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Data Scientists were hired in their product team and they 
partner with the central Analysis and Experimentation team 
to interpret and analyze complex experiments. Contrary to 
the expectations, in the initial iteration of the experiment 
machine learning algorithm performed worse than the 
manual ordering. After some investigation, a bug was found 
in the algorithm. The bug was fixed and several subsequent 
iterations of the experiment were run to tune the algorithm. 
At the end, the algorithmic ordering resulted in a substantial 
lift in engagement. In Figure 3 below we show an example 
screenshot from one of the iterations.  

 
Figure 3.  The “MSN.com personalization” experiment. 

D. Bing Bot Detection Experiment 
Bing is a search engine developed by Microsoft. On this 

product, several teams at Microsoft conduct over 10.000 
experiments per year ranging from large design 
modifications to every bug fix or minor improvement.  In 
contrast to the previous examples, teams at Bing set-up, 
execute and analyze experiments autonomously and without 
the help of the Analysis & Experimentation data scientists.  
At any given point in time, almost every user of the product 
is in at least a few of the experiments simultaneously. As 
users are put into more and more concurrent experiments, the 
chance of unexpected interactions between those 
experiments increases, which can lead to bad user experience 
and inaccurate results. Preventing interactions where 
possible, and detecting where not (alerts fire automatically 
when experiments hurt the user experience, or interact with 
other experiments) has been a critical element for delivering 
trustworthy, large-scale experimentation.  

The core purpose of Bing is to provide search results to 
its users. Finding relevant results, however, is a 
computational operation that extensively consumes 
infrastructure capacity. One way to save on resources is to 
prevent computer bots from performing the actual search by 
e.g. returning results from a smaller in-memory index that is 
orders of magnitude cheaper to serve. The experiment that 
we briefly present in this section targeted exactly this 
scenario. The hypothesis was that with an improved and 
more pervasive bot-detection algorithm, human users will 

not be harmed and fewer resources will be used for the 
computation of search results. Conducting such experiments, 
however, involves the use of advanced features that prevent 
potentially harmful variants (see e.g. Figure 4 below) from 
affecting a large population by automatically checking alerts 
and incrementally ramping the number of users assigned to 
the treatment.   
 

 
Figure 4.  An archival experiment with Bing that introduced user harm. 

The results of the particular experiment indicated a ~10% 
saving on infrastructure resources without introducing user 
harm. Screenshot on Figure 4 is, however, a part of another 
experiment with a slightly ‘different’ outcome.  

V. THE EXPERIMENTATION EVOLUTION MODEL 
In this section, and based on the empirical presentation of 

products and related experiments in section IV, we present 
the transition process model of moving from a situation with 
ad-hoc data analysis towards continuous controlled 
experimentation at scale. We name this process the 
“Experimentation Evolution Model” and use this term to 
describe the phases that companies and their product teams 
follow while evolving their data-driven development 
practices towards continuous experimentation at scale. It is 
based on the empirical data collected at Microsoft and 
inspired by a model developed internally at A&E.   

In our model, and after listing a number of prerequisites 
for experimentation, we present three dimensions of 
evolution: technical, organizational and business evolution. 
In the technical evolution part, we focus on the technical 
aspects such as the complexity of the experimentation 
platform, the pervasiveness of experimentation in product 
teams, and the overall focus of the development activities. 
The organizational evolution focuses on the organization of 
the data science teams and their self-sufficiency for 
experimentation. Finally, in the business evolution part, we 
discuss the focus of the Overall Evaluation Criteria.  

The four phases of the “Experimentation Evolution 
Model”, namely “crawl”, “walk”, “run” and “fly”, are 
summarized on Figure 5 below and described in detail in the 
remainder of this section. 
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Figure 5.  The “Experimentation Evolution Model”. 

