Señales y Sistemas Transformada de Fourier de Tiempo Discreto

Juan Bazerque

Instituto de Ingeniería Eléctrica

2 de abril de 2019

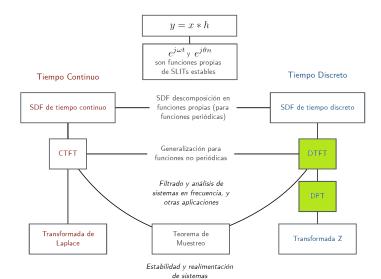
iie 1 de 25

Espectro de señales de tiempo discreto

- ► Conocemos la Serie de Fourier de tiempo discreto
- Requiere que la señal sea periódica (x[n+N] = x[n])
- La periodicidad es una hipótesis muy restrictiva
- Definir el espectro de una señal de tiempo discreto no periódica
- Respuesta: Transformada de Fourier de tiempo discreto (DTFT)

iie 2 de 25

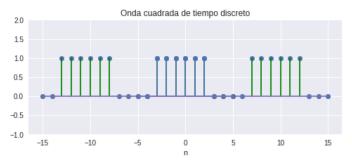
En relación al curso



iie 3 de 25

Señal periódica asociada

- lacktriangle Sea x[n] una señal no periódica tal que x[n]=0 si $|n|\geq N/2$ 1
- \blacktriangleright Definimos $\tilde{x}[n]$ de período N tal que $\tilde{x}[n]=x[n]$ si $|n|\leq N/2$



- Recordar: Serie de Fourier de $\tilde{x}[n]$
 - Síntesis

$$x[n] = \sum_{k=-N/2}^{N/2} a_k e^{j\theta_k n}, \quad \theta_k = \frac{2\pi k}{N}, \ quad$$

Análisis

$$a_k = \frac{1}{N} \sum_{n=-N/2}^{N/2} x[n] e^{-j\theta_k n} n \in [-N/2, N/2]$$

 $^{^1\}mathrm{Si}\;x[n]$ tiene soporte infinito \Rightarrow usamos $x_N[n]=x[n]$ para $n\in[-N/2,N/2]$ y cero fuera

De la serie a la DTFT

▶ Hagamos crecer $N \to \infty$ con $\theta_k = 2\pi k/N \to \theta$

$$Na_k = \sum_{n=-N/2}^{N/2} x[n]e^{-j\theta_k n} = \sum_{n=-\infty}^{\infty} x[n]e^{-j\theta_k n} \to \sum_{n=-\infty}^{\infty} x[n]e^{-j\theta n}$$

Definimos

$$X(e^{j\theta}) := \sum_{n=-\infty}^{\infty} x[n]e^{-j\theta n}, \quad \Rightarrow X(e^{j\theta_k}) = Na_k$$

Para la síntesis

$$x[n] = \sum_{k=-N/2}^{N/2} \frac{X(e^{j\theta_k})}{N} e^{j\theta_k n} = \sum_{k=-N/2}^{N/2} \frac{X(e^{j\theta_k})}{2\pi} e^{j\theta_k n} \Delta \theta_k \rightarrow \int_{2\pi} \frac{X(e^{j\theta})}{2\pi} e^{j\theta n} d\theta$$

▶ Usamos $1/N = \Delta \theta_k/2\pi$ y $\sum_{k=-N/2}^{N/2} \Delta \theta_k = 2\pi$

Prueba
$$\Delta \theta_k = \theta_{k+1} - \theta_k = 2\pi(k+1)/N - 2\pi k/N = 2\pi/N$$

iie 5 de 25

Definición de la DTFT

Transformada de Fourier de Tiempo Discreto

$$X(e^{j\theta}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\theta n}$$
$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\theta})e^{j\theta n} d\theta$$

