
This	is	the	author's	version	of	the	work.	It	is	posted	here	for	your	personal	use.	Not	for	redistribution.	The	
definitive	version	is	published	at	ICSE'	17,	May	20–28,	2017,	Buenos	Aires,	Argentina.

Data Scientists were hired in their product team and they
partner with the central Analysis and Experimentation team
to interpret and analyze complex experiments. Contrary to
the expectations, in the initial iteration of the experiment
machine learning algorithm performed worse than the
manual ordering. After some investigation, a bug was found
in the algorithm. The bug was fixed and several subsequent
iterations of the experiment were run to tune the algorithm.
At the end, the algorithmic ordering resulted in a substantial
lift in engagement. In Figure 3 below we show an example
screenshot from one of the iterations.

Figure 3. The “MSN.com personalization” experiment.

D. Bing Bot Detection Experiment
Bing is a search engine developed by Microsoft. On this

product, several teams at Microsoft conduct over 10.000
experiments per year ranging from large design
modifications to every bug fix or minor improvement. In
contrast to the previous examples, teams at Bing set-up,
execute and analyze experiments autonomously and without
the help of the Analysis & Experimentation data scientists.
At any given point in time, almost every user of the product
is in at least a few of the experiments simultaneously. As
users are put into more and more concurrent experiments, the
chance of unexpected interactions between those
experiments increases, which can lead to bad user experience
and inaccurate results. Preventing interactions where
possible, and detecting where not (alerts fire automatically
when experiments hurt the user experience, or interact with
other experiments) has been a critical element for delivering
trustworthy, large-scale experimentation.

The core purpose of Bing is to provide search results to
its users. Finding relevant results, however, is a
computational operation that extensively consumes
infrastructure capacity. One way to save on resources is to
prevent computer bots from performing the actual search by
e.g. returning results from a smaller in-memory index that is
orders of magnitude cheaper to serve. The experiment that
we briefly present in this section targeted exactly this
scenario. The hypothesis was that with an improved and
more pervasive bot-detection algorithm, human users will

not be harmed and fewer resources will be used for the
computation of search results. Conducting such experiments,
however, involves the use of advanced features that prevent
potentially harmful variants (see e.g. Figure 4 below) from
affecting a large population by automatically checking alerts
and incrementally ramping the number of users assigned to
the treatment.

Figure 4. An archival experiment with Bing that introduced user harm.

The results of the particular experiment indicated a ~10%
saving on infrastructure resources without introducing user
harm. Screenshot on Figure 4 is, however, a part of another
experiment with a slightly ‘different’ outcome.

V. THE EXPERIMENTATION EVOLUTION MODEL
In this section, and based on the empirical presentation of

products and related experiments in section IV, we present
the transition process model of moving from a situation with
ad-hoc data analysis towards continuous controlled
experimentation at scale. We name this process the
“Experimentation Evolution Model” and use this term to
describe the phases that companies and their product teams
follow while evolving their data-driven development
practices towards continuous experimentation at scale. It is
based on the empirical data collected at Microsoft and
inspired by a model developed internally at A&E.

In our model, and after listing a number of prerequisites
for experimentation, we present three dimensions of
evolution: technical, organizational and business evolution.
In the technical evolution part, we focus on the technical
aspects such as the complexity of the experimentation
platform, the pervasiveness of experimentation in product
teams, and the overall focus of the development activities.
The organizational evolution focuses on the organization of
the data science teams and their self-sufficiency for
experimentation. Finally, in the business evolution part, we
discuss the focus of the Overall Evaluation Criteria.

The four phases of the “Experimentation Evolution
Model”, namely “crawl”, “walk”, “run” and “fly”, are
summarized on Figure 5 below and described in detail in the
remainder of this section.

This	is	the	author's	version	of	the	work.	It	is	posted	here	for	your	personal	use.	Not	for	redistribution.	The	
definitive	version	is	published	at	ICSE'	17,	May	20–28,	2017,	Buenos	Aires,	Argentina.

Figure 5. The “Experimentation Evolution Model”.

