the stress. The coefficients {c;,
i=1,..,n} and {d,j=1,..,m} define the material’s visco-
elastic properties. The model order is represented by n and m.
The description of the viscoelastic properties as represented in
eqn (1) is general when the material is linear and time invariant
or when only very small excursions from a working point are
considered (Gow & Taylor, 1968). Since the arterial wall is not
linear, we considered the measured data about a working point,
which can be established to be around the mean arterial diameter
and pressure measurements.

A frequency domain representation of the general model
(eqn (1)) can be derived applying the Laplace transform. Then,
the complex Young’s modulus is given by:

Zoci(]'w)i

E(jo)=—— . )

m

L+ Y di(jw)
j=1

This equation allows us to compute the frequency response of
the system given the coefficients ¢;, and d; and letting s = jw.

dP/dt (mmHg/s)

0.4 0.6

Figure 1

Time (s)

Definition of diastolic onset computed by means of pressure waveform and its first derivative.
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Table 1. Steady state basal haemodynamic parameters in
control and during infusion of phenylephrine

Control Activation

(n=8) (n=8)
Aortic systolic pressure (mmHg) 1249 £9.9 193.0+ 15.4*%
Aortic diastolic pressure (mmHg) 73.1 £9.1 126.1 £6.2*
Aortic mean pressure (mmHg) 97181 156.5+10.3*
Aortic systolic diameter (mm) 1729+ 145 17.62+1.39*
Aortic diastolic diameter (mm) 15.54 +1.41 1637 +1.28*
Aortic mean diameter (mm) 16.52 £1.40 17.07 +1.33%
Heart rate (beats min™") 112.7£19.5 104.3 £23.8

Values are means + s.0. * P <0.02, { P <0.005 (paired ¢ test
with respect to control condition in the 8 dogs in which
phenylephrine infusion was made).

The problem of parameter estimation was investigated in the
discrete time domain by means of on-line adaptive algorithms.
Different discrete time structures were used for the identification
purpose. We employed a single-input, single-output system and
chose the stress as input and the strain as output. The linear
autoregressive with exogenous input (ARX) model and the
physically motivated non-linear NARX model (see Appendix)
were fitted to each of the eight dogs during both control and
conditions of VSM activation to assess the dynamics of the
arterial system. The parameters for each model fit were
estimated using the recursive least-squares algorithm, which
provides an on-line adaptive structure method to track time-
varying changes (see Appendix). For each model structure, the
optimal model defined as that which minimised the Akaike
information criterion (AIC) was chosen (see Appendix). Because
estimation of the ARX and NARX models can quickly become
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computationally very expensive, a subset of model structures
was selected. The maximum model order was set to 10. The
results of this procedure gave us the best model order for each
case considered. Such optimisation procedure is presented in
Fig. 2, where a set of models were evaluated and the AIC was
plotted as a function of the number of model parameters. Mean
and standard error measures computed over the whole
population are presented. Note that beyond n=m =3 no
differences were found in the fitness performance. The general
third order model (n = m = 3) was chosen as the mean best order
model. For the non-linear NARX case, a second order
polynomial was obtained using the same procedure. A high
order polynomial did not improve the model performance. After
parameter estimation, the inverse bilinear transformation was
used as a mapping procedure to obtain the viscoelastic
parameters from the identified discrete time model (see
Appendix).

In order to compare with previous reports, the elastic, viscous
and mass moduli can be estimated from the general model.
Several authors considering pressure-strain and pressure—flow
relationships used a second order ordinary differential equation
(Peterson et al. 1960; Westerhof & Noordergraaf, 1970; Gow et
al. 1974; Sipkema, 1979; Armentano et al. 1995a):

Ee + q (de/dt) + M(d%/dP) = (1), (3)

where E, » and M are the elastic, viscous and mass moduli,
respectively. With the proposed analysis, these moduli can be
derived as a special case of eqn (1), from the identified third
order model.

