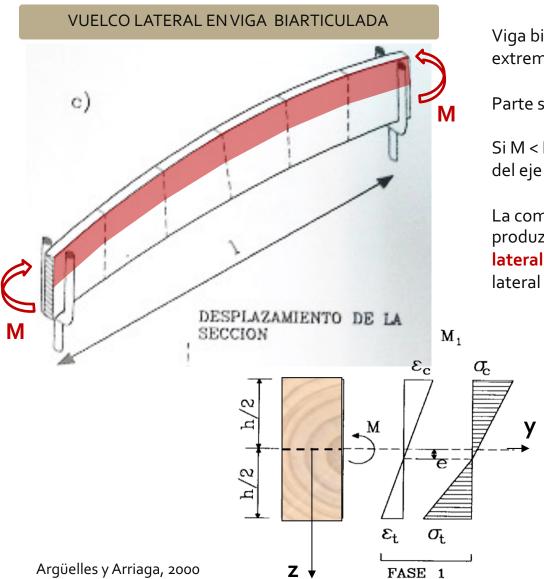


Estructuras de madera 7.4. Inestabilidad en vigas flexionadas

1. Introducción

- 2. Comprobación a vuelco lateral en vigas
- 3. Longitudes eficaces de vuelco lateral(y pandeo)
- 4. Disposiciones constructivas
- 5. Ejemplo


7.4. Inestabilidad en vigas flexionadas

ESTABILIDAD DE LAS PIEZAS: GENERALIDADES DEL EUROCÓDIGO 5

6.3 Estabilidad de las piezas

6.3.1 Generalidades

- (1)P Deben tenerse en cuenta las tensiones de flexión debidas a la curvatura inicial, las excentricidades y los desplazamientos inducidos, además de aquellos debidos a cualquier carga lateral.
- (2)P La estabilidad de las columnas y la estabilidad lateral torsional debe comprobarse utilizando las propiedades características, por ejemplo $E_{0.05}$.
- (3) La estabilidad de las columnas sometidas a compresión o a la combinación de compresión y flexión debería comprobarse de acuerdo con el apartado 6.3.2.
- (4) La estabilidad lateral torsional de las vigas sometidas a flexión o a la combinación de flexión y compresión debería comprobarse de acuerdo con el apartado 6.3.3.
- 6.3.2 Columnas sometidas a compresión o a la combinación de compresión y flexión
- 6.3.3 Vigas sometidas a flexión o a una combinación de flexión y compresión

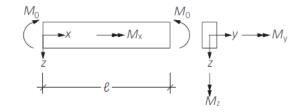
Viga biapoyada sometida a momento flector en los extremos.

Parte superior comprimida y parte inferior traccionada.

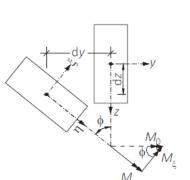
Si M < $M_{y,crit}$; la viga se deforma en el plano (alrededor del eje y).

La compresión en el borde superior puede provocar se produzca un fenómeno de **inestabilidad por vuelco lateral** ($M = M_{y,crit}$): la pieza sufre un desplazamiento lateral acompañado de un giro.

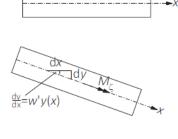
Vuelco lateral


VUELCO LATERAL EN VIGA BIARTICULADA

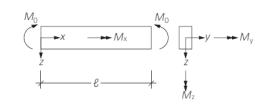
Momento crítico M_{crit}

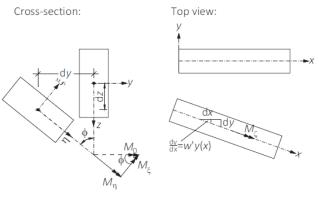

Hipótesis:

- La viga está sometida a un momento constante y elástico
- La viga tiene sección rectangular y rigidez constante
- Apoyos ahorquillados
- La carga se aplica en el centro de gravedad de la sección transversal
- La sección no alabea y cualquier giro de torsión es mínimo


$$\frac{dQ}{dx} = -q, \quad \frac{dM}{dx} = Q, \quad \psi' = \frac{M}{E \cdot I}, \quad -\psi = w', \quad -w'' = \frac{M}{E \cdot I}$$

Cross-section:




Top view:

