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Abstract. Arterial viscoelasticity can be described with a complex modulus (E∗) in the frequency domain. In arteries,
E∗ presents a power-law response with a plateau for higher frequencies. Constitutive models based on a combination of purely
elastic and viscous elements can be represented with integer order differential equations but show several limitations. Recently,
fractional derivative models with fewer parameters have proven to be efficient in describing rheological tissues. A new element,
called “spring-pot”, that interpolates between springs and dashpots is incorporated. Starting with a Voigt model, we proposed
two fractional alternative models with one and two spring-pots. The three models were tested in an anesthetized sheep in a con-
trol state and during smooth muscle activation. A least squares method was used to fit E∗. Local activation induced a vascular
constriction with no pressure changes. The E∗ results confirmed the steep increase from static to dynamic values and a plateau
in the range 2–30 Hz, coherent with fractional model predictions. Activation increased E∗, affecting its real and imaginary parts
separately. Only the model with two spring-pots correctly followed this behavior with the best performance in terms of least
squares errors. In a context where activation separately modifies E∗, this alternative model should be considered in describing
arterial viscoelasticity in vivo.
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1. Introduction

Arterial walls, as other soft biological tissues, are essentially viscoelastic. Main conduit arteries (i.e.
aorta) have specific roles as hydraulic filters and cushioning pulsatile oscillations exerted by the ventricle.
The structural composition of these arteries shows a functional predominance of elastic components.
However, following a simultaneous pressure-diameter analysis, a hysteresis loop is evident, revealing
a viscous behavior. The source of energy dissipation in the artery wall is associated primarily with
smooth muscle cell content [9]. This energy dissipation (wall viscosity) is further increased with smooth
muscle cell activation [2]. Smooth muscle activation can indeed continuously modify the wall structure
by stretching elastic fibers within the artery wall.

Although several articles have described the viscoelastic properties of arteries in-vitro, few measure-
ments have been made in-vivo [8,17,26,27,31]. Viscoelastic properties in vivo can be analyzed using a
frequency dependent complex modulus. This complex modulus (E∗) has real and imaginary parts. The
former is related to the elastic response of the material (i.e. storage modulus) and the latter (i.e. loss
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or dissipation modulus) to its viscous behavior. Storage and dissipation moduli in arteries show par-
tial frequency independence within the physiologic range [9,11,18]. In contrast to pure elastic materials
with complete frequency independence or pure viscous materials that exhibit an energy loss propor-
tional to frequency, E∗ in conduit arteries steeply increases from static values attaining a plateau at
higher frequencies. Rheological lumped models are used to describe arterial mechanics in order to fit
this frequency response. They are commonly based on a discrete arrangement of springs and dashpots
(Kelvin–Voigt models). Even with generalized models, where the model order was increased to improve
the fitting, some major limitations were reported [32].

Recently, classical viscoelastic models were generalized using fractional elements [4,22,28]. More
importantly, constitutive equations of soft tissues and rheological models were extended using fractional
order derivatives [12,14,21,30] and their theoretical basis was found to be mathematically consistent
with molecular theories [5,6]. Based on the fractional calculus theory, a new type of element called
spring-pot was incorporated into the constitutive equations. If in a pure elastic element, stress and strain
are related by a zero order derivative (an elastic constant), and in a pure viscous dashpot by a first order
derivative, a spring-pot renders the possibility of gradually interpolating between both by varying the
order α of the element when 1 > α > 0. Moreover, in the frequency domain, a spring-pot behavior
is intermediate between a constant elastic response and a viscous linear dependence, conforming to a
weak power-law relationship over a wide range of frequency [23]. This response seems naturally predis-
posed for application to arterial mechanics problems. Furthermore, models based on fractional calculus
have proven capable of describing more accurately complex structures [23,29] with fewer numbers of
elements [30]. Finally, the new fractional element (spring-pot) could be easily integrated into classical
Kelvin–Voigt constitutive equations so as to be associated with structural or physiological properties of
the modeled soft tissue.