Statistical analysis

All measurements and calculated values are expressed as
means * S.D. Linear regression was analysed using the recursive
least squares algorithm. The presence of significant differences in
the estimated parameters was assessed using Student’s paired ¢
test. The magnitude of the complex Young’s modulus was
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Linear model order estimation using Akaike information criterion (AIC) as a function of the total
number of parameters considering general models with a maximum number of 20 parameters {n, =
I, .., 10}, {n, =1, ..., 10}. The data (O) are means * S.E.M., computed over the whole population. The
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analysed in each animal by measuring the area under the curve
(AUC) within a frequency range 0-10 Hz. The AUC under
smooth muscle activation was then compared with that
corresponding to control conditions by using Student’s paired ¢
test. Values of P < 0.05 were considered statistically significant.

RESULTS

Dynamic wall parameters

Table 1 shows the haemodynamic parameters during control
steady state and during phenylephrine activation of steady
state VSM. Heart rate was the only variable that presented no
statistical differences with respect to control conditions.

Local aortic system identification

The model fit during control and after the infusion of
phenylephrine using the ARX general third order model of
the eight data sets produced a mean residual variance (see
Appendix) of (6.14+ 3.17) x 107 and (4.80 = 1.47) x 107,
respectively. The corresponding NARX third order model
with a second order polynomial modelling the pure elastic
behaviour fits produced a mean residual variance of
(5.55 £ 2.51) x 10 during control and (3.60 £ 0.722) x 10
in the active state.

Figure 3 shows the strain prediction using system
identification by means of a general third order ARX model
and a non-linear NARX model during control conditions.
As can be seen, the estimated strain (thin and dotted lines)
provides a good tracking of the true output (thick line) most
of the time. The simulated linear model (thin line) presents a
slight overshoot during the peak of the systolic phase
compared with the measured strain. The NARX model
considering a non-linear elastic behaviour provides a small
improvement during the systolic phase (dotted line).
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Table 2. Elastic (E, 10* Pa), viscous (7, 10* Pa s), inertial (M,
10* Pa s*) moduli, estimated using the general third order ARX
model structure and the NARX model with non-linear elastic
behaviour

E Ul M
Control ARX 445+ 7.7 123147 0.048 £ 0.028
PHN ARX 853 £29.5% 224+83% 0.148%+0.060%
Control NARX 45.6+12.8 10452 0.042 £ 0.032
PHN NARX 97.6 £44.0f 2441247 0.165£0.105%

Values are means * s.D., ¥ P <0.001, £ P <0.05, paired ¢ test.
No significant differences were obtained between the linear
ARX and non-linear NARX model.

Arterial parameter estimation

Table 2 shows the main elastic parameters calculated from
the entire population (8 dogs) assessed during control and
VSM activation. The elastic, viscous and inertial moduli were
computed from the discrete third order ARX models using
the bilinear transformation. Using the linear part of the
NARX model, the same viscoelastic parameters were derived
(Table 2). The elastic, viscous and inertial moduli were
increased significantly from control to the active state
(P < 0.05). No significant differences were found comparing
equivalent parameters between the linear ARX and non-
linear NARX model.

Frequency response

The magnitude of the dynamic elastic modulus |E(jw)| divided
by a static value E, obtained from the identified model (see
eqn (3) at w=0), also known as the modulus ratio, was
computed for each animal during both control and VSM

1.25
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L 1 L 1 1 L 1 . 1
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Time (s)
Figure 3

Results of the model fit (strain (e) as a function of time) using the linear ARX (thin line) and non-linear

NARX (dotted line
Do
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activation and using the same ARX model order. Figure 4
summarises these results showing the mean values for the
modulus ratio averaged over the entire population. The
lowest part of the curve shows values obtained under
conditions of low strain. There is an increase in the dynamic
modulus from 0.02 to 1.5 Hz. Minimal changes occur
between this value and frequencies up to 10 Hz. The
magnitude of the normalised complex Young’s modulus was
significantly different (P < 0.01) from 1 to 10 Hz comparing
control conditions and VSM activation.