A. Prerequisites 
Although most of the requirements for successful 
experimentation arise while we scale the number of 
experiments and teams, a few need to be fulfilled 
beforehand. To evaluate the product statistics, skills that are 
typically possessed by data scientists [9] are required within 
the company. Here, we specifically emphasize the 
understanding of hypothesis testing, randomization, sample 
size determination, and confidence interval calculation with 
multiple testing. For companies that lack these skills and 
wish to train their engineers on these topics, online 
resources and kits are available [36]. Combining these skills 
with domain knowledge about the product will enable 
companies to generate the first set of hypotheses for 
evaluation. The second major prerequisite is the availability 
of accessing the product instrumentation data. We discuss 
how to implement the instrumentation in the following 
sections, however, companies first need to have policies in 
place that allow them to provide experimenters access to the 
data. In some domains, this is a serious concern and needs to 
be addressed both on legal and technical levels. 

B. Crawl Phase 
As the starting point on the path towards continuous 
experimentation at scale, product teams start by configuring 
the first experiment.  

1) Technical Aspect 
a) Focus: The technical focus of this phase is twofold. 

First, and the main focus of this phase is the implementation 
of the logging system. In non-data driven companies, 
logging exists for the purpose of debugging product features 
[30], [37], [38]. This is usually very limited and not useful 
for analyzing how users interact with the products. Logging 
procedures in the organization need to be updated by 
creating a centralized catalog of events in the form of class 
and enumeration, and implemented in the product telemetry. 
The goal of such systematic logging is that a data scientist, 
analyst, or anyone else in the organization who is not 
familiar with the feature or the product itself, can 
understand what action or event was triggered and logged 
by simply looking at the name of the event. Names for 
events should be consistent across products and platforms so 
that it is easy to search for them and link them with tangible 
actions in the product. We name the data collected or sent 
from a product or feature for the purpose of data-driven 
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development signals. Examples of signals are clicks, swipes 
over an image, interactions with a product, time spent 
loading a feature, files touched, etc. Based on the complete 
set of signals, an analyst should be able to reconstruct the 
interactions that a user had with the product. 
Second, any quality issues with writing and collecting 
signals need to be solved. The goal is to have a reliable 
system where events are consistently logged and repetitive 
actions result in identical results.   

b) Experimentation platform complexity: In this initial 
phase, an experimentation platform is not required. With 
signals systematically collected, a product team can perform 
the first controlled experiment manually. They can do this 
by splitting the users between two versions of the same 
product and measuring how the distribution of signals 
differs between the versions, for example. Practitioners can 
use the guidance on how to calculate the statistics behind a 
controlled experiment in [27]. In summary, if the difference 
between the values for the Treatment group and the Control 
group is statistically significant, we conclude with high 
probability that the change introduced in the treatment 
group caused the observed effect. Conventionally, a 95% 
confidence interval is used.   

c) Experimentation pervasiveness: Experiments in this 
phase are for targeted components of a product and are not 
pervasive. Typically, product teams should start to 
experiment with a feature where multiple versions are 
available. The main purpose of the first experiments is to 
gain traction and evangelize the results to obtain the 
necessary funding needed to develop an experimentation 
platform and culture within the company. As an example, 
product teams can start with a design experiment for which 
it is not a priori clear which of the variants is better. The 
results of the first experiment should not be trusted without 
assuring that the data quality issues have been addressed.  

d) Engineering team self-sufficiency: In this initial 
phase, experiment set-up, execution and analysis is 
conducted by a data scientist team. Product teams typically 
do not possess the necessary skills to conduct trustworthy 
controlled experiments and correctly analyze the results on 
their own.  We use the term Experiment Owner (EO) to 
refer to one or more individuals from the product team 
involved with the experiment. Experiment Owners are the 
individuals that understand both the product and the 
experiment, and are used as the main contact between the 
data science team and the product teams for set up and 
interpretation of the experiments and their results.   

e) Experimentation team organization: In this phase, 
product teams require training and help from a standalone 
data scientist team.  This organization of data scientists 
allows freedom for generating ideas and long-term thinking 
that are needed for development of the experimentation 
platform.  