Thelandersson & Larsen, 2017

7.4. INESTABILIDAD EN VIGAS FLEXIONADAS

$$M_{y}: W_{z}''(x) = -\frac{M_{\xi}}{E \cdot I_{y}}$$

$$M_z: W''_y(x) = -\frac{M_\eta}{E \cdot I_z}$$

$$M_x$$
 (no warping): $\phi'(x) = \frac{M_\zeta}{G \cdot I_T}$

$$\sin \phi = \frac{M_{\eta}}{M_{0}} \approx \phi \implies M_{\eta} = \phi \cdot M_{0}$$

$$\cos\phi = \frac{M_{\xi}}{M_{0}} \approx 1 \implies M_{\xi} = M_{0}$$

$$M_{\zeta} = w'_{y}(x) \cdot M_{0}$$

Thelandersson & Larsen, 2017

$$w''_{z}(x) = -\frac{M_{0}}{E \cdot I_{y}}$$

$$\phi''(x) = \frac{M_0}{G \cdot I_T} \cdot w''_{y}(x)$$

$$w''_{y}(x) = -\frac{M_0}{E \cdot I_{z}} \cdot \phi$$

$$w''_{y}(x) = -\frac{M_{0}}{E \cdot l_{z}} \cdot \phi$$

$$\frac{G \cdot l_{T}}{M_{0}} \cdot \phi''(x) + \frac{M_{0}}{E \cdot l_{z}} \cdot \phi(x) = \phi''(x) + \frac{M_{0}^{2}}{E \cdot l_{z} \cdot G \cdot l_{T}} \cdot \phi(x) = 0$$

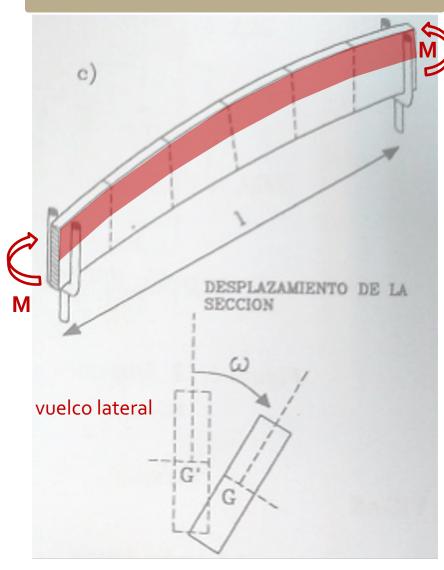
$$\phi'(x) = \frac{M_{0}}{G \cdot l_{T}} \cdot w'_{y}(x)$$

$$\phi'(x) = \frac{M_0}{G \cdot I_T} \cdot w'_{y}(x)$$

$$\phi = A \cdot \sin(\alpha \cdot x) + B \cdot \cos(\alpha \cdot x)$$
 where $\alpha^2 = \frac{M_0^2}{E \cdot I_z \cdot G \cdot I_T}$

$$\phi(0) = A \cdot 1 + 0 = 0 \rightarrow A = 0$$

$$\phi(\ell) = B \cdot \cos(\alpha \cdot \ell) = 0 \quad \longleftrightarrow \quad \cos(\alpha \cdot \ell) = 0 \quad \longleftrightarrow \quad \alpha \cdot \ell = n \cdot \pi \quad \longleftrightarrow \quad \alpha = (n \cdot \pi)/\ell$$


Key criterion (smallest critical moment): $n = 1 \rightarrow \alpha = \pi/\ell$

$$\alpha^2 = \frac{M_0^2}{E \cdot I_7 \cdot G \cdot I_T} = \frac{\pi^2}{\ell^2}$$

Solve for $M_0 = M_{crit}$:

$$M_0^2 = \frac{\pi^2 \cdot E \cdot I_z \cdot G \cdot I_T}{\ell^2} \Rightarrow M_{crit} = \frac{\pi}{\ell} \cdot \sqrt{E \cdot I_z \cdot G \cdot I_T}$$

VUELCO LATERAL EN VIGA BIARTICULADA

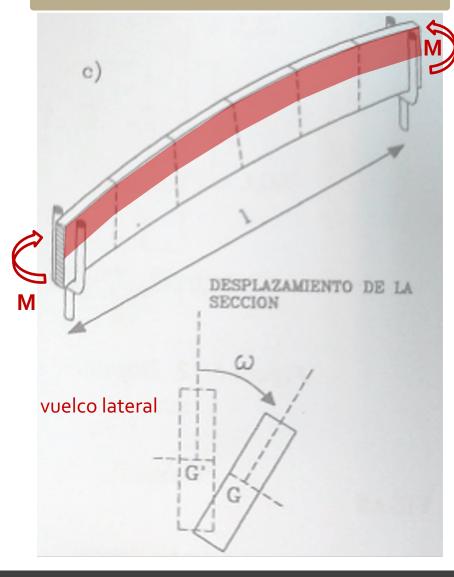
1. MOMENTO FLECTOR CRÍTICO EN PIEZAS ESBELTAS (Flint, 1950):

$$M_{crit} = \frac{\pi}{\rho} \sqrt{E_{o,o5} \cdot Iz \cdot G_{o,o5} \cdot IT}$$
 SIMPLIFICACIÓN EC-5