Time-varying system modelling

In order to evaluate the parameters with the main influence
on arterial dynamics, and their individual contribution, we
applied the model proposed in eqn (1). The time evolution of
the identified parameters was obtained using the adaptive
identification procedure. During steady states the parameters
do not present significant changes, as can be seen in Fig. 5.
Figure 54 shows the time course of the measured strain. The
elastic, viscous and inertial moduli as a function of time are
presented in Fig. 5B, C and D, respectively. Beat-to-beat
mean and standard deviation of the mechanical properties are
also plotted.

DISCUSSION

The aim of this study was to obtain a complete
characterisation of the arterial wall dynamics in conscious,
unsedated, chronically instrumented dogs. A new method to
characterise the in vivo regulation of aortic viscoelastic
behaviour and the characteristic buffering function is
presented. To our knowledge, no study regarding the
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assessment of the dynamic properties of the aortic wall using
a system identification approach has been reported in
conscious animals. To build the constitutive equation we
proposed linear and non-linear general third order differential
equations; the parameters derived from these models (the
total elastic modulus, the viscous modulus and the inertial
modulus) are physically meaningless. The total elastic
modulus was assessed considering a linearised model at mean
arterial pressure. To determine in vivo instantaneous pressure
and diameter signals, ultrasonic dimension transducers and a
miniature pressure gauge were used. This method, which has
been validated in our laboratory (Cabrera Fischer et al
1991; Barra et al. 1993), allows accurate and reproducible
measurements (Milnor, 1982; Nichols & O’Rourke, 1990)
over a long period of time (Dobrin & Rovick, 1969; Pagani
et al. 1979). Aortic signals were converted into stress and
strain using a thick-walled cylindrical tube model and linear
elastic theory (Pagani et al. 1979; Fung, 1981). Stress was
calculated instantancously over the whole cardiac cycle
(Dobrin & Rovick, 1969).

A constitutive non-linear differential equation previously
reported by our group (Armentano et al. 1995a) considers
the pure elastic, viscous and inertial behaviour using a
sequential procedure developed to estimate the parameters of
the constitutive equation. An iterative procedure of hysteresis
elimination is used (Bauer, 1984; Barra et al. 1993;
Armentano et al. 1995a) to determine the viscous behaviour
of the arterial wall, and after that the inertial modulus is
computed over the remaining hysteresis loop. Finally, the
purely elastic contribution is computed using a non-linear
fitting procedure. One drawback of this algorithm is that it is
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Figure 4

Dependency of the magnitude of the normalised dynamic elastic modulus during control (V) and active
(O, phenylephrine, Phen) states obtained from the entire experiment. Mean values previously obtained
experimentally by Hardung (1953), Bergel (1961), Learoyd & Taylor (1966) and Tucker ez al. (1969)

are also shown(¢).
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an iterative constrained procedure, where the parameters are
estimated subsequently, propagating an error through the
procedure, i.e. it is not a global and simultaneous optimisation
procedure. From the point of view of system identification,
the disadvantages are: (i) the parameters are not simultaneously
estimated; (ii) it is difficult to obtain the frequency response
and to explore high order models; and (iii) the method cannot
be implemented with recursive on-line algorithms to track
instantaneous changes in the viscoelastic properties. The
results obtained in the present study allow the complete
assessment of aortic wall dynamics and show reasonable
agreement with those obtained in previous work (Bergel,
1961; Patel et al. 1969; Barra et al. 1993; Armentano et al.
19954a). The main advantages of the proposed approach are
that the parameters are obtained simultaneously and that
they can be estimated in real time. This differentiates our
approach from the earlier model reported by Westerhof &
Noordergraaf (1970). Furthermore, our approach provides a
systematic procedure to assess the optimal number of
parameters.