 
 

2) Business Aspect 
a) Overall Evaluation Criteria: The aim of the 

“Crawl” phase is to define an OEC for the first set of 
experiments that will help ground expectations and 
evaluation of the experiment results. In concept, an OEC 
stands for Overall (in view of all circumstances or 
conditions), Evaluation (the process determining the 
significance, worth, or condition of something by careful 
appraisal and study) and Criteria (a standard on which a 
judgment or decision may be based). In practice, and for the 
first experiments, data scientists and Experiment Owners 
should collaborate on defining the OEC from a few key 
signals. An OEC should typically be closely related to long-
term business goals and teams should be informed upfront 
that it will develop over time. 

C. Walk Phase 
After the initial logging and instrumentation have been 
configured, the focus of the R&D activities transitions 
towards defining metrics and an experimentation platform.  

1) Technical Aspect 
a) Focus: In contrast to the “crawl” phase where 

experiments were evaluated by comparing the volume and 
distribution of signals such as clicks and page views, the 
focus in this phase is on defining a set of metrics combined 
from those signals.  Metrics are functions that take signals 
as an input and output a number per unit. Signals should 
first be categorized into classes and combined into metrics 
by being aggregated over analysis units. Microsoft 
recognizes three classes of signals for their products: action 
signals (e.g. clicks, page views, visits, etc.), time signals 
(minutes per session, total time on site, page load time, etc.), 
and value signals (revenue, units purchased, ads clicked, 
etc.). The units of analysis vary depending on the context 
and product. The following apply at Microsoft for web 
products: per user (e.g. clicks per user), per session (e.g. 
minutes per session), per user-day (e.g. page views per 
day), and per experiment (e.g. clicks per page view).   

For other types of products, units of analysis might be 
different. For a well-known video-conferencing Microsoft 
product, “per call” is a useful unit of analysis. And by 
combining signals with units of analysis, simple metrics are 
created. Microsoft typically aims to construct four types of 
metrics: success metrics (the ones that we will intend to 
improve), guardrail metrics (constraints that are not allowed 
to be changed), data quality metrics (the metrics that ensure 
that the experiments will be set-up correctly), and debug 
metrics (the ones that help deeper understanding and drill 
down into success and guardrail metrics). A popular 
research contribution from Google provides practical 
guidance on the creation of these metrics for measuring user 
experience on a large scale [39].  

b) Experimentation platform complexity: With more 
experiments being run, a need for an experimentation 
platform arises. Software development organizations can 
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decide to either start developing their own experimentation 
platform or utilize one of the commercial products designed 
for this purpose. Several third party experimentation 
platforms are available to software companies  out of the 
box [40], [41], [42]. Regardless of the decision, the 
experimentation platform should have two essential features 
integrated in this phase. (1) Power Analysis and  (2) pre-
experiment A/A testing.  
• Power analysis. This is a feature that is used to 

determine the minimal sample size for detecting the 
change in an experiment and it should be implemented 
early in order to automate decisions on the duration of 
the experiments. This will prevent some of the 
common pitfalls (e.g. running experiments longer than 
required in order to find the change or having an 
under-powered experiment). See [36] for details.  

• Pre-experiment A/A testing. An A/A feature assigns to 
the treatment group the same experience as the control 
group is being exposed to. Data is collected and its 
variability is assed for power calculations and to test 
the experimentation system (the null hypothesis should 
be rejected about 5% of the time when a 95% 
confidence level is used). After ensuring that there is 
no imbalance on key OEC metrics, one of the A’s is 
reconfigured into B – the A/B test is started on the 
same population. 

The number of experiments in this phase is relatively low. 
This allows for central planning and scheduling of 
experiments to avoid interactions. Each experiment is still 
closely monitored to detect user harm or data quality issues.   

c) Experimentation pervasiveness: 
In contrast to the “crawl” phase where experiments were 
mostly with design variants or features with alternative 
implementations, product teams in this phase move on to 
different types of experiments with the same product. From 
design focused experiments (testing a set of design 
alternatives) the teams advance to performance experiments 
(testing performance between different variants of the same 
feature). Infrastructure experiments (testing resource 
alternatives) are another example of advancing the 
experimentation within the product domain.  