 I_T : módulo de torsión (rectangular: I_T =($h \cdot b^3/3$)·(1-($0.63 \cdot b/h$)) $G_{0,05}$: módulo de elasticidad transversal I_z : momento de inercia de la sección respecto al eje z $E_{0.05}$: valor característico del módulo elasticidad longitudinal

2. TENSIÓN CRÍTICA DE VUELCO LATERAL:

$$\sigma_{\text{m,crit}} = M_{\text{crit}} / W_{\text{y}}$$


$$W_{\text{y}} = b \cdot h^{2} / 6$$

$$\sigma_{\text{crit}} = \frac{\pi}{W_{\text{y}} \ell_{\text{ef}}} \sqrt{E_{\text{o,o5}} \cdot Iz \cdot G_{\text{o,o5}} \cdot It}$$

$$\ell_{\text{ef}} = \ell \cdot \beta_{\text{y}}$$

Cuando las condiciones de carga y apoyo son diferentes a las de la viga patrón, se calcula la longitud eficaz de vuelco lateral

VUELCO LATERAL EN VIGA BIARTICULADA

1. MOMENTO FLECTOR CRÍTICO EN PIEZAS ESBELTAS (Flint, 1950):

$$M_{crit} = \frac{\pi}{\rho} \sqrt{E_{o,o5} \cdot Iz \cdot G_{o,o5} \cdot IT}$$

SIMPLIFICACIÓN EC-5

 I_T : módulo de torsión (rectangular: I_T =($h \cdot b^3/3$)·(1-(0.63·b/h)) G_{o,o_5} : módulo de elasticidad transversal

l_z: momento de inercia de la sección respecto al eje z E_{o,os}: valor característico del módulo elasticidad longitudinal

2. TENSIÓN CRÍTICA DE VUELCO LATERAL:

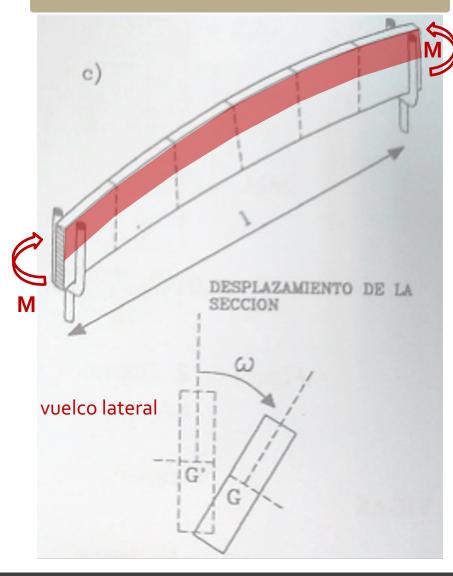
$$\sigma_{m,crit} = M_{crit}/W_y$$
 $W_v = b \cdot h^2/6$

$$\sigma_{crit} = \frac{\pi}{W_{y} \ell_{ef}} \sqrt{E_{o,o5} \cdot Iz \cdot G_{o,o5} \cdot It}$$

$$\ell_{ef} = \ell \cdot \beta_{V}$$

3. TENSIÓN CRÍTICA DE VUELCO LATERAL EN PIEZAS DE SECCIÓN RECTANGULAR:

 $I_T = (h \cdot b^3/3) \cdot (1 - (0.6 \cdot b/h))$


$$W_v = bh^2/6$$

$$I_y = bh^3/12$$

$$\sigma_{\rm crit} = \frac{0.78 \ b^2}{h \ l_{ef}} E_{0,05}$$

ECUACIÓN DEL EUROCÓDIGO 5

VUELCO LATERAL EN VIGA BIARTICULADA

3. TENSIÓN CRÍTICA DE VUELCO LATERAL EN PIEZAS DE SECCIÓN RECTANGULAR:

$$I_T = (h \cdot b^3/3) \cdot (1 - (0.6 \cdot b/h))$$

$$w_y = bh^2/6$$

 $I_y = bh^3/12$

ECUACIÓN DEL EUROCÓDIGO 5

$$\sigma_{\text{crit}} = \frac{0.78 \ b^2}{h \ l_{ef}} E_{0,05}$$

4. ESBELTEZ RELATIVA EN FLEXIÓN ($\lambda_{rel,m}$):

$$\lambda_{\text{rel,m}} = \sqrt{\frac{f_{\text{m,k}}}{\sigma_{\text{m,crit}}}}$$