The first step in our work was the selection of the model
structure. Several computer simulations were performed to
characterise the dynamic behaviour of the arterial wall. Then,
system identification (parameter estimation) was performed
using an adaptive on-line algorithm and a mapping procedure
to obtain the elastic, viscous and inertial moduli. Finally,

A 1.3
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model validation to predict the behaviour of the system from
the estimated model was determined. We identified the
constants of the constitutive equation for the aortic wall
(eqn (1)) in conscious dogs characterising its mechanical
properties. The linear ARX and non-linear NARX models
were evaluated for this purpose. The parameters of the linear
part of the NARX model presented no significant differences
compared with the linear ARX model. For this reason, we
will concentrate the discussion on the linear case. Time
domain analysis shows that the stress—strain relationships
estimated in control resting conditions and under activation
of the smooth muscle were similar to the respective measured
ones (Fig. 3).

Our results show a mean elastic modulus of
(0.445 £ 0.077) x 10° Pa in control conditions. This result is
comparable with that reported by Peterson er al (1960)
(0.53x 10°Pa) and by Armentano et al (1995a)
(0.499 x 10° Pa) in the aorta. A significant increase of the
elastic modulus was obtained during VSM activation, which
modifies the elastic behaviour of the artery through the elastic
contribution of the contracted muscle. The increased aortic
stiffness found during activation agrees with previous reports
(Cox, 1984; Barra et al. 1993; Armentano et al. 1995a).
The highly non-linear collagen recruitment function has
minor effects at the considered pressure range. In the control
state, it has been demonstrated that between the onset and the
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Figure 5

Time evolution of the viscoelastic parameters during control steady state and beat-to-beat mean and
standard deviation of the estimated moduli. Measured strain (4) and elastic (B), viscous (C) and inertial

(D) moduli (sampling frequency, 250 Hz).
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end of diastole the stress—strain relationship is governed by
elastin fibres (Armentano et al. 1995a4). Aortic pressure at
the onset of diastole is 109 £ 10 mmHg, i.e. only 15 mmHg
lower than the systolic value, suggesting that basal steady
state elastic behaviour can be assessed by a linear model. In
effect, at this point, corresponding to 23 % of the deformation
level with respect to the unstressed diameter (Armentano et
al. 1991), only 6% of the collagen fibres are recruited.

Under activation of vascular smooth muscle there was an
increase in viscosity modulus, as was also reported elsewhere
(Peterson et al. 1960; Cox, 1984; Armentano et al. 1995a).
Increase in viscosity is an indirect marker of aortic smooth
muscle activation (Armentano et al. 19954) and was also
found under angiotensin I converting enzyme inhibition or
angiotensin II receptor blockade in conscious dogs (Barra et
al. 1997). In humans, increases in the carotid viscosity index
have been reported in hypertension (Armentano et al
1995b).

During administration of phenylephrine, the inertial modulus
was increased with respect to the control condition, which
confirms the finding of Armentano et al. (1995a). This result
implies that — according to the use of mass as a quantitative
measure of inertia — the aortic wall mass, defined as the
addition of the individual masses of each structural
constituent, should also be increased under activation. It is
obvious that in such conditions, factors other than the wall
mass should offset the magnitude of the inertial modulus. The
level of aortic pressure, the stiffness of the aortic wall and the
radial acceleration of blood can codetermine this modulus.
One might think that during activation the stiffness of the
arterial wall could provoke a stronger link between sensors,
resulting in the addition of the individual mass of sensors to
the wall mass. In effect, the inertial modulus could be
overestimated by the addition of the two ultrasound crystal
masses and the pressure gauge.