2) Organizational Aspect 
a) Engineering team self-sufficiency: In this phase, 

EO’s responsibility for creating the experiments (scheduling 
the experiment, performing the power analysis etc.) is 
transitioning from a data science expert to a 
product/program manager employed in the product team. 
However, the execution, monitoring, and analysis of the 
experiments is still the responsibility of the data scientists.  

b) Experimentation team organization: The results 
should be evangelized across the team and bad practices 
should be disputed (e.g. experimenting only on preview 
audience). We recommend embedded organization of data 
scientists that support product teams with increasing data 
quality, metrics creation and developing an Overall 

Evaluation Criteria. Embedded data scientists in the product 
teams can hold the role of Experiment Owners or work 
closely with other product team members that have this role. 
They communicate and work with the central platform team. 
The products within organizations will typically share 
certain characteristics. With this organization, a bridge in 
transferring learnings from one embedded data science 
product team to another is established. 

3) Business Aspect 
a) Overall Evaluation Criteria: Most investments by 

feature and product teams in this phase are to address data 
quality issues and instrumentation to build an initial set of 
metrics. It is important to understand and document metric 
movements, validate findings, and build experimentation 
muscle within the product and feature team. The initial 
Overall Evaluation Criteria should be improved with the 
findings from multiple experiments and supported by 
multiple metrics. In contrast to the “crawl” phase, the OEC 
will evolve from a few key signals to a structured set of 
metrics consisting of success metrics (the ones we intend to 
improve), guardrail metrics (constraints that are not allowed 
to be changed) and data quality metrics (the metrics that 
ensure that the experiments were set-up correctly and results 
can be trusted).  It is very important to work close with 
many product team members and reach agreement on the 
OEC. When disagreements occur, the OEC should be 
backtracked and concerns addressed.  

D. Run Phase 
In the Run Phase, product teams ramp up the number of 
experiments and iterate quickly with the purpose of 
identifying the effect of the experiments on the business.  

1) Technical Aspect 
a) Focus: In the “walk” phase, product teams started to 

merge signals into metrics. In the “Run” phase, however, 
these metrics should evolve and become comprehensive. 
Metrics should evolve from counting signals to capturing 
more abstract concepts such as “loyalty” and “success”, 
closely related to long-term company goals [43]. To 
evaluate the metrics product teams should start running 
learning experiments where a small degradation in user 
experience is intentionally introduced for learning purposes 
(e.g. degradation of results, slow down of a feature). With 
such learning experiments, teams will have a better 
understanding of the importance of certain features and the 
effect that changes have on the metrics. Knowingly hurting 
users slightly in the short-term (e.g., in a 2- week 
experiment) enables teams at Microsoft to understand 
fundamental issues and thereby improve the experience in 
the long-term [28]. 

b) Experimentation platform complexity: To scale 
above 100 data-driven experiments per year, the power 
analysis and pre-experiment A/A features that were 
implemented in the “Walk” phase will not be sufficient. The 
experimentation platform needs to be extended with 
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additional features that will both (1) prevent incidents and 
(2) increase the efficiency of product teams by automating 
certain aspects of the workflow. We describe the new 
features next: 
• Alerting. With an increasing number of experiments, 

having a manual overview review of metric movements 
will become a resource-demanding task for Experiment 
Owners. Automated alerting should be introduced 
together with the ability to divert traffic to control if an 
emergency situation occurs (e.g. a decrease of an 
important metric). The naïve approach to alerting on any 
statistically significant negative metric changes will lead 
to an unacceptable number of false alerts and make the 
entire alerting system overloaded and hard to interpret. 
Detailed guidance on how to avoid this situation and 
develop alerting that works is available in [28].  

• Control of carry-over effects. Harmful experiments 
have an effect on the population that may carry over 
into the follow-up experiments and cause biased 
results. A feature that re-randomizes the population 
between experiments should be implemented in order 
to prevent a high concentration of biased users in 
either treatment or control.  