In the present work, we generalize a classical Voigt model using fractional calculus theory to describe
the viscoelastic mechanical response of the aorta in-vivo. As far as we know, this methodology has not
been applied before to characterize the mechanics of complete conduit arteries. A Voigt model (Model 1)
was evaluated and compared to a modified version with one and two spring-pots (Models 2 and 3,
respectively). Pressure and diameter measurements were invasively and continuously acquired with a
previous validated methodology [1,3,7]. A topical application of phenylephrine was used to achieve
vascular smooth muscle activation (isobaric analysis). The complex modulus (E∗) was calculated and
fitted in the frequency domain. Components of Model 3 were stratified and the resulting values discussed.

2. Modeling

Assuming a linear theory, a complex modulus E∗ can be derived to describe the viscoelastic properties
of a material and its dependence on frequency (ω). Based on stress (σ) and strain (ε) measurements, E∗ is
defined as

E∗(ω) =
σ(ω)
ε(ω)

= ES(ω) + iED(ω), (1)

where i2 = −1 is the imaginary unit. The real part of E∗(ES) will be called storage modulus and the
imaginary part (ED) dissipation modulus. Storage and dissipation moduli in arteries are difficult to fit
with classical spring-dashpot models because they show partial frequency independence over a wide
frequency range.
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The Voigt body is the simplest viscoelastic model that can store and dissipate energy, consisting of a
perfectly elastic element (i.e. spring), arranged in parallel with a purely viscous element (i.e. dashpot).
Its differential equation is:

σ(t) = Eε(t) + η
dε(t)

dt
,

where E denotes the elastic constant of the spring and η the viscous coefficient of the dashpot. Using
Fourier transform and applying Eq. (1) we find E∗ for this model:

E∗(ω) = E + iηω. (2)

The limitations of this initial model are described elsewhere [24]. Briefly, this model shows creep but
does not show relaxation, a behavior clearly observed in soft tissues. Moreover, the storage modulus
would be constant and the loss modulus would increase proportionally to the frequency. In spite of these
limitations, this simple model has been widely used because its two parameters are easily identified with
the mechanical structure of a soft tissue. We will define the Voigt body as Model 1 (see Fig. 1).

Two alternative fractional derivative models will be proposed in this work. The most classical defini-
tion, attributed to Riemann and Liouville, for the fractional order ν derivative of a function f (t) can be
expressed as:

dνf

dtν
=

1
Γ(1 − ν)

d
dt

∫ t

0

f (τ )
(t − τ )ν

dτ , (3)

where Γ is the Euler gamma function. Integer order derivatives are local operators. Following Eq. (3), the
real order (fractional) derivative can be seen as the convolution of ε(t) with a t−ν function, anticipating

Fig. 1. Arrangement of springs, dashpots and spring-pots for the three proposed models. Model 1 = Voigt model.
Model 2 = Fractional Voigt model with one spring-pot. Model 3 = Fractional Voigt model with two spring-pots.



254 D. Craiem and R.L. Armentano / Fractional derivative model of viscoelasticity

some memory capability involved and power-law responses. Using this definition, a new element can be
incorporated to the classical spring-dashpot pair called “spring-pot” [22] as follows:

spring: σ = E
d0ε

dt0
, dashpot: σ = η

d1ε

dt1
, spring-pot: σ = η

dνε

dtν
, 1 � ν � 0,

where E and η are proportionality constants. The value of ν can be adjusted to interpolate between a
pure elastic component (ν = 0) and a pure viscous one (ν = 1).