A. Prerequisites
Although most of the requirements for successful
experimentation arise while we scale the number of
experiments and teams, a few need to be fulfilled
beforehand. To evaluate the product statistics, skills that are
typically possessed by data scientists [9] are required within
the company. Here, we specifically emphasize the
understanding of hypothesis testing, randomization, sample
size determination, and confidence interval calculation with
multiple testing. For companies that lack these skills and
wish to train their engineers on these topics, online
resources and kits are available [36]. Combining these skills
with domain knowledge about the product will enable
companies to generate the first set of hypotheses for
evaluation. The second major prerequisite is the availability
of accessing the product instrumentation data. We discuss
how to implement the instrumentation in the following
sections, however, companies first need to have policies in
place that allow them to provide experimenters access to the
data. In some domains, this is a serious concern and needs to
be addressed both on legal and technical levels.

B. Crawl Phase
As the starting point on the path towards continuous
experimentation at scale, product teams start by configuring
the first experiment.

1) Technical Aspect
a) Focus: The technical focus of this phase is twofold.

First, and the main focus of this phase is the implementation
of the logging system. In non-data driven companies,
logging exists for the purpose of debugging product features
[30], [37], [38]. This is usually very limited and not useful
for analyzing how users interact with the products. Logging
procedures in the organization need to be updated by
creating a centralized catalog of events in the form of class
and enumeration, and implemented in the product telemetry.
The goal of such systematic logging is that a data scientist,
analyst, or anyone else in the organization who is not
familiar with the feature or the product itself, can
understand what action or event was triggered and logged
by simply looking at the name of the event. Names for
events should be consistent across products and platforms so
that it is easy to search for them and link them with tangible
actions in the product. We name the data collected or sent
from a product or feature for the purpose of data-driven

This	is	the	author's	version	of	the	work.	It	is	posted	here	for	your	personal	use.	Not	for	redistribution.	The	
definitive	version	is	published	at	ICSE'	17,	May	20–28,	2017,	Buenos	Aires,	Argentina.

development signals. Examples of signals are clicks, swipes
over an image, interactions with a product, time spent
loading a feature, files touched, etc. Based on the complete
set of signals, an analyst should be able to reconstruct the
interactions that a user had with the product.
Second, any quality issues with writing and collecting
signals need to be solved. The goal is to have a reliable
system where events are consistently logged and repetitive
actions result in identical results.

b) Experimentation platform complexity: In this initial
phase, an experimentation platform is not required. With
signals systematically collected, a product team can perform
the first controlled experiment manually. They can do this
by splitting the users between two versions of the same
product and measuring how the distribution of signals
differs between the versions, for example. Practitioners can
use the guidance on how to calculate the statistics behind a
controlled experiment in [27]. In summary, if the difference
between the values for the Treatment group and the Control
group is statistically significant, we conclude with high
probability that the change introduced in the treatment
group caused the observed effect. Conventionally, a 95%
confidence interval is used.

c) Experimentation pervasiveness: Experiments in this
phase are for targeted components of a product and are not
pervasive. Typically, product teams should start to
experiment with a feature where multiple versions are
available. The main purpose of the first experiments is to
gain traction and evangelize the results to obtain the
necessary funding needed to develop an experimentation
platform and culture within the company. As an example,
product teams can start with a design experiment for which
it is not a priori clear which of the variants is better. The
results of the first experiment should not be trusted without
assuring that the data quality issues have been addressed.

d) Engineering team self-sufficiency: In this initial
phase, experiment set-up, execution and analysis is
conducted by a data scientist team. Product teams typically
do not possess the necessary skills to conduct trustworthy
controlled experiments and correctly analyze the results on
their own. We use the term Experiment Owner (EO) to
refer to one or more individuals from the product team
involved with the experiment. Experiment Owners are the
individuals that understand both the product and the
experiment, and are used as the main contact between the
data science team and the product teams for set up and
interpretation of the experiments and their results.

e) Experimentation team organization: In this phase,
product teams require training and help from a standalone
data scientist team. This organization of data scientists
allows freedom for generating ideas and long-term thinking
that are needed for development of the experimentation
platform.