$$\lambda_{\text{rel,m}} = \sqrt{\frac{f_{m,k}}{E_{0.05}}} \text{ Ce}$$

$$\lambda_{\text{rel,m}} = \sqrt{\frac{f_{\text{m,k}}}{E_{0,05}}} \text{ Ce}$$

$$C_e = 1.13 \sqrt{\frac{l_{ef} \cdot h}{b^2}}$$

 C_e : coeficiente de esbeltez geométrica de vuelco lateral

CR	C.Y.	Coeficiente de esbeltez geométrica en flexión C _e														
	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40
C14 C16 C18 C20	1,00 1,00 1,00 1,00	1,00 1,00 1,00 0,99	0,92 0,91	0,82 0,82 0,82 0,80	0,73	0,64 0,64 0,63 0,61	0,54 0,55 0,54 0,52	0,46 0,46 0,45 0,44	0,39 0,39 0,39 0,37	0,34 0,34 0,33 0,32	0,29 0,29 0,29 0,28	0,26 0,26 0,26 0,25	0,23 0,23 0,23 0,22	0,20 0,20 0,20 0,19	0,18 0,18 0,18 0,17	0,16 0,17 0,16 0,16
C22 C24 C27 C30	1,00 1,00 1,00 1,00	0,98 0,98 0,96 0,94	0,89	0,78 0,79 0,76 0,73	0,69 0,69 0,66 0,63	0,59 0,60 0,56 0,52	0,49 0,50 0,46 0,43	0,42 0,42 0,39 0,36	0,35 0,36 0,33 0,31	0,31 0,31 0,29 0,27	0,27 0,27 0,25 0,23	0,23 0,24 0,22 0,20	0,21 0,21 0,19 0,18	0,18 0,19 0,17 0,16	0,17 0,17 0,16 0,15	0,15 0,15 0,14 0,13
C35 C40 C45 C50	1,00 1,00 0,99 0,98	0,92 0,90 0,88 0,87	0,81 0,79 0,77 0,75	0,70 0,68 0,65 0,63	0,59 0,57 0,54 0,52	0,49 0,46 0,44 0,42	0,40 0,38 0,36 0,35	0,34 0,32 0,30 0,29	0,29 0,27 0,26 0,25	0,25 0,24 0,22 0,21	0,22 0,21 0,19 0,19	0,19 0,18 0,17 0,16	0,17 0,16 0,15 0,15	0,15 0,14 0,13 0,13	0,14 0,13 0,12 0,12	0,12 0,12 0,11 0,11
D18 D24 D30 D35	1,00 1,00 1,00 1,00	1,00 1,00 0,98 0,96	1,00 0,93 0,88 0,86	0,92 0,84 0,79 0,76	0,84 0,75 0,69 0,66	0,76 0,66 0,59 0,56	0,68 0,57 0,50 0,47	0,60 0,48 0,42 0,39	0,52 0,41 0,36 0,34	0,45 0,35 0,31 0,29	0,39 0,31 0,27 0,25	0,34 0,27 0,24 0,22	0,30 0,24 0,21 0,20	0,27 0,21 0,19 0,17	0,24 0,19 0,17 0,16	0,22 0,17 0,15 0,14
D40 D50 D60 D70	1,00 1,00 1,00 1,00	0,94 0,90 0,90 0,90	0,84 0,79 0,79 0,80	0,74 0,68 0,68 0,69	0,64 0,57 0,57 0,58	0,53 0,46 0,47 0,47	0,44 0,38 0,39 0,39	0,37 0,32 0,32 0,33	0,32 0,27 0,28 0,28	0,27 0,24 0,24 0,24	0,24 0,21 0,21 0,21	0,21 0,18 0,18 0,18	0,19 0,16 0,16 0,16	0,17 0,14 0,14 0,15		

- 1. Introducción
- 2. Comprobación a vuelco lateral en vigas
- 3. Longitudes eficaces de vuelco lateral(y pandeo)
- 4. Disposiciones constructivas
- 5. Ejemplo

7.4. Inestabilidad en vigas flexionadas

TENSIONES de cálculo ($\sigma_{m,v,d}$)

RESISTENCIAS de cálculo ($k_{crit} \cdot f_{m,d}$)

1. DETERMINACIÓN DEL COEFICIENTE DE INESTABILIDAD POR VUELCO LATERAL (kcrit)

k_{crit} penaliza la resistencia de cálculo a flexión en función de: **CLASE RESISTENTE** (valores característicos de resistencia a flexión y del 5º percentil del módulo de elasticidad longitudinal y de corte) y de la **ESBELTEZ GEOMÉTRICA EN FLEXIÓN**