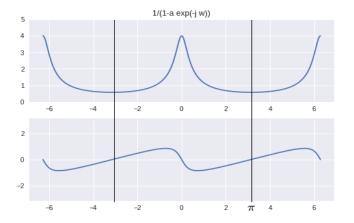
- Definiciones asociadas al análisis y síntesis de las Series de Fourier
- lacktriangle La frecuencia pasa a ser una variable continua $\omega \in \mathbb{R}$
- ▶ DTFT $X(e^{j\theta})$ es 2π periódica (ejercicio)
- $lackbox{ Suma en período } k = < N > \Rightarrow {\it integral en período } 2\pi$

iie 6 de 25

Ejemplo

lacktriangle Calcular la DTFT de $x[n] = u[n]a^n$

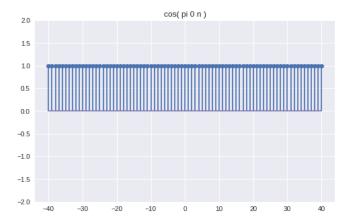
$$X(e^{j\theta}) = \sum_{n=0}^{\infty} a^n e^{-j\theta n} = \sum_{n=0}^{\infty} (ae^{-j\theta})^n = \frac{1}{1 - ae^{-j\theta}}$$



▶ Recordar: exponenciales de frecuencias θ y $\theta + 2\pi$ son idénticas

$$e^{j(\theta+2\pi)n} = e^{j\theta n}$$

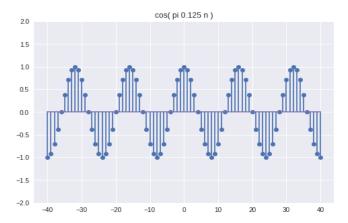
Componentes varían más rápido a frecuencias $heta \simeq \pm \pi$



▶ Recordar: exponenciales de frecuencias θ y $\theta + 2\pi$ son idénticas

$$e^{j(\theta+2\pi)n} = e^{j\theta n}$$

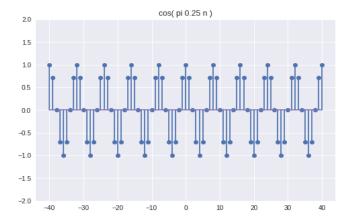
lacktriangle Componentes varían más rápido a frecuencias $heta \simeq \pm \pi$



▶ Recordar: exponenciales de frecuencias θ y $\theta + 2\pi$ son idénticas

$$e^{j(\theta+2\pi)n} = e^{j\theta n}$$

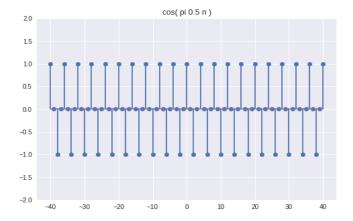
Componentes varían más rápido a frecuencias $heta \simeq \pm \pi$



▶ Recordar: exponenciales de frecuencias θ y $\theta + 2\pi$ son idénticas

$$e^{j(\theta+2\pi)n} = e^{j\theta n}$$

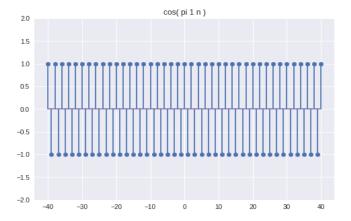
ightharpoonup Componentes varían más rápido a frecuencias $heta \simeq \pm \pi$



▶ Recordar: exponenciales de frecuencias θ y $\theta + 2\pi$ son idénticas

$$e^{j(\theta+2\pi)n} = e^{j\theta n}$$

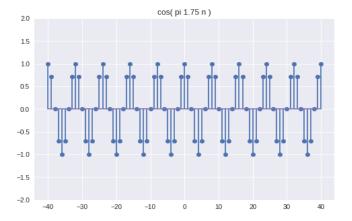
Componentes varían más rápido a frecuencias $heta \simeq \pm \pi$



▶ Recordar: exponenciales de frecuencias θ y $\theta + 2\pi$ son idénticas

$$e^{j(\theta+2\pi)n} = e^{j\theta n}$$

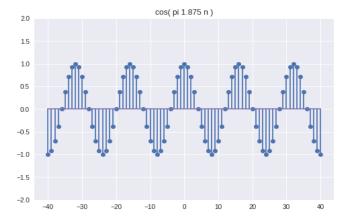
ightharpoonup Componentes varían más rápido a frecuencias $heta \simeq \pm \pi$



▶ Recordar: exponenciales de frecuencias θ y $\theta + 2\pi$ son idénticas

$$e^{j(\theta+2\pi)n} = e^{j\theta n}$$

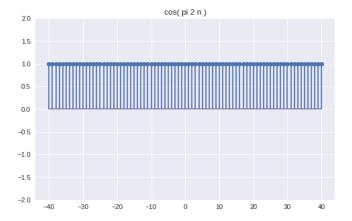
Componentes varían más rápido a frecuencias $heta \simeq \pm \pi$