• Experiment iteration support. This is a feature that 
enables re-iteration of an experiment. Initially, 
experiments in this phase should start on a small 
percentage of traffic (e.g. 0.5% of users assigned to 
treatment). The reason is that, as it gets easier to 
configure and start an experiment, the risk of user 
harm also increases (changes to production software 
risk the introduction of degradations). Over time, the 
percentage should automatically increase (by e.g. 
running a new iteration of the experiment with a higher 
setting) if no alerts on guardrail metrics were triggered 
beforehand. The benefit of this feature is twofold. 
First, it offers assurance that the impact of a harmful 
experience will be limited to a low number of users. 
Second, it optimizes the time to ramp to full power, 
which minimizes the time to analysis of 
experimentation results. 

c) Experimentation pervasiveness: 
In contrast to the “Walk” phase where experiments were 
conducted on a single product, in the “Run” phase 
companies aim to expand the scope of controlled 
experimentation. They can achieve this by expanding (1) to 
more features within the products and more importantly, (2) 
to other product teams. Product teams should be 
experimenting with every increment to their products (e.g. 
introductions of new features, algorithm changes, etc.). 
Experimenting should be the norm for identifying the value 
of new features as well as for identifying the impact of 
smaller changes to existing features. Past experiment data 
can be used to understand the correlation and relationship 
between movements in different business goals.  

2) Organizational Aspect 

a) Engineering team self-sufficiency: Experiment 
Owners that were introduced in the “Crawl” phase and the 
ones that were responsible for the creation of experiments in 
the “Walk” phase now receive the complete responsibility to 
execute their experiments. The execution of experiments 
includes running power analysis to determine treatment 
allocation, monitoring for bad experiments (e.g. the ones 
with triggered alerts), making shut-down and ramp-up 
decisions, and resolution of errors. However, the analysis of 
results should still be supervised by the data scientists.  

b) Experimentation team organization: We recommend 
to keep a partnership approach to the arrangement of data 
scientist teams by assigning a fixed number of data 
scientists to work with product teams (they are employed in 
the product teams directly). They review experiments, 
decide on the evaluation criteria, and are trained by the 
central platform data science team to become local 
operational data scientists capable of setting-up the 
experiments, executing them, and resolving basic alerts.  

3) Business Aspect 
a) Overall Evaluation Criteria: The purpose of this 

phase is to tailor OEC using the knowledge obtained from 
the learning experiments. Typically, and as presented in the 
“Walk” phase, OEC will be a combination of success, 
guardrail and data quality metrics. In the “Run” phase, 
however, it will be evolved to capture concepts such as 
“loyalty” and “success”, and corrected with the findings 
from learning experiments. Selecting a single metric, 
possibly as a weighted combination of objectives is highly 
desired. The reason for that is that (1) single metric forces 
inherent tradeoffs to be made once for multiple experiments 
and (2) it aligns the organization behind a clear objective. A 
good practice in this phase is to also start accumulating a 
corpus of experiments with known outcomes and re-run the 
evaluation every time changes are introduced to an OEC. A 
good OEC will correctly determine the outcome. 

E. Fly Phase 
In the “Fly” phase, controlled experiments are the norm for 
every change to any product in the company’s portfolio. 
Such changes include not only obvious and visual changes 
such as improvements of a user interface, but also subtler 
changes such as different machine learning and prediction 
algorithms that might affect ranking or content selection. 
However, with such pervasiveness, a number of new 
features are needed in the experimentation platform and new 
responsibilities are assigned to experiment owners. 

1) Technical Aspect 
a) Focus: I: In the previous phases, technical activities 

focused on implementing reliable instrumentation, creating 
comprehensive metrics and conducting learning 
experiments.  In the “Fly” phase, however, we recommend 
to focus on standardizing the process for the evaluation and 
improvement of the Overall Evaluation Criteria. An OEC 
should be used as a foundation to define the direction for 
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teams developing the product. At the same time, and since 
customers’ preferences change over time [43], a product 
team should invest in standardizing metric design and 
evaluation practices and scheduling the activities for 
updating the existing OEC. See [43] for details.  