As a first alternative, we propose to replace the dashpot of Model 1 with a spring-pot (see Fig. 1). In
this Model 2, the fractional derivative equation results:

σ(t) = E0ε(t) + η1
dαε(t)

dtα

and the complex modulus:

E∗(ω) =
[
E0 + η1 · cos

(
π

2
α

)
ωα

]
︸ ︷︷ ︸

storage

+ i ·
[
η1 · sin

(
π

2
α

)
ωα

]
︸ ︷︷ ︸

loss

. (4)

Our last proposed Model 3 consists of a pure elastic spring and 2 spring-pots arranged in parallel (see
Fig. 1), and can be presented in a constitutive fractional differential equation as:

σ(t) = E0ε(t) + η1
dεα(t)

dtα
+ η2

dεβ(t)
dtβ

. (5)

Taking into account that the Fourier transform of a fractional derivative function f (t) is F [Dνf (t)] =
(iω)νF [f (t)], Eq. (5) can be separated following Eq. (1) in its real and imaginary parts:

E∗(ω) =
[
E0 + η1 · cos

(
π

2
α

)
ωα + η2 · cos

(
π

2
β

)
ωβ

]
︸ ︷︷ ︸

storage

+ i ·
[
η1 · sin

(
π

2
α

)
ωα + η2 · sin

(
π

2
β

)
ωβ

]
︸ ︷︷ ︸

loss

. (6)

The influence of each term in Eq. (6) will be analyzed during smooth muscle activation separately to
study the role of each element in this fractional model.

3. Experimental evaluation

3.1. Instrumentation

All protocols were approved by the Research and Development Council of the Favaloro University
(Argentina) and were conducted in accordance with the National Institutes of Health Guidelines for the
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care and use of laboratory animals (NIH Publication No. 85-23, revised 1996). The surgical procedure
has been previously described in detail [7]. A Merino sheep, weighing 60 kg was selected for this study.
Anesthesia was induced with intravenous thiopental sodium (20 mg/kg), and was maintained with 2.5%
enflurane carried in pure oxygen (4 l/min) through a Bain tube connected to a respirator. Both pressure
(model P3.5, 1200 Hz frequency response, Konigsberg Instruments, Inc., Pasadena, CA) and diameter
(ultrasonic crystals, 5 MHz, 3 mm diameter) sensors were implanted in the same ring of a descending
thoracic aorta. Signals were digitized at a frequency rate of 250 Hz (12 bits) for off-line processing.
Vascular muscle activation was induced using phenylephrine (PHE) (0.5 ml) dosed locally over the
aortic segment. The activation measurements during PHE were made after the vascular constriction was
stabilized. Measurements were made with the respirator turned off during 10 seconds for both CTL and
PHE.

3.2. Stress–strain derivation

Aortic strain (ε) and stress (σ) were calculated from the measured pressure (P ) and external radius (re)
as previously reported [7]. Briefly, assuming a thick walled cylindrical geometry, the following equations
can be defined,

ε =
R

R0
,

σ = 133.4
2P (reri)2

r2
e − r2

i

1
R2

,

where R is the midwall radius calculated as R = (re + ri)/2, R0 is the unstressed mid-wall radius mea-
sured right after the sacrifice during autopsy (approximately at 25 mmHg of aortic remaining pressure),
133.4 is a conversion constant to report the stress in Pa and ri is the internal radius calculated as:

ri = r2
e −

V

πL
,

where V is the volume of the segment of length L. This length was measured during surgery between two
adjacent marks sutured to the aortic segment using a caliper. This segment was then carefully dissected
free from surrounding tissue, cut at the markers, and weighed on a precision balance. V was calculated
using the weight of the aortic wall segment and assuming a tissue density of 1.066 g/ml [13].