2) Business Aspect
a) Overall Evaluation Criteria: The aim of the

“Crawl” phase is to define an OEC for the first set of
experiments that will help ground expectations and
evaluation of the experiment results. In concept, an OEC
stands for Overall (in view of all circumstances or
conditions), Evaluation (the process determining the
significance, worth, or condition of something by careful
appraisal and study) and Criteria (a standard on which a
judgment or decision may be based). In practice, and for the
first experiments, data scientists and Experiment Owners
should collaborate on defining the OEC from a few key
signals. An OEC should typically be closely related to long-
term business goals and teams should be informed upfront
that it will develop over time.

C. Walk Phase
After the initial logging and instrumentation have been
configured, the focus of the R&D activities transitions
towards defining metrics and an experimentation platform.

1) Technical Aspect
a) Focus: In contrast to the “crawl” phase where

experiments were evaluated by comparing the volume and
distribution of signals such as clicks and page views, the
focus in this phase is on defining a set of metrics combined
from those signals. Metrics are functions that take signals
as an input and output a number per unit. Signals should
first be categorized into classes and combined into metrics
by being aggregated over analysis units. Microsoft
recognizes three classes of signals for their products: action
signals (e.g. clicks, page views, visits, etc.), time signals
(minutes per session, total time on site, page load time, etc.),
and value signals (revenue, units purchased, ads clicked,
etc.). The units of analysis vary depending on the context
and product. The following apply at Microsoft for web
products: per user (e.g. clicks per user), per session (e.g.
minutes per session), per user-day (e.g. page views per
day), and per experiment (e.g. clicks per page view).

For other types of products, units of analysis might be
different. For a well-known video-conferencing Microsoft
product, “per call” is a useful unit of analysis. And by
combining signals with units of analysis, simple metrics are
created. Microsoft typically aims to construct four types of
metrics: success metrics (the ones that we will intend to
improve), guardrail metrics (constraints that are not allowed
to be changed), data quality metrics (the metrics that ensure
that the experiments will be set-up correctly), and debug
metrics (the ones that help deeper understanding and drill
down into success and guardrail metrics). A popular
research contribution from Google provides practical
guidance on the creation of these metrics for measuring user
experience on a large scale [39].

b) Experimentation platform complexity: With more
experiments being run, a need for an experimentation
platform arises. Software development organizations can

This	is	the	author's	version	of	the	work.	It	is	posted	here	for	your	personal	use.	Not	for	redistribution.	The	
definitive	version	is	published	at	ICSE'	17,	May	20–28,	2017,	Buenos	Aires,	Argentina.

decide to either start developing their own experimentation
platform or utilize one of the commercial products designed
for this purpose. Several third party experimentation
platforms are available to software companies out of the
box [40], [41], [42]. Regardless of the decision, the
experimentation platform should have two essential features
integrated in this phase. (1) Power Analysis and (2) pre-
experiment A/A testing.
• Power analysis. This is a feature that is used to

determine the minimal sample size for detecting the
change in an experiment and it should be implemented
early in order to automate decisions on the duration of
the experiments. This will prevent some of the
common pitfalls (e.g. running experiments longer than
required in order to find the change or having an
under-powered experiment). See [36] for details.

• Pre-experiment A/A testing. An A/A feature assigns to
the treatment group the same experience as the control
group is being exposed to. Data is collected and its
variability is assed for power calculations and to test
the experimentation system (the null hypothesis should
be rejected about 5% of the time when a 95%
confidence level is used). After ensuring that there is
no imbalance on key OEC metrics, one of the A’s is
reconfigured into B – the A/B test is started on the
same population.

The number of experiments in this phase is relatively low.
This allows for central planning and scheduling of
experiments to avoid interactions. Each experiment is still
closely monitored to detect user harm or data quality issues.

c) Experimentation pervasiveness:
In contrast to the “crawl” phase where experiments were
mostly with design variants or features with alternative
implementations, product teams in this phase move on to
different types of experiments with the same product. From
design focused experiments (testing a set of design
alternatives) the teams advance to performance experiments
(testing performance between different variants of the same
feature). Infrastructure experiments (testing resource
alternatives) are another example of advancing the
experimentation within the product domain.