▶ Recordar: exponenciales de frecuencias θ y $\theta + 2\pi$ son idénticas

$$e^{j(\theta+2\pi)n} = e^{j\theta n}$$

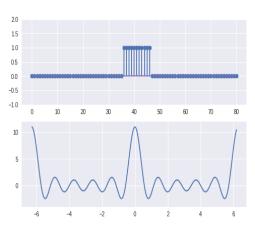
ightharpoonup Componentes varían más rápido a frecuencias $heta \simeq \pm \pi$



Ejemplo

ightharpoonup Calcular la DTFT de un pulso de ancho $2N_0+1$

$$X(e^{j\theta}) = \sum_{n=-N_0}^{N_0} e^{-j\theta n} = \sum_{m=0}^{2N_0} e^{-j\theta(m-N_0)} = e^{j\theta N_0} \sum_{m=0}^{2N_0} \left(e^{-j\theta}\right)^m = \frac{\sin(\theta(N_0+1/2))}{\sin(\theta/2)}$$



▶ ¿Relación con sinc? → después del parcial

Ejemplo

 $lackbox{\ }$ Calcular la DTFT de la delta $x[n]=\delta[n]$

$$X(e^{j\theta}) = \sum_{n=-\infty}^{\infty} \delta[n]e^{-j\theta n} = e^{-j\theta n}|_{n=0} = 1$$

- Al igual que en tiempo continuo el espectro de la delta es constante
- La delta tiene igual potencia en todas las componentes de frecuencia
- $ightharpoonup X(e^{j\theta})$ de fase nula
- lacktriangle Calcular la DTFT de la delta corrida $x[n] = \delta[n-n_0]$

$$X(e^{j\theta}) = \sum_{n=-\infty}^{\infty} \delta[n - n_0]e^{-j\theta n} = e^{-j\theta n_0}$$

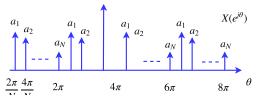
- ▶ Al igual que la delta el espectro es constante en amplitud
- $ightharpoonup X(e^{j\theta})$ de fase lineal \Rightarrow no distorsiona en fase

iie 10 de 25

DTFT de señales periódicas

La DTFT de una señal periódica $x[n]=\sum_{k=0}^{N-1}a_ke^{j\theta_kn}$, con $\theta_k=2\pi k/N$ es (prueba en próxima transparencia)

$$X(e^{j\theta}) = \sum_{k=-\infty}^{\infty} 2\pi a_k \delta(\theta - \theta_k)$$



- La DTFT de una señal periódica x[n] corresponde a deltas de variable continua moduladas por los coeficientes de la Serie de Fourier a_k de x[n]
- Los coeficientes a_k son periódicos por lo que $X(e^{j\theta})$ también lo es en $(0,2\pi)$

iie 11 de 25

DTFT de señales periódicas

La DTFT de una señal periódica $x[n] = \sum_{k=0}^{N-1} a_k e^{j\theta_k n}, \quad \theta_k = 2\pi k/N$ es

$$X(e^{j\theta}) = \sum_{k=-\infty}^{\infty} 2\pi a_l \delta(\theta - \theta_k)$$

lacktriangle Prueba: confirmemos que la síntesis de este candidato $X(e^{j heta})$ es x[n]

$$x[n] \stackrel{?}{=} \frac{1}{2\pi} \int_{2\pi} \underbrace{2\pi \sum_{k=-\infty}^{\infty} a_k \delta(\theta - \theta_k)}_{X=\infty} e^{j\theta n} d\theta = \sum_{k=-\infty}^{\infty} \int_{2\pi} a_k \delta(\theta - \theta_k) e^{j\theta n} d\theta$$

$$= \sum_{k=< N>} a_k \int_{0}^{2\pi} \delta(\theta - \theta_k) e^{j\theta n} d\theta = \sum_{k=< N>} a_k e^{j\theta n} |_{\theta = \theta_k} = \sum_{k=< N>} a_k e^{j\theta_k n}$$