b) Experimentation platform complexity: In addition to 
the features introduced in the previous phases, advanced 
features such as interaction control and detection, auto-
detection and shut-down of harmful experiments, and 
institutional memory collection are needed. These features 
will enable experiment owners to conduct a larger number 
of experiments and protect users from harm. We describe 
them briefly below:  
• Interaction control and detection. A statistical 

interaction between two treatments A and B exists if 
their combined effect is not the same as the sum of two 
individual treatment effects [27]. This is a feature that 
prevents such experiments with conflicting outcomes 
to run on the same sets of users (e.g. one experiment is 
changing the background color to black, another the 
text to gray). Control for such interactions should be 
established and handled automatically. After detecting 
an interaction, the platform should send an alert to the 
experiment owners. Detailed guidance on how to 
implement this feature is available in [28].  

• Near real-time detection and automatic shutdown 
of harmful experiments. In the “Run” phase alerting 
was configured by periodically (e.g. bi-hourly) 
calculating scorecards on critical guardrail metrics. In 
the “Fly” phase, and with thousands of experiments 
simultaneously active, the detection of harmful 
experiments should be near real-time and automatic 
emergency shutdown functionality should be 
implemented (the time to exclude users minimized). 

• Institutional Memory. To prevent an experiment 
owner from repeating an experiment that someone else 
previously conducted, an institutional memory of 
experimentation should be kept. It should be 
searchable and include all the essential metadata of the 
experiment (e.g. hypothesis, experiment outcome, 
selected markets and execution date). 

c) Experimentation pervasiveness: In contrast to the 
previous phases where controlled experiments were 
primarily used to support decisions on new feature 
introductions and deletions, in the “Fly” phase every small 
change to any product in the portfolio (e.g. a minor bug fix) 
should be supported by data from a controlled experiment. 
Advanced features described above enable product teams to 
experiment at this scale and expand their experimentation 
capabilities to cover the complete portfolio.  

2) Organizational Aspect 
a) Engineering team self-sufficiency: In contrast to the 

previous phase where the analysis of experiment results was 
supported by a data science team, Experiment Owners in 
this phase work autonomously. They create, execute and 

analyze the results of the experiments. The central data 
science team reviews experiments only on demand. 

b) Experimentation team organization: The partnership 
approach to the arrangement of data scientist teams will be 
efficient at this scale. Local product teams with their 
operational data science teams are empowered to run 
experiments on their own. A central data science team 
should be in charge of the experimentation platform and 
leasing its individual data scientists to cooperate with 
product teams to resolve issues and share experience. 

3) Business Aspect 
a) Overall Evaluation Criteria: The OEC at this phase 

should be rather stable and well defined. The OEC is used 
for setting the performance goals for teams within the 
organization. In contrast to the previous phases where the 
OEC was evolving, changes to the overall evaluation criteria 
in the “Fly” phase should occur only periodically (e.g. once 
per year) and follow and standardized process. This gives 
independent teams across the product portfolio a chance to 
focus their work on understanding how the features they 
own affect the key metrics, prioritizing their work to 
improve the OEC.  

VI. CONCLUSIONS 
Controlled Experimentation is becoming the norm in the 

software industry for reliably evaluating ideas with 
customers and correctly prioritizing product development 
activities [4] [5], [6], [7], [8], [21]. Previous research 
publications by Microsoft [27], [28], Google [29] and 
academia [5]–[8] reveal the essential building blocks for an 
experimentation platform; however, they leave out the details 
on how to incrementally scale (e.g. which technical and 
organizational activities to focus on at what phase). With our 
research contribution, which is based on an extensive case 
study at Microsoft, we aim to provide guidance on this topic 
and enable other companies to establish or scale their 
experimentation practices. Our main contribution is the 
“Experimentation Evolution Model”. In the model, we 
summarize the four phases of evolution and describe the 
focus of technical, organizational and business activities for 
each of them.  Researchers and practitioners can use this 
model to position other case companies and guide them to 
the next phase by suggesting the necessary features.  

In future research, we plan to (1) research the impact of 
controlled experimentation with respect to the four phases 
from the “Experimentation Evolution Model” and (2), 
validate our model in other companies.  
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