2) Organizational Aspect
a) Engineering team self-sufficiency: In this phase,

EO’s responsibility for creating the experiments (scheduling
the experiment, performing the power analysis etc.) is
transitioning from a data science expert to a
product/program manager employed in the product team.
However, the execution, monitoring, and analysis of the
experiments is still the responsibility of the data scientists.

b) Experimentation team organization: The results
should be evangelized across the team and bad practices
should be disputed (e.g. experimenting only on preview
audience). We recommend embedded organization of data
scientists that support product teams with increasing data
quality, metrics creation and developing an Overall

Evaluation Criteria. Embedded data scientists in the product
teams can hold the role of Experiment Owners or work
closely with other product team members that have this role.
They communicate and work with the central platform team.
The products within organizations will typically share
certain characteristics. With this organization, a bridge in
transferring learnings from one embedded data science
product team to another is established.

3) Business Aspect
a) Overall Evaluation Criteria: Most investments by

feature and product teams in this phase are to address data
quality issues and instrumentation to build an initial set of
metrics. It is important to understand and document metric
movements, validate findings, and build experimentation
muscle within the product and feature team. The initial
Overall Evaluation Criteria should be improved with the
findings from multiple experiments and supported by
multiple metrics. In contrast to the “crawl” phase, the OEC
will evolve from a few key signals to a structured set of
metrics consisting of success metrics (the ones we intend to
improve), guardrail metrics (constraints that are not allowed
to be changed) and data quality metrics (the metrics that
ensure that the experiments were set-up correctly and results
can be trusted). It is very important to work close with
many product team members and reach agreement on the
OEC. When disagreements occur, the OEC should be
backtracked and concerns addressed.

D. Run Phase
In the Run Phase, product teams ramp up the number of
experiments and iterate quickly with the purpose of
identifying the effect of the experiments on the business.

1) Technical Aspect
a) Focus: In the “walk” phase, product teams started to

merge signals into metrics. In the “Run” phase, however,
these metrics should evolve and become comprehensive.
Metrics should evolve from counting signals to capturing
more abstract concepts such as “loyalty” and “success”,
closely related to long-term company goals [43]. To
evaluate the metrics product teams should start running
learning experiments where a small degradation in user
experience is intentionally introduced for learning purposes
(e.g. degradation of results, slow down of a feature). With
such learning experiments, teams will have a better
understanding of the importance of certain features and the
effect that changes have on the metrics. Knowingly hurting
users slightly in the short-term (e.g., in a 2- week
experiment) enables teams at Microsoft to understand
fundamental issues and thereby improve the experience in
the long-term [28].

b) Experimentation platform complexity: To scale
above 100 data-driven experiments per year, the power
analysis and pre-experiment A/A features that were
implemented in the “Walk” phase will not be sufficient. The
experimentation platform needs to be extended with

This	is	the	author's	version	of	the	work.	It	is	posted	here	for	your	personal	use.	Not	for	redistribution.	The	
definitive	version	is	published	at	ICSE'	17,	May	20–28,	2017,	Buenos	Aires,	Argentina.

additional features that will both (1) prevent incidents and
(2) increase the efficiency of product teams by automating
certain aspects of the workflow. We describe the new
features next:
• Alerting. With an increasing number of experiments,

having a manual overview review of metric movements
will become a resource-demanding task for Experiment
Owners. Automated alerting should be introduced
together with the ability to divert traffic to control if an
emergency situation occurs (e.g. a decrease of an
important metric). The naïve approach to alerting on any
statistically significant negative metric changes will lead
to an unacceptable number of false alerts and make the
entire alerting system overloaded and hard to interpret.
Detailed guidance on how to avoid this situation and
develop alerting that works is available in [28].

• Control of carry-over effects. Harmful experiments
have an effect on the population that may carry over
into the follow-up experiments and cause biased
results. A feature that re-randomizes the population
between experiments should be implemented in order
to prevent a high concentration of biased users in
either treatment or control.