In order to evaluate time-varying behaviour, we analysed the
evolution of the parameters that mainly influence the arterial
dynamics (elastic, viscous and inertial moduli) by means of
the adaptive algorithm. Figure 5 shows the time evolution of
the estimated (continuous line) instantancous viscoelastic
parameters and beat-to-beat mean and standard deviation
(filled circles) of the parameters. Since we are not interested in
the tracking properties of the algorithm, Fig. 5 does not show
the characteristic transient behaviour of the adaptation
process evidenced by # = 100 samples (0.4 s) as the initial time
of the plotted values. Despite some artefacts presented in the
estimation procedure, time evolution of beat-to-beat
parameters shows that viscoelastic properties can be
considered stationary taking into account that the analysis is
carried out over stable beats. Intra-beat time evolution shows
that the estimation of the elastic modulus, defined as the slope
of the stress-strain relationship, presents a peak at the
maximum value of strain. This result can be explained by the
non-linear behaviour, due to recruitment of collagen fibres.
The viscous modulus presents a transient during the
maximum of the strain derivative. The inertial modulus has a
similar behaviour, although in this case the inertial

contribution is possibly Sg%ﬁfggdeg}/rom%x%elgﬁ;lsﬁiol ?é&%tr‘lyso

Exp. Physiol. 86.4

derivative of strain. Further studies will be necessary to
characterise the beat-to-beat variability of the mechanical
properties in the conscious condition and its relationship with
heart rate, pressure and diameter variability.

The cushioning function of an individual artery can be
described in terms of the viscoelastic properties and not only
on the basis of the pure elastic property (distensibility or
compliance) (O’Rourke, 1995). The identified model
provides not only the viscoelastic properties but also describes
the frequency domain behaviour, i.e. the complex Young’s
modulus. Several authors have evaluated viscoelasticity in
terms of the normalised complex Young’s modulus or
modulus ratio (Bergel, 1961; Learoyd & Taylor, 1966; Gow
et al. 1974). It represents the ratio of dynamic modulus under
the condition of sinusoidal forcing and linearity of the system,
divided by the static modulus or by a very low frequency
dynamic modulus (Learoyd & Taylor, 1966; Cox, 1984).
The normalised plots are independent of the absolute values
of the static modulus (or low frequency value) and allow a
direct comparison with results reported by other authors and
with other methods.

The hydraulic aortic filtering performance was evaluated in
the frequency domain using the identified third order model
(n = m = 3). Westerhof & Noordergraaf (1970) showed that
n = mis required to have bounded creep and stress relaxation.
This is an important result, since a single measurement in the
conscious, unsedated state was sufficient to identify all the
frequency modes of the system. The results presented in Fig. 4
show a sharp increase in the low frequency range, in
agreement with previous reports (Bergel, 1961; Cox, 1984).
This frequency range corresponds to circulatory adjustments
in cardiovascular dynamics. Then, a quite constant level is
maintained between 1.5 and 10 Hz. This result is qualitatively
similar to the mean data obtained in previous work (Bergel,
1961; Apter & Marquez, 1968; Cox, 1984). The results
show that the magnitude of the normalised complex Young’s
modulus was significantly different from 1.5 to 10 Hz
comparing control conditions and VSM activation. This is in
accordance with previous reports (Hardung, 1953; Bergel,
1961; Learoyd & Taylor, 1966; Tucker et al. 1969).

In control (resting) conditions the linear model provides a fit
comparable with the non-linear NARX model. Nevertheless,
under high transient pressure (during exercise or stress) the
non-linear model should be considered to improve the fitting
performance. Using the proposed method, the elastic, viscous
and inertial moduli could be evaluated in a single beat. The
assessment of mechanical properties in humans using non-
invasive techniques (e.g. ultrasound or tonometry) is a growing
field in clinical applications (Armentano, 1995b; Reneman
& Hoeks, 2000). Further studies should consider non-invasive
techniques using the single beat modelling approach to
estimate the arterial dynamic properties.