• Utilizamos que solo hay N frecuencias $\theta_k=2\pi k/N$ en un intervalo de integración de largo 2π .

iie 12 de 25

Ejemplo - señal sinusoidal

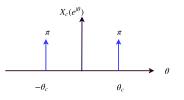
DTFT del coseno

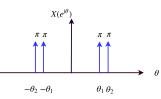
$$x_c[n] = \cos(\theta_c n) = \frac{1}{2} e^{j\theta_c t} + \frac{1}{2} e^{-j\theta_c t}$$

$$\Rightarrow a_{-1} = 1/2, \quad a_1 = 1/2$$

$$\Rightarrow X_c(e^{j\theta}) = 2\pi \left(\frac{1}{2}\delta(\theta + \theta_c) + \frac{1}{2}\delta(\theta - \theta_c)\right)$$

 $ightharpoonup x[n] = \cos(\theta_1 n) + \cos(\theta_2 n) \Rightarrow X(e^{j\theta})$, aun sin ser periódicas





 $ightharpoonup x_s[n] = \sin(\theta_s n) \Rightarrow X_s(e^{j\theta}) = ?$ (ejercicio)

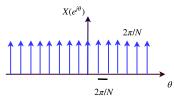
iie 13 de 25

Ejemplo - tren de deltas

DTFT del tren de deltas discretas

$$\begin{split} x[n] &= \sum_{l=-\infty} \infty \delta(n-lN) \\ &\Rightarrow \ a_k = \frac{1}{N} \\ &\Rightarrow \ X(e^{j\theta}) = \frac{2\pi}{N} \sum_{k=-\infty} \infty \delta\left(\theta - \frac{2\pi k}{N}\right) \end{split}$$





Pasamos de un peine discreto a un peine de Dirac con deltas

iie 14 de 25

Propiedades de la DTFT

Propiedades

- ► Linealidad
- Convolución:

$$z[n] = x[n] * y[n] \Rightarrow Z(e^{j\theta}) = X(e^{j\theta})Y(e^{j\theta})$$

Producto:

$$z[n] = x[n]y[n] \Rightarrow Z(e^{j\theta}) = \frac{1}{2\pi}X(e^{j\theta}) * Y(e^{j\theta})$$

Diferencia:

$$z[n] = x[n] - x[n-1] \Rightarrow Z(e^{j\theta}) = (1 - e^{j\theta}) X(e^{j\theta})$$

Parseval:

$$\sum_{n=-\infty}^{\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{\theta=2\pi} \left| X(e^{j\theta}) \right|^2$$

Lista de propiedades complementarias en la página de seys

Filtrado

- \blacktriangleright La salida y[n] = h[n] * x[n] de un SLIT tiene DTFT $Y(e^{j\theta}) = X(e^{j\theta})H(e^{j\theta})$
- ldea: pensar los filtros en frecuencia
- Filtrado en directo en frecuencia:

$$x[n] \to X(e^{j\theta}) \Rightarrow Y(e^{j\theta}) = X(e^{j\theta})H(e^{j\theta}) \Rightarrow Y(e^{j\theta}) \to y[n]$$

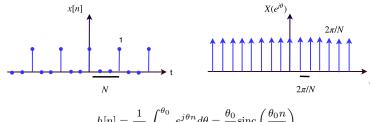
Diseño de filtros:

$$H(e^{j\theta}) \to h[n] \Rightarrow y[n] = h[n] * x[n]$$

iie 16 de 25

Ejemplo

 $lackbox{ Pasabajos ideal: } y = h*x \ {
m de \ un \ SLIT \ tiene \ DTFT \ } Y(e^{j heta}) = X(e^{j heta})H(e^{j heta})$



$$h[n] = \frac{1}{2\pi} \int_{-\theta_0}^{\theta_0} e^{j\theta n} d\theta = \frac{\theta_0}{\pi} \operatorname{sinc}\left(\frac{\theta_0 n}{\pi}\right)$$

El pasabajos ideal no es causal \Rightarrow no es realizable en SLITs de tiempo real

17 de 25

Pasabajos relizablles en tiempo natural

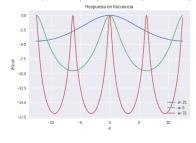
Pasabajos no ideal

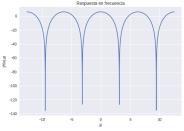
$$H_a(e^{j\theta}) = \frac{1-a}{1-ae^{-j\theta}}$$