• Experiment iteration support. This is a feature that
enables re-iteration of an experiment. Initially,
experiments in this phase should start on a small
percentage of traffic (e.g. 0.5% of users assigned to
treatment). The reason is that, as it gets easier to
configure and start an experiment, the risk of user
harm also increases (changes to production software
risk the introduction of degradations). Over time, the
percentage should automatically increase (by e.g.
running a new iteration of the experiment with a higher
setting) if no alerts on guardrail metrics were triggered
beforehand. The benefit of this feature is twofold.
First, it offers assurance that the impact of a harmful
experience will be limited to a low number of users.
Second, it optimizes the time to ramp to full power,
which minimizes the time to analysis of
experimentation results.

c) Experimentation pervasiveness:
In contrast to the “Walk” phase where experiments were
conducted on a single product, in the “Run” phase
companies aim to expand the scope of controlled
experimentation. They can achieve this by expanding (1) to
more features within the products and more importantly, (2)
to other product teams. Product teams should be
experimenting with every increment to their products (e.g.
introductions of new features, algorithm changes, etc.).
Experimenting should be the norm for identifying the value
of new features as well as for identifying the impact of
smaller changes to existing features. Past experiment data
can be used to understand the correlation and relationship
between movements in different business goals.

2) Organizational Aspect

a) Engineering team self-sufficiency: Experiment
Owners that were introduced in the “Crawl” phase and the
ones that were responsible for the creation of experiments in
the “Walk” phase now receive the complete responsibility to
execute their experiments. The execution of experiments
includes running power analysis to determine treatment
allocation, monitoring for bad experiments (e.g. the ones
with triggered alerts), making shut-down and ramp-up
decisions, and resolution of errors. However, the analysis of
results should still be supervised by the data scientists.

b) Experimentation team organization: We recommend
to keep a partnership approach to the arrangement of data
scientist teams by assigning a fixed number of data
scientists to work with product teams (they are employed in
the product teams directly). They review experiments,
decide on the evaluation criteria, and are trained by the
central platform data science team to become local
operational data scientists capable of setting-up the
experiments, executing them, and resolving basic alerts.

3) Business Aspect
a) Overall Evaluation Criteria: The purpose of this

phase is to tailor OEC using the knowledge obtained from
the learning experiments. Typically, and as presented in the
“Walk” phase, OEC will be a combination of success,
guardrail and data quality metrics. In the “Run” phase,
however, it will be evolved to capture concepts such as
“loyalty” and “success”, and corrected with the findings
from learning experiments. Selecting a single metric,
possibly as a weighted combination of objectives is highly
desired. The reason for that is that (1) single metric forces
inherent tradeoffs to be made once for multiple experiments
and (2) it aligns the organization behind a clear objective. A
good practice in this phase is to also start accumulating a
corpus of experiments with known outcomes and re-run the
evaluation every time changes are introduced to an OEC. A
good OEC will correctly determine the outcome.

E. Fly Phase
In the “Fly” phase, controlled experiments are the norm for
every change to any product in the company’s portfolio.
Such changes include not only obvious and visual changes
such as improvements of a user interface, but also subtler
changes such as different machine learning and prediction
algorithms that might affect ranking or content selection.
However, with such pervasiveness, a number of new
features are needed in the experimentation platform and new
responsibilities are assigned to experiment owners.

1) Technical Aspect
a) Focus: I: In the previous phases, technical activities

focused on implementing reliable instrumentation, creating
comprehensive metrics and conducting learning
experiments. In the “Fly” phase, however, we recommend
to focus on standardizing the process for the evaluation and
improvement of the Overall Evaluation Criteria. An OEC
should be used as a foundation to define the direction for

This	is	the	author's	version	of	the	work.	It	is	posted	here	for	your	personal	use.	Not	for	redistribution.	The	
definitive	version	is	published	at	ICSE'	17,	May	20–28,	2017,	Buenos	Aires,	Argentina.

teams developing the product. At the same time, and since
customers’ preferences change over time [43], a product
team should invest in standardizing metric design and
evaluation practices and scheduling the activities for
updating the existing OEC. See [43] for details.

b) Experimentation platform complexity: In addition to
the features introduced in the previous phases, advanced
features such as interaction control and detection, auto-
detection and shut-down of harmful experiments, and
institutional memory collection are needed. These features
will enable experiment owners to conduct a larger number
of experiments and protect users from harm. We describe
them briefly below:
• Interaction control and detection. A statistical

interaction between two treatments A and B exists if
their combined effect is not the same as the sum of two
individual treatment effects [27]. This is a feature that
prevents such experiments with conflicting outcomes
to run on the same sets of users (e.g. one experiment is
changing the background color to black, another the
text to gray). Control for such interactions should be
established and handled automatically. After detecting
an interaction, the platform should send an alert to the
experiment owners. Detailed guidance on how to
implement this feature is available in [28].