TENSIONES de cálculo ($\sigma_{m,v,d}$)

RESISTENCIAS de cálculo ($k_{crit} \cdot f_{m,d}$)

1. DETERMINACIÓN DEL COEFICIENTE DE INESTABILIDAD POR VUELCO LATERAL (kcit)

k_{crit} penaliza la resistencia de cálculo a flexión en función de: **CLASE RESISTENTE** (valores característicos de resistencia a flexión y del 5º percentil del módulo de elasticidad longitudinal y de corte) y de la ESBELTEZ GEOMÉTRICA EN FLEXIÓN

K_{crit}=1, en vigas con desplazamiento lateral impedido en el borde comprimido y giro por torsión en apoyos impedido

VIGAS POCO ESBELTAS $(\lambda_{rel,m} \le 0.75)$

la pieza falla por resistencia a flexión: K_{crit}=1

VIGAS ESBELTAS (1.4<\(\lambda_{\tel.m}\))

fallo por inestabilidad definido por la ecuación de la hipérbola: $K_{crit}=1/\lambda_{rel,m}^2$

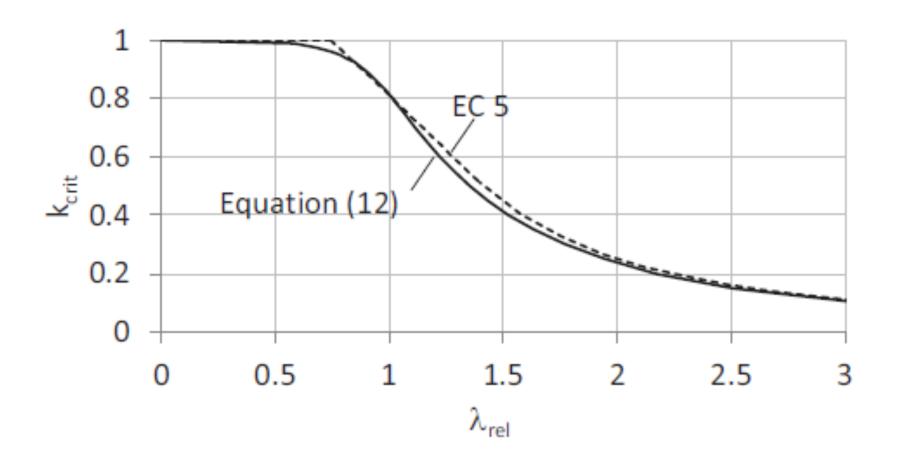
ESBELTEZ INTERMEDIA (0.75<λ_{rel,m} ≤ 1.4)

relación lineal entre ambos límites: K_{crit}=1.56-0.75·\(\lambda_{\text{rel.m}}\)

$$\lambda_{\text{rel,m}} = \sqrt{(fm_{,k/\sigma m,crit})}$$
 (Ec.6.30)

$$\sigma_{\text{m,crit}} = \frac{M_{\text{y,crit}}}{W_{\text{y}}} = \frac{\pi \sqrt{E_{0,05} I_{\text{z}} G_{0,05} I_{\text{tor}}}}{\ell_{\text{ef}} W_{\text{y}}}$$
 (Ec.6.31)

 I_T : módulo de torsión (rectangular: $I_T = (h \cdot b^3/3) \cdot (1 - (0.63 \cdot b/h))$ w_y : módulo resistente (secc.rectangular: $w_y = b \cdot h^2/6$)


G_k: módulo de elasticidad transversal

l_z: momento de inercia de la sección respecto al eje z

E_{0.05}: módulo elasticidad longitudinal

 l_{ef} : longitud eficaz de vuelco $(l_{ef} = \beta_v \cdot \ell)$

 β_{v} : coeficiente de vuelco lateral

- 1. Introducción
- 2. Comprobación a vuelco lateral en vigas
- 3. Longitudes eficaces de vuelco lateral(y pandeo)
- 4. Disposiciones constructivas
- 5. Ejemplo