Periods of both pressure and diameter signals were automatically separated and converted to stress
strain. Fifty representative cycles were selected in CTL and during activation with PHE. Fourier trans-
form was applied to an averaged period to obtain measurements of the real and imaginary parts of
E∗ in Eq. (1). Heart rate was near 2 Hz. A frequency range of 30 Hz was adopted, including the first
15 significant harmonics. To obtain the parameters of Model 1 in Eq. (2), storage modulus points were
averaged to obtain E and dissipation modulus values were interpolated to a linear function to obtain the
η (slope). For fractional models 2 and 3, Eqs (4) and (6) were fitted to the real and imaginary parts of
E∗ simultaneously using the trust region method for nonlinear least squares minimization, based on the
interior-reflective Newton method (lsqcurvefit function from Matlab©). Parameters were compared for
CTL and during activation with PHE.
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The complex modulus was then normalized to E0 such that E(ω = 0) = 1. Additionally, least squares
error (LSE) defined as

LSE[%] =

√√√√(
15∑

i=0

[E∗
measured(ωi) − E∗

model(ωi)]2

)/(
15∑

i=1

E∗
measured(ωi)2

)
× 100 (7)

was calculated over the first 15 normalized harmonics to evaluate the spectrum fit for the real and imag-
inary parts.

To further evaluate the viscoelastic model fit, a vector diagram that is traditionally used in mechanical
engineering was constructed using the 15 real and 15 imaginary points of the normalized E∗ results.
This diagram was constructed for Model 3 by combining the harmonics of the storage modulus in the
abscissa and the harmonics of the loss modulus in the ordinate. This curve facilitates the identification
and classification of materials, and helps to visualize in the same graphic the relation between the real
and imaginary parts of E∗ and the frequency [28].

3.3. Model fitting

Pressure-diameter and stress-strain loops are shown in Fig. 2 for both CTL and PHE. The topical ap-
plication of PHE locally activated the smooth muscle, contracting the artery without changes in pressure
(left). Stress and strain diminished concomitantly (right). The resulting hysteresis confirm the natural
viscous behavior of the aortic wall.

Table 1 shows the parameter fit in each viscoelastic model. During PHE, the static elastic modulus
E0 and the proportionality viscous factors (η1 and η2) increased in all cases, whereas in Model 2 and
Model 3 the order α diminished, in Model 3 β remained stable. The values of E∗ at high frequencies
averaged 520 kPa for CTL and 640 kPa during PHE, whereas the phase response attained a plateau of 12
and 17 degrees respectively. Real and imaginary parts of the E∗ for all models are presented in Fig. 3 as
ratio normalized moduli (E∗/E0). Potential curves can be confirmed in storage moduli with significant

Fig. 2. Pressure-diameter (left) and stress-strain (right) in-vivo loops for the anesthetized sheep in control (CTL) and during
smooth vascular activation with phenylephrine (PHE).
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Table 1

Viscoelastic results after least squares fit of the real and imaginary parts of the complex modulus E∗ in the frequency domain
(15 harmonics). Model 1 = Voigt model. Model 2 = Fractional Voigt model with one spring-pot. Model 3 = Fractional Voigt
model with two spring-pots. CTL, Control state. PHE, Local smooth muscle activation with phenylephrine. r2 = Pearson
correlation coefficient

E0 α η1 β η2 r2, p

(kPa) (kPa sα) (kPa sβ)
MODEL 1 CTL 481 1 0.7 0.47, p < 0.05

PHE 573 1 1.2 0.62, p < 0.05

MODEL 2 CTL 393 0.51 12.1 0.82, p < 0.01
PHE 411 0.42 39.8 0.95, p < 0.01

MODEL 3 CTL 393 0.20 32.6 0.84 1.07 0.77, p < 0.01
PHE 411 0.11 82.2 0.80 2.73 0.93, p < 0.01

Fig. 3. Real (storage modulus) and imaginary (dissipation modulus) parts of the complex modulus (E∗) in control (CTL)
and during smooth vascular activation with phenylephrine (PHE). Data (empty squares) and model results (lines) after least
square fit.
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Fig. 4. Stratified storage and dissipation moduli, from real and imaginary parts of the complex modulus of the fractional Model 3
in Eq. (6) during control (CTL) and smooth muscle activation (PHE).

increments during PHE with respect to CTL. Dissipation modulus during PHE showed a more linear
frequency dependence with respect to CTL behavior, where a power-law function was clearly visible.