• Near real-time detection and automatic shutdown
of harmful experiments. In the “Run” phase alerting
was configured by periodically (e.g. bi-hourly)
calculating scorecards on critical guardrail metrics. In
the “Fly” phase, and with thousands of experiments
simultaneously active, the detection of harmful
experiments should be near real-time and automatic
emergency shutdown functionality should be
implemented (the time to exclude users minimized).

• Institutional Memory. To prevent an experiment
owner from repeating an experiment that someone else
previously conducted, an institutional memory of
experimentation should be kept. It should be
searchable and include all the essential metadata of the
experiment (e.g. hypothesis, experiment outcome,
selected markets and execution date).

c) Experimentation pervasiveness: In contrast to the
previous phases where controlled experiments were
primarily used to support decisions on new feature
introductions and deletions, in the “Fly” phase every small
change to any product in the portfolio (e.g. a minor bug fix)
should be supported by data from a controlled experiment.
Advanced features described above enable product teams to
experiment at this scale and expand their experimentation
capabilities to cover the complete portfolio.

2) Organizational Aspect
a) Engineering team self-sufficiency: In contrast to the

previous phase where the analysis of experiment results was
supported by a data science team, Experiment Owners in
this phase work autonomously. They create, execute and

analyze the results of the experiments. The central data
science team reviews experiments only on demand.

b) Experimentation team organization: The partnership
approach to the arrangement of data scientist teams will be
efficient at this scale. Local product teams with their
operational data science teams are empowered to run
experiments on their own. A central data science team
should be in charge of the experimentation platform and
leasing its individual data scientists to cooperate with
product teams to resolve issues and share experience.

3) Business Aspect
a) Overall Evaluation Criteria: The OEC at this phase

should be rather stable and well defined. The OEC is used
for setting the performance goals for teams within the
organization. In contrast to the previous phases where the
OEC was evolving, changes to the overall evaluation criteria
in the “Fly” phase should occur only periodically (e.g. once
per year) and follow and standardized process. This gives
independent teams across the product portfolio a chance to
focus their work on understanding how the features they
own affect the key metrics, prioritizing their work to
improve the OEC.

VI. CONCLUSIONS
Controlled Experimentation is becoming the norm in the

software industry for reliably evaluating ideas with
customers and correctly prioritizing product development
activities [4] [5], [6], [7], [8], [21]. Previous research
publications by Microsoft [27], [28], Google [29] and
academia [5]–[8] reveal the essential building blocks for an
experimentation platform; however, they leave out the details
on how to incrementally scale (e.g. which technical and
organizational activities to focus on at what phase). With our
research contribution, which is based on an extensive case
study at Microsoft, we aim to provide guidance on this topic
and enable other companies to establish or scale their
experimentation practices. Our main contribution is the
“Experimentation Evolution Model”. In the model, we
summarize the four phases of evolution and describe the
focus of technical, organizational and business activities for
each of them. Researchers and practitioners can use this
model to position other case companies and guide them to
the next phase by suggesting the necessary features.

In future research, we plan to (1) research the impact of
controlled experimentation with respect to the four phases
from the “Experimentation Evolution Model” and (2),
validate our model in other companies.

ACKNOWLEDGMENT
We wish to thank Brian Frasca, Ronny Kohavi and others

at Microsoft that provided the input for and feedback on this
research. Ronny Kohavi was the creator of a similar model
used internally in A&E that was used as inspiration for this
work. The first author of this paper would also like to thank
the A&E team for the invaluable opportunity to work with
them during his research internship at Microsoft.

This	is	the	author's	version	of	the	work.	It	is	posted	here	for	your	personal	use.	Not	for	redistribution.	The	
definitive	version	is	published	at	ICSE'	17,	May	20–28,	2017,	Buenos	Aires,	Argentina.

REFERENCES

[1] D. J. Patil, “Building Data Science Teams,” Oreilly Radar, pp. 1–25,
2011.