- Luego $h_a[n]=u[n]a^n$ se implementa con un IIR y[n]=ay[n-1]+x[n]
- Filtro de media retardado

$$h_m[n] = \frac{1}{2}\delta[n-2] + \delta[n-1] + \frac{1}{2}\delta[n]$$

Pasabajos $H_m(e^{j\theta}) = e^{-j\theta}(1+2\cos(\theta))$ admite implementación como filtro FIR





iie 18 de 25

Transformada Discreta de Fourier (DFT)

- $lackbox{Objetivo:}$ procesar señal x[n] de largo N definida en $n=[0,1,\ldots,N-1]$
- Respuesta: DFT fundamental en procesamiento digital (arreglos finitos)
- Equivalente a $\tilde{x}[n]$ de período N tal que $\tilde{x}[n]=x[n]$ para $n=[0,1,\ldots,N-1]$
- Recordar: a_k y $X(e^{j\theta_k}) = Na_k$ periódicas en k, de período N
- $lackbox{ Con } X_k:=X(e^{j heta_k}) \ ext{en} \ heta_k=\left[0,rac{2\pi}{N},\ldots,rac{2\pi(N-1)}{N}
 ight]$ queda definida la serie a_k
- lacktriangle Alcanza con definir N coeficientes $X_k, k \in [0,1,\ldots,N-1]$ para describir x[n]
- Definición: DFT

$$X_k := \underbrace{\sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi kn}{N}}}_{N-1}, \quad k \in [0, 1, \dots, N-1]$$
$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X_k e^{-j\frac{2\pi kn}{N}}, \quad n \in [0, 1, \dots, N-1]$$

iie 19 de 25

DFT en forma matricial

lacksquare Dados los coeficientes de la DFT $X_k, k \in [0,1,\ldots,N-1]$

$$X_k = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi kn}{N}}$$

defino vectores $\mathbf{x} = [x[0], x[1], \dots x[N-1]]^T$ y $\mathbf{X} = [X_0, X_1, \dots X_{N-1}]^T$

Puedo ordenar las ecuaciones en una estructura matricial

$$\begin{bmatrix} X_0 \\ X_1 \\ \vdots \\ X_k \\ \vdots \\ X_{N-1} \end{bmatrix} = \underbrace{ \begin{bmatrix} 1 & 1 & \dots & 1 & \dots & 1 \\ 1 & e^{-j\frac{2\pi}{N}} & \dots & e^{-j\frac{2\pi n}{N}} & \dots & e^{-j\frac{2\pi(N-1)}{N}} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & e^{-j\frac{2\pi k}{N}} & \dots & e^{-j\frac{2\pi kn}{N}} & \dots & e^{-j\frac{2\pi k(N-1)}{N}} \\ \vdots & \vdots & & & & & \\ 1 & e^{-j\frac{2\pi(N-1)}{N}} & \dots & e^{-j\frac{2\pi(N-1)n}{N}} & \dots & e^{-j\frac{2\pi(N-1)^2}{N}} \end{bmatrix} } \begin{bmatrix} x[0] \\ x[1] \\ \vdots \\ x[n] \\ \vdots \\ x[N-1] \end{bmatrix}$$

▶ DFT corresponde a una multiplicación matricial de $N \times N$

iie 20 de 25

Ortonormalidad de la DFT

ightharpoonup La siguiente matriz \mathbf{W}_N es ortonormal

$$\mathbf{W}_N := \frac{1}{\sqrt{N}} \begin{bmatrix} 1 & 1 & \dots & 1 & \dots & 1 \\ 1 & e^{-j\frac{2\pi}{N}} & \dots & e^{-j\frac{2\pi n}{N}} & \dots & e^{-j\frac{2\pi(N-1)}{N}} \\ \vdots & \vdots & \vdots & & \ddots & \vdots \\ 1 & e^{-j\frac{2\pi k}{N}} & \dots & e^{-j\frac{2\pi kn}{N}} & \dots & e^{-j\frac{2\pi k(N-1)}{N}} \\ \vdots & & & & & & \\ 1 & e^{-j\frac{2\pi(N-1)}{N}} & \dots & e^{-j\frac{2\pi(N-1)n}{N}} & \dots & e^{-j\frac{2\pi(N-1)^2}{N}} \end{bmatrix}$$