For Model 3, the magnitudes of each term from Eq. (6) are shown in Fig. 4. The importance of the
elastic spring is evident in both storage moduli. In this model, an elastic predominance can be seen
for the η1 − α spring-pot in contrast to the more dissipative η2 − β fractional element. The major
contribution of the latter in the dissipation modulus during PHE could be seen. Finally, a vector diagram
was constructed from the real and imaginary parts of E∗ in Model 3 and is presented in Fig. 5 for
measured data and calculated model results. The harmonics values were connected with lines. Measured
and modeled values are reasonably congruent although measured values have increasing dispersion at
higher frequencies. As defined by Eq. (7), LSE for storage and dissipation moduli during CTL were
Model 1: 27% and 15%, Model 2: 5% and 9%, Model 3: 3% and 8%, and during PHE were Model 1:
48% and 77%, Model 2: 8% and 19%, Model 3: 2% and 9%, respectively.
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Fig. 5. Vector diagram composed by the storage modulus in the abscissa axis and the dissipation modulus in the ordinate axis.
Comparison of experimental data (thin line) and the fractional Model 3 with 2 spring-pots (thick line) for control (CTL) smooth
vascular activation (PHE).

4. Discussion

This work shows that fractional derivative models adequately describe the mechanical response of
the arterial wall in-vivo both during control and smooth muscle activation states. The best empirical
agreement between the measured and modeled E∗ for Model 3 suggests that the incorporation of two
spring-pots to the classical Kelvin–Voigt scheme should be considered and discussed as an alternative to
model arterial viscoelasticity.

To analyze the arterial wall mechanics, a complex modulus (E∗) approach was adopted. Linear vis-
coelasticity assumes that stress is a function of strain history. In the frequency domain, this hypothesis
is equivalent to the existence of a complex modulus such that σ(ω) = ε(ω)E∗(ω). From a practical point
of view, viscoelasticity problems can be solved by fitting a model to the frequency dependent E∗. In
many soft tissues, and particularly in arteries, E∗ increases rapidly with frequency attaining a plateau,
when it becomes almost frequency independent [9,11,24]. The storage modulus for high frequencies
during CTL (5 × 106 dyn · cm−2) resulted somewhat higher compared to other reports in adult sheep:
3 × 106 dyn · cm−2 [17], 3.5 × 106 dyn · cm−2 [25], 3.3 × 106 dyn · cm−2 [31] but more compatible
with previous reports from our group [16]: 4.4 × 106 dyn · cm−2. Differences may be principally due to
animal specimens, particular methodologies, anesthesia and the arterial segment considered.

As remarked by Bergel [9] many attempts were made to fit E∗ to simple models, linearly combining
ideal springs and dashpots. The simplest Voigt option was adopted in Model 1. Following Eq. (2), the
storage modulus is described with a constant value and the dissipation modulus linearly increases with
frequency. As seen in Fig. 3, this model is poorly adapted to measured data. The quality of fit can be
improved increasing the number of elements although this tendency systematically blurs the physical
meaning of the increased number of parameters [32]. In fact, previous reports from our group used
adaptive models to fit E∗ but the number of parameters was reduced to ensure a proper analysis [16].
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Others studied structural damping, also called hysteretic damping, considering a complex stiffness that
is completely frequency independent [19]. This formulation is based on the Hilbert transform, but as
arteries are not completely frequency independent they cannot be applied directly.

Lumped models constructed with fractional derivative elements appear as an alternative [23]. They
were shown to be an intimate descriptor of rheological materials with few parameters. As described in
the modeling section, elements that interpolate between ideal springs and dashpots can be conceived
using fractional order derivatives. They are called spring-pots. Their fractional order can be adjusted
between integer orders 0 (spring) and 1 (dashpot).