[2] A. Fabijan, H. H. Olsson, and J. Bosch, “Customer Feedback and Data
Collection Techniques in Software R&D: A Literature Review,” in
Software Business, ICSOB 2015, 2015, vol. 210, pp. 139–153.

[3] G. Westerman, M. Tannou, D. Bonnet, P. Ferraris, and A. McAfee,
“The Digital Advantage: How Digital Leaders Outperform their Peers
in Every Industry,” MIT Sloan Manag. Rev., pp. 1–24, 2012.

[4] R. Kohavi and R. Longbotham, “Online Controlled Experiments and
A/B Tests,” in Encyclopedia of Machine Learning and Data Mining,
no. Ries 2011, 2015, pp. 1–11.

[5] H. H. Olsson and J. Bosch, The HYPEX model: From opinions to data-
driven software development. 2014.

[6] H. H. Olsson and J. Bosch, “Towards continuous customer validation:
A conceptual model for combining qualitative customer feedback with
quantitative customer observation,” in Lecture Notes in Business
Information Processing, 2015, vol. 210, pp. 154–166.

[7] F. Fagerholm, A. S. Guinea, H. Mäenpää, and J. Münch, “Building
Blocks for Continuous Experimentation,” Proc. 1st Int. Work. Rapid
Contin. Softw. Eng., pp. 26–35, 2014.

[8] F. Fagerholm, A. S. Guinea, H. Mäenpää, and J. Münch, “The RIGHT
model for Continuous Experimentation,” J. Syst. Softw., vol. 0, pp. 1–
14, 2015.

[9] M. Kim, T. Zimmermann, R. DeLine, and A. Begel, “The emerging
role of data scientists on software development teams,” in Proceedings
of the 38th International Conference on Software Engineering - ICSE
’16, 2016, no. MSR-TR-2015-30, pp. 96–107.

[10] P. Rodríguez et al., “Continuous Deployment of Software Intensive
Products and Services: A Systematic Mapping Study,” J. Syst. Softw.,
2015.

[11] A. Fabijan, H. H. Olsson, and J. Bosch, “The Lack of Sharing of
Customer Data in Large Software Organizations: Challenges and
Implications,” in 17th International Conference on Agile Software
Development XP2016, 2016, pp. 39–52.

[12] R. C. Martin, Agile Software Development, Principles, Patterns, and
Practices. 2002.

[13] H. H. Olsson, H. Alahyari, and J. Bosch, “Climbing the ‘Stairway to
heaven’ - A mulitiple-case study exploring barriers in the transition
from agile development towards continuous deployment of software,”
in Proceedings - 38th EUROMICRO Conference on Software
Engineering and Advanced Applications, SEAA 2012, 2012, pp. 392–
399.

[14] S. Mujtaba, R. Feldt, and K. Petersen, “Waste and lead time reduction
in a software product customization process with value stream maps,”
in Proceedings of the Australian Software Engineering Conference,
ASWEC, 2010, pp. 139–148.

[15] E. M. Goldratt and J. Cox, The Goal: A Process of Ongoing
Improvement, vol. 2nd rev. e, no. 337 p. 2004.

[16] D. Ståhl and J. Bosch, “Continuous integration flows,” in Continuous
software engineering, vol. 9783319112, 2014, pp. 107–115.

[17] E. Ries, The Lean Startup: How Today’s Entrepreneurs Use
Continuous Innovation to Create Radically Successful Businesses.
2011.

[18] G. Castellion, “Do It Wrong Quickly: How the Web Changes the Old
Marketing Rules by Mike Moran.,” J. Prod. Innov. Manag., vol. 25,
no. 6, pp. 633–635, 2008.

[19] The Standish Group, “The standish group report,” Chaos, vol. 49, pp.
1–8, 1995.

[20] J. Manzi, Uncontrolled : the surprising payoff of trial-and-error for
business, politics, and society. Basic Books, 2012.

[21] P. Bosch-Sijtsema and J. Bosch, “User Involvement throughout the
Innovation Process in High-Tech Industries,” J. Prod. Innov. Manag.,
vol. 32, no. 5, pp. 1–36, 2014.