- $lackbox{Luego } \mathbf{W}_N^\star \mathbf{W}_N = I \ \Rightarrow \mathbf{W}_N^{-1} = \mathbf{W}_N^\star \ ext{(transpuesta conjugada)}$

iie 21 de 25

DFT inversa

La inversión matricial

$$\mathbf{x} = \frac{1}{\sqrt{N}} \mathbf{W}_N^{\star} \mathbf{X}$$

corresponde a

$$\begin{bmatrix} x[0] \\ X_1 \\ \vdots \\ X_k \\ \vdots \\ X_{N-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 & \dots & 1 & \dots & 1 \\ 1 & e^{-j\frac{2\pi}{N}} & \dots & e^{-j\frac{2\pi n}{N}} & \dots & e^{-j\frac{2\pi(N-1)}{N}} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & e^{-j\frac{2\pi k}{N}} & \dots & e^{-j\frac{2\pi kn}{N}} & \dots & e^{-j\frac{2\pi k(N-1)}{N}} \\ \vdots & \vdots & & & & & & & & & \\ 1 & e^{-j\frac{2\pi(N-1)}{N}} & \dots & e^{-j\frac{2\pi(N-1)n}{N}} & \dots & e^{-j\frac{2\pi(N-1)^2}{N}} \end{bmatrix} \begin{bmatrix} x[0] \\ x[1] \\ \vdots \\ x[n] \\ \vdots \\ x[N-1] \end{bmatrix}$$

$$\underbrace{ \text{matrix DFT} }$$

lacktriangle Que forma las N ecuaciones de síntesis para obtener x[n] a partir de X_k

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X_k e^{-j\frac{2\pi kn}{N}}, \quad n \in [0, 1, \dots, N-1]$$

iie 22 de 25

Fast Fourier Tansform

- lacktriangle Multiplicación matricial insume ${\cal O}(N^2)$ operaciones
- Problema: complejidad numérica no satisfactoria para aplicaciones de tiempo real
- Solución: Fast Fourier Transform (FFT)

- lacktriangle Devuelve los mismos coeficientes X_k que la DFT con un algoritmo más eficiente
- ▶ Baja el número de operaciones a $O(n \log n)$
- ightharpoonup Aprovecha la estructura de W_N
- Bajar los coeficientes de este orden aún es objeto de investigación

iie 23 de 25

Relación entre transformadas de Fourier

TABLE 5.3 SUMMARY OF FOURIER SERIES AND TRANSFORM EXPRESSIONS

	Continuous time		Discrete time	
	Time domain	Frequency domain	Time domain	Frequency domain
Fourier Series	$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$	$a_k = \frac{1}{T_0} \int_{T_0} x(t)e^{-jk\omega_0 t}$	$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk(2\pi/N)n}$	$a_k = \frac{1}{N} \sum_{k=\langle N \rangle} x[n] e^{-jk(2\pi/N)k}$
	continuous time periodic in time	discrete frequency aperiodic in frequency	discrete time periodic in time	discrete frequency periodic in frequency
Fourier Transform	$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega$	$X(j\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t}dt$	$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\theta}) e^{j\theta n}$	$X(e^{j\theta}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\theta n}$
	continuous time aperiodic in time	continuous frequency aperiodic in frequency	discrete time aperiodic in time	continuous frequency periodic in frequency

iie 24 de 25

Generalización de la Transformada de Fourier

- Vimos 5 versiones alternativas del espectro
- Éstas nos permiten pensar una señal en el espacio de las frecuencias
- ▶ Según la aplicación usaremos la transformada de Fourier adecuada Diseño de filtros electrónicos analógicos ⇒ CTFT Procesamiento digital por computadora ⇒ DFT Análisis de la conversión A/D ⇒ CTFT ↔ DTFT
- Existen otras variantes como
 Discrete Cosine Transform (DCT) para compresión (.jpeg, .mpeg, .mp3, .mp4)
 Espectrograma o short-term Fourier transform (STFT)
 Graph Fourier transform (GFT) para sistemas interconectados (networks)
 Vuestra propia definición ...

iie 25 de 25