Arterial wall dynamics were modelled based on the
stress—strain relationship in conscious dogs. General linear
ARX models and non-linear NARX structures for modelling
the arterial wall dynamics are presented. The linear ARX
model provides a direct physical insight of the arterial wall.
c.org) by guest on September 18, 2014
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Mechanical parameters were obtained and the effect of
vascular smooth muscle activation could be summarised as
increases in the viscous, elastic and inertial wall moduli. We
derived these parameters using a real time recursive
algorithm. The identified model not only provides a temporal
description but also the frequency domain response of the
arterial wall dynamics in the conscious state. The results
obtained in this work demonstrate that the frequency
dependence of the aortic wall dynamics, using a parametric
system identification approach, is affected during vascular
smooth muscle activation.

APPENDIX

Linear and semi-physical structures
The linear parametric ARX model is described by

FO=Tart =+ ThxG=0+r0.  (AD

where n, and n, define the order of the model and y(¢) is the
estimated output (strain) and x(¢) is the input (stress), v(z) is a
perturbation considered typically as noise, or the term that
cannot be assessed by the model (Ljung, 1999). The ARX
model can be described by

(D)= ¢70(2) + v(0), (A2)

where ¢(0)=[-p(t—-1) —y(t—-2)..—y(t—n) x(t—1)
x(t = 2)... x(t — n,)]"is the input vector and 8 = [a, a, ... dy, b,
b, ... b,,Y]Tis the parameter vector to be estimated on the basis
that y(7) and ¢(7) for ¢ = 1, ..., N are known. It is important to
notice that the parameters from (eqn (1)) can be related to the
ARX parameters through a complex mapping. The inverse
bilinear mapping from the z to s plane was used to reach this
task (Lam, 1980).

The non-linear behaviour of the pure elastic components
(elastic, collagen fibres and VSM) was considered by the
following stress—strain relationship:

o = Ee + ae’ + fe’. (A3)

The selection of this model presents the advantage that it can

be easily incorporated into the dynamic model identification
framework presented previously.

One of the problems in grey box identification is the regressor
selection procedure. Using a priori information (eqn (A3))
about the system, the following bilinear model is proposed:

50 = =3y =i+ Thx(t=+ Tecn (=140, (Ad

where the linear part (see eqn (Al)) is preserved and the
parameters {c;,, k=2, 3} are to be related to a and p,
respectively.

Model order selection and parameter estimation

In this study, the optimal order model was the one that
minimised the Akaike information criterion (Akaike, 1969)
defined by the equation

AIC(N,) = NIn(c2) + 2N, (AS)
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where N, is the number of parameters, N is the number of
data samples and o’ is the residual variance defined by

ol = ! zlvle(l‘)2

‘ N-1-d /5,7

where e(z) = y(t) — p(¢) is the prediction error and

d = max{n,,, n,}. Other criteria can be considered but the AIC

is a good compromise between the number of parameters and
the residual variance (Ljung, 1999).

(A6)

A natural way for estimating #(¢) is minimising what the
model cannot represent. The cost function to be minimised is
usually of the form

HO) = Yollr(0) - 876 (1)) (A7)

This function can be minimised iteratively and tracking time-
varying systems. In this paper we use the recursive least-
squares algorithm that can be summarised by the following
equations (Ljung, 1999):

() = 6(t — 1) + L(2)e(2),
e(t) = W(0) — §"(0 0t — 1),

L= PE=Dé0
AW+ ¢ OPE = D)’

P 1y~ P DO OPE 1)
A@) + ¢ () P(r = 1)g(0)
A7) ’

where 6(r) (T "™ is the estimated parameter vector, n = N, is
the number of parameters, A(¢) is the forgetting factor,
P(f) M "*'is the covariance matrix and L(¥) (0 "*" is the
gain matrix. If we assume that the model represents the
arterial wall dynamics, the algorithm is consistent if the input
is sufficiently rich and has the property of persistency of
excitation, or, equivalently, if it excites all modes of the system
(Ljung, 1999). Initial conditions for #(0) and P(0) can be set
using previous knowledge about the system. Initial values of
6(0) = 0 and P(0) = kI, where I is the identity matrix and k is
a constant with typical values of 10 or 100, were considered in
this study.

P(n) = (A8)
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