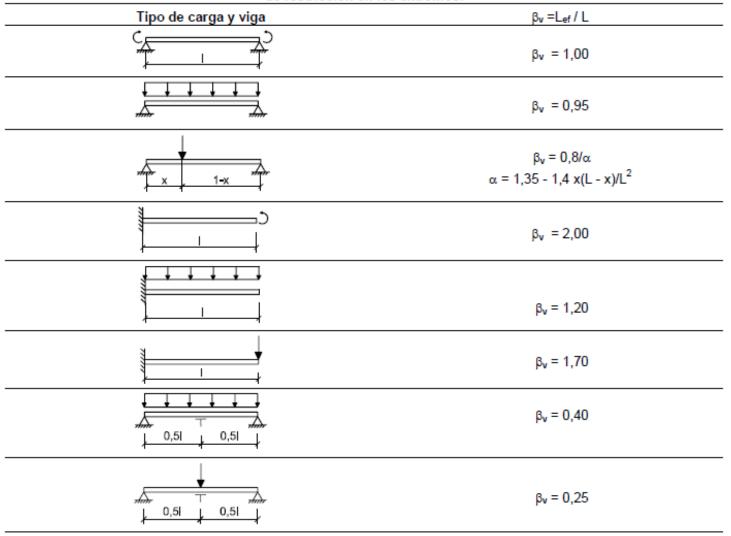
7.4. Inestabilidad en vigas flexionadas

Longitudes eficaces de vuelco lateral

VUELCO LATERAL

$$\ell_{ef} = \ell \cdot \beta_{v}$$

Tipo viga	Tipo carga	β _ν *
Simplemente apoyada	Momento constante	1.0
P		
	Carga uniformemente distribuida	0.9
8	Carga concentrada en el centro de la luz	0.8
Voladizo	Carga uniformemente distribuida	0.5
	Carga concentrada en el extremo del voladizo	0.8
	6	


 $^{*\}beta_v$ es válido para una viga con apoyos con restricción a la torsión y cargada en el centro de gravedad.

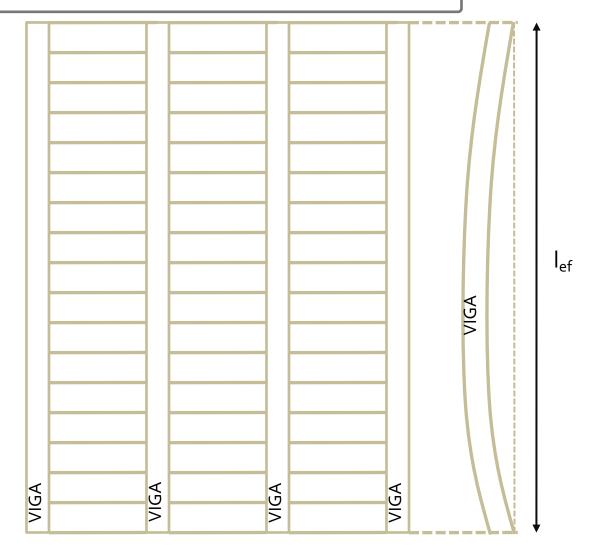
Si la carga se aplica en el borde comprimido de la viga, I_{ef} debería incrementarse en 2h: $\ell_{ef} = \ell \cdot \beta_v + 2h$

Si la carga se aplica en el borde traccionado de la viga, I_{ef} puede disminuirse en **0.5h** $\ell_{ef} = \ell \cdot \beta_{v} - 0.5h$

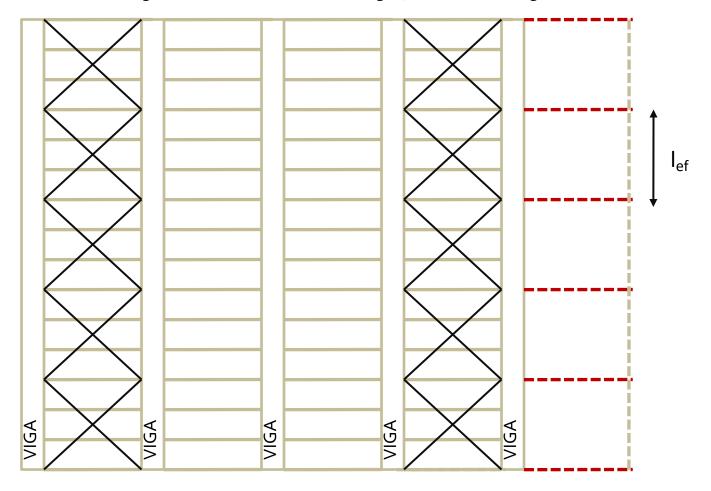
7.4. INESTABILIDAD EN VIGAS FLEXIONADAS

Tabla 6.2 Valores del coeficiente β_v para vigas de sección constante con diferentes condiciones de carga y de restricción en los extremos.

Los valores que se dan en esta tabla son válidos para una viga cargada en su centro de gravedad y con la torsión impedida en los apoyos. Si la carga se aplica en el borde comprimido la longitud eficaz L_{ef} se incrementará en 2h y si es aplicada en el borde traccionado se reducirá en 0,5h, siendo h el canto de la pieza.


T: sección central con desplazamiento lateral impedido en el borde superior.