In Model 2, a dashpot (order 1) was replaced with a spring-pot (order α). The order α for CTL
and PHE resulted ∼0.45, confirming an intermediate behavior. In spite of the important improvement
observed during CTL in both storage and dissipation moduli, the frequency dependence during acute
smooth muscle activation could not be properly adapted as seen in Fig. 3. The main reason might be
analyzed observing the imaginary part of E∗. While the storage modulus proportionally increased during
activation with respect to CTL, the dissipation modulus described a more pronounced linear frequency
dependence. This particular behavior is not contemplated in Eq. (4), where both real and imaginary parts
of E∗ depend on a unique ωα power-law function. In spite of this limitation, LSE results confirmed an
important reduction with respect to Model 1.

Model 3, with an ideal spring and 2 spring-pots, showed the best agreement with measured data. These
results can be confirmed in Fig. 3 and evaluating LSE results that never exceeded 9%. More importantly,
the model was not arbitrarily chosen. It was designed to adapt its parameters to physiological conditions
(CTL) and during smooth muscle activation (PHE). It appears as an extension of the rheological cell
model introduced by Fabry [15] and further explained by fractional derivative viscoelasticity [12]. In
previous works of our group, a modified Voigt model was proposed to model the arterial wall in-vivo [1].
Following our experience, the incorporation of two fractional elements with adjustable orders, allowed
us to better describe the arterial wall behavior in both control and active states giving some physiological
meaning to each parameter.

Why two spring-pots? Storage and dissipation moduli (see Fig. 3) followed a different behavior during
smooth muscle activation (PHE). That is why 2 fractional elements were proposed in our model. Storage
modulus increased with increasing frequency according to a weak power-law (order 0.2) during CTL
and increased in a proportion to the frequency during PHE. Loss modulus also followed a power-law
response during CTL but with a more pronounced frequency dependence during PHE. Observing Eq. (6),
a partial independence between real and imaginary parts was allowed incorporating a second spring-pot,
with respect to Eq. (4) (Model 2).

At this moment, we can interpret the parameters of Model 3. The structural elasticity of the wall,
independent of muscle activation, was represented with the ideal spring E0. The first spring-pot, charac-
terized by η1, α parameters, became predominantly elastic (α ≈ 0.2) and might be associated with the
elastic contribution of vascular smooth muscle. As can be deduced from Eq. (6), for orders of α closer
to zero, the cosine function ensures a significant influence of this spring-pot on the storage response,
whereas the sine function forecasts a negligible participation on loss modulus. At this point, our results
do not differ from others who used fractional models to describe biological soft tissues. In airway cul-
tured smooth muscle cells [12], lung [30] and canine liver tissues [21] the fractional order was about
0.1–0.2, close to the values of our η1, α spring-pot parameters. The second spring-pot, described by η2,
β parameters, can be associated with a dissipating element, where a clear viscous behavior was found
(β ≈ 0.8). In this case, a corresponding influence in the dissipation modulus was expected, associated
with the sine function influence for β ≈ 0.8 in Eq. (6). Viscosity is partly responsible for the frequency
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dependence of E∗. Particularly in arteries, different sources of viscosity can be predicted, including the
intrinsic cellular contribution and vascular smooth muscular action. Also, the myogenic response can
contribute in-vivo.

Phenylephrine was used to locally activate the smooth muscle of the arterial segment without dis-
turbing pressure values, whereas there was a strong vasoconstriction (Fig. 2). Vascular smooth muscle
can modulate this elastic-viscous contribution in conduit arteries [1]. The physiological relevance of this
energy dissipation in conduit arteries is still controversial [10]. Although the magnitude of the viscous
energy involved in this process seems to be negligible, its integration along the arterial tree can indeed
enhance its influence [32]. Even if the aorta does not likely undergo this kind of powerful local vasocon-
striction in-vivo as seen in Fig. 2, smooth muscle activation experiments here were helpful in assessing
their role in wall viscoelasticity.