[22] H. H. H. H. Olsson and J. Bosch, “From opinions to data-driven
software R&D: A multi-case study on how to close the ‘open loop’
problem,” in Proceedings - 40th Euromicro Conference Series on
Software Engineering and Advanced Applications, SEAA 2014, 2014,
pp. 9–16.

[23] M. L. T. Cossio et al., A/B Testing - The most powerful way to turn
clicks into customers, vol. XXXIII, no. 2. 2012.

[24] R. C. Van Nostrand, “Design of Experiments Using the Taguchi
Approach: 16 Steps to Product and Process Improvement,”
Technometrics, vol. 44, no. 3, pp. 289–289, Aug. 2002.

[25] H. Hohnhold, D. O’Brien, and D. Tang, “Focusing on the Long-term,”
in Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining - KDD ’15, 2015, pp. 1849–
1858.

[26] R. Kohavi, A. Deng, and R. Longbotham, “Seven Rules of Thumb for
Web Site Experimenters,” Kdd, pp. 1–11, 2014.

[27] R. Kohavi, R. Longbotham, D. Sommerfield, and R. M. Henne,
“Controlled experiments on the web: Survey and practical guide,”
Data Min. Knowl. Discov., vol. 18, pp. 140–181, 2009.

[28] R. Kohavi, A. Deng, B. Frasca, T. Walker, Y. Xu, and N. Pohlmann,
“Online controlled experiments at large scale,” in Proceedings of the
19th ACM SIGKDD international conference on Knowledge discovery
and data mining, 2013, pp. 1168–1176.

[29] D. Tang, A. Agarwal, D. O’Brien, and M. Meyer, “Overlapping
experiment infrastructure,” in Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data mining -
KDD ’10, 2010, p. 17.

[30] T. Barik, R. Deline, S. Drucker, and D. Fisher, “The Bones of the
System: A Case Study of Logging and Telemetry at Microsoft,” 2016.

[31] P. Runeson and M. Höst, “Guidelines for conducting and reporting
case study research in software engineering,” Empir. Softw. Eng., vol.
14, no. 2, pp. 131–164, 2008.

[32] P. Mayring, “Qualitative content analysis - research instrument or
mode of interpretation,” in The Role of the Researcher in Qualitative
Psychology, 2002, pp. 139–148.

[33] K. M. Eisenhardt, “Building Theories from Case Study Research.,”
Acad. Manag. Rev., vol. 14, no. 4, pp. 532–550, 1989.

[34] J. Bosch and U. Eklund, “Eternal embedded software: Towards
innovation experiment systems,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 2012, vol. 7609 LNCS, no. PART 1,
pp. 19–31.

[35] A. Fabijan, H. H. Olsson, and J. Bosch, “Time to Say ‘Good Bye’:
Feature Lifecycle,” in 42th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), Limassol, Cyprus. 31
Aug.-2 Sept. 2016, 2016, pp. 9–16.

[36] “Hypothesis Kit for A/B testing.” [Online]. Available:
http://www.experimentationhub.com/hypothesis-kit.html.

[37] D. Yuan, S. Park, and Y. Zhou, “Characterizing logging practices in
open-source software,” in Proceedings - International Conference on
Software Engineering, 2012, pp. 102–112.

[38] Q. Fu et al., “Where do developers log? an empirical study on logging
practices in industry,” Companion Proc. 36th Int. Conf. Softw. Eng. -
ICSE Companion 2014, pp. 24–33, 2014.

[39] K. Rodden, H. Hutchinson, and X. Fu, “Measuring the User
Experience on a Large Scale : User-Centered Metrics for Web
Applications,” Proc. SIGCHI Conf. Hum. Factors Comput. Syst., pp.
2395–2398, 2010.

[40] “Optimizely.” [Online]. Available: https://www.optimizely.com/.
[41] “Mixpanel.” [Online]. Available: https://mixpanel.com/.
[42] “Oracle Maxymiser.” [Online]. Available:

https://www.oracle.com/marketingcloud/products/testing-and-
optimization/index.html.

[43] W. Wood, M. G. Witt, and L. Tam, “Changing circumstances,
disrupting habits,” J. Pers. Soc. Psychol., vol. 88, no. 6, pp. 918–33,
2005.