Smooth muscle activation produced simultaneous effects of increasing storage and loss moduli, and in
the latter a stronger frequency dependence was evident. These effects were reflected in the first spring-pot
with a reduction of α and an increment in η1, making it more elastic with barely any viscous contribution.
In the second spring-pot, where the fractional order remained near β ≈ 0.8 during PHE, a three-fold
increase in η2 was evident.

To get further insight into the particular role of each element of the model, E∗ in Eq. (6) was de-
composed into 5 terms and their magnitudes were shown in Fig. 4. Analyzing the storage modulus (real
part of Eq. (6) and left side of Fig. 4), the predominant elastic contribution depended on the pure elastic
spring E0 and the most elastic spring-pot (η1, α). This spring-pot can represent the smooth muscle elastic
participation in the arterial response in-vivo. Activation reduced the fractional order (more elastic) and
increased the proportional factor (η1). On the other hand, dissipation moduli were prone to depend on the
most viscous spring-pot (η2, β). Activation did not change the second spring-pot order β that remained
stable near pure viscous values, but significantly increased its proportionality factor η2, confirming an
energy dissipation effect. These results suggest that the first spring-pot might describe the interrelation
between the contractile muscle cells stretching the elastic fibers and modulating their elastic contribu-
tion. The second spring-pot seems to represent a more pure structural viscous behavior, with no order
change during activation, but with a significant participation in arterial energy dissipation. These initial
hypotheses conform with the idea of a serial elastic component (SEC) defined as the algebraic sum of all
coupled muscle components in the force generating apparatus and the existence of a contractile element
[1,13].

The ability of Model 3 to fit simultaneously the storage and loss moduli was also verified using a
vector diagram (Fig. 5). Vector diagrams are traditionally used in mechanical engineering. They simul-
taneously show the relation between the real and imaginary parts of E∗. Our vector diagram correctly
matches the modified Kelvin–Voigt model (with 2 fractional operators) described in a complete review
of fractional models of two (or more) elements made by Rossikhin and Shitkova [28]. This is consistent
with normalized storage and loss moduli responses. The former starts, for static values, at 1 and the lat-
ter at zero, whereas both increase with frequency to attain a similar plateau approximately 30% higher
in CTL and 60% during PHE (Fig. 3). That explains why the vector diagram describes an open curve
that starts at (1, 0) and finishes at (1.3, 0.3) for CTL and at (1.6, 0.3) for PHE. The particular concave
contour of the vector curve confirms that the storage modulus increases more rapidly with frequency
than the loss modulus. The latter has a more linear frequency dependence that might be associated with
the underlying dissipation process.

In contrast to in-vitro studies, our in-vivo experiments yielded information from the mechanical prop-
erties of the living animal where the complete artery remained intact with all the natural variability.
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Although this methodology is attractive to describe physiological events, some limitations must be em-
phasized. E∗ in the living animal was determined at a mean distending pressure for multiples of the
heart rate and variations around this working point were considered. While non-linear behavior of the
arterial wall is well reported, strains were considered small under stable physiologic conditions, sup-
porting the assumption of a linear approximation. The arterial wall constituents are essentially elastin,
collagen and smooth muscle. We assumed that at low pressure values, as those found in the anesthetized
sheep (Fig. 2), the mechanical response was mainly governed by the elastic behavior. Consequently, a
linear model was adopted permitting the complex modulus analysis to be a reasonable approach. The
absolute and normalized values for the E∗ in-vivo did not differ from others [24,27,31,32] and resulted
in findings comparable to those in-vitro [11].

Finally, although no stress relaxation experiments are allowed in-vivo, the proposed fractional model
could be used to predict it. Just as the exponential function appears as the solution to integer order
differential equation, potential functions of the form t−α can be obtained by solving Eq. (5) for a step in
strain. These power-law responses offered by the fractional order model, with a pronounced descent and
a very slow relaxation, seem to be more appropriate to model stress-relaxation results in arteries than the
classical exponential result from integer order equations [20,23]. Future stress-relaxation experiments
will be needed to test fractional models in-vitro so as to complement our findings in-vivo.
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