CTE-DB-SE-M,2009


- 1. Introducción
- 2. Comprobación a vuelco lateral en vigas
- 3. Longitudes eficaces de vuelco lateral(y pandeo)
- 4. Disposiciones constructivas
- 5. Ejemplo

7.4. Inestabilidad en vigas flexionadas

VISTA EN PLANTA DE UN FORJADO O CUBIERTA

Para disminuir la longitud de vuelco lateral en las vigas, se reduce la longitud libre del borde comprimido.

CUANDO EL MOMENTO FLECTOR POSITIVO (VIGAS BIAPOYADAS):

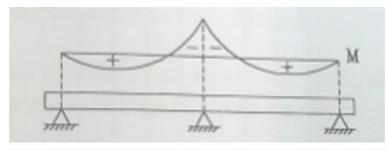
Inmovilización del borde comprimido: vigueta o correas y arriostramiento mediante triangulaciones (ej. Cruces de San Andrés)

Media Madera, ingenieros consultores, S.L. (www.mediamadera.com)

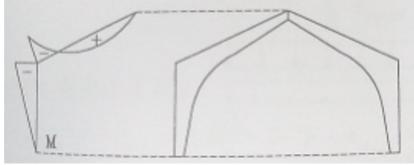
MOMENTO FLECTOR POSITIVO:

Media Madera, ingenieros consultores, S.L. (www.mediamadera.com)

ARRIOSTRAMIENTO EN MOMENTOS FLECTORES NEGATIVOS


1. INVERSIÓN DE ESFUERZOS:

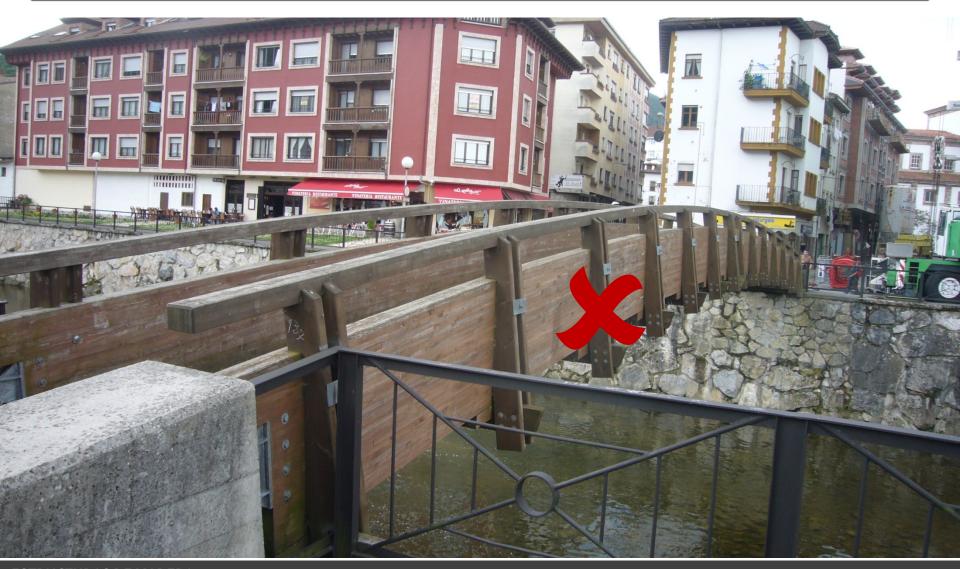
ejemplo: viento de succión más fuerte que las cargas permanentes



Inmovilización del borde comprimido

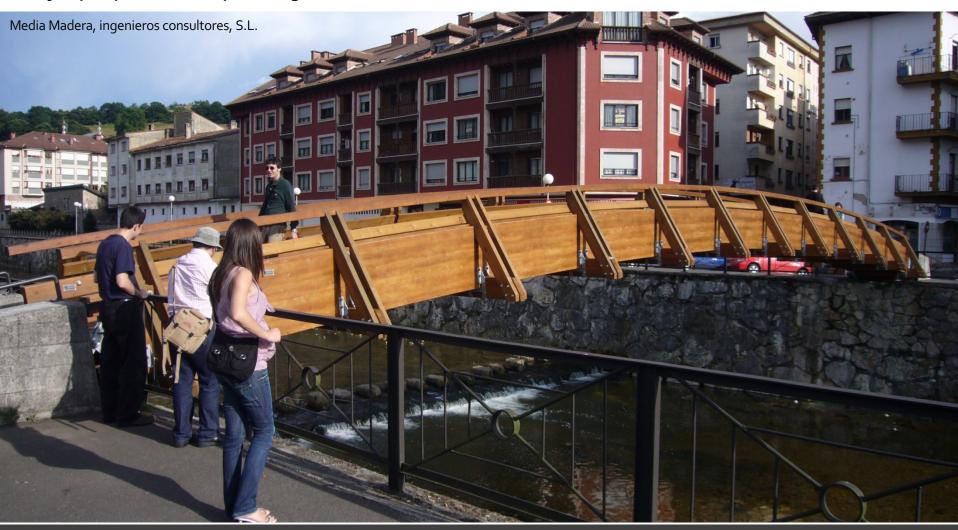
2. VIGAS CONTINUAS:

3. ESQUINAS DE PÓRTICOS:

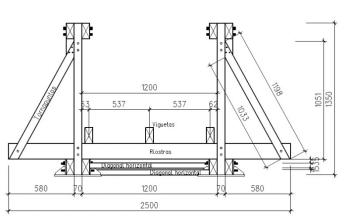


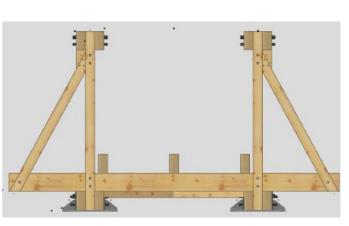
IMPOSIBILIDAD DE ARRIOSTRAR CON ELEMENTOS SECUNDARIOS LA ZONA COMPRIMIDA

ejemplo: pasarelas en que las vigas hacen de barandilla



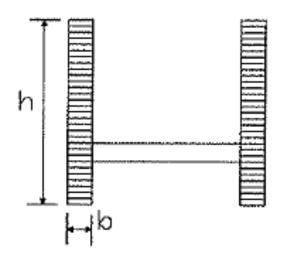
IMPOSIBILIDAD DE ARRIOSTRAR CON ELEMENTOS SECUNDARIOS LA ZONA COMPRIMIDA

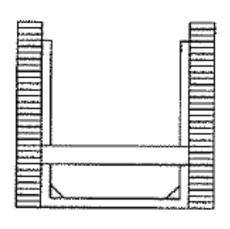

IMPOSIBILIDAD DE ARRIOSTRAR CON ELEMENTOS SECUNDARIOS LA ZONA COMPRIMIDA

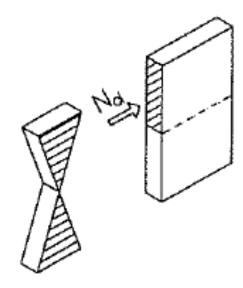

ejemplo: pasarelas en que las vigas hacen de barandilla

IMPOSIBILIDAD DE ARRIOSTRAR CON ELEMENTOS SECUNDARIOS LA ZONA COMPRIMIDA

ejemplo: pasarelas en que las vigas hacen de barandilla

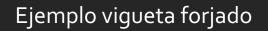


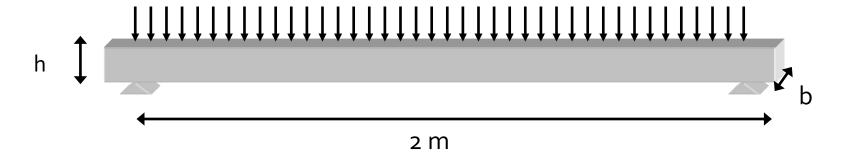




IMPOSIBILIDAD DE ARRIOSTRAR CON ELEMENTOS SECUNDARIOS LA ZONA COMPRIMIDA

ejemplo: pasarelas en que las vigas hacen de barandilla


IMPOSIBILIDAD DE ARRIOSTRAR CON ELEMENTOS SECUNDARIOS LA ZONA COMPRIMIDA


ejemplo: pasarelas en que las vigas hacen de barandilla

- 1. Introducción
- 2. Comprobación a vuelco lateral en vigas
- 3. Longitudes eficaces de vuelco lateral(y pandeo)
- 4. Disposiciones constructivas
- 5. Ejemplo

7.4. Inestabilidad en vigas flexionadas

DATOS DE PARTIDA		DEFINICION DE LA MA	DERA
LUZ	2 M	b	100 mm
ANCHO PAÑO	o.5 m	h	160 mm
DISTANCIA ENTRE PUNTOS ARIOSTRADOS	2 M	CLASE RESISTENTE	C20
CLASE DE SERVICIO	1		
TIPO DE MADERA		OTROS DATOS	
ESPECIE	E.grandis	CLASE DE USO	1
TIPO DE MADERA	ASERRADA	CARGA COMPARTIDA	SI

COMBINACIÓN DE ACCIONES: Ejemplo vigueta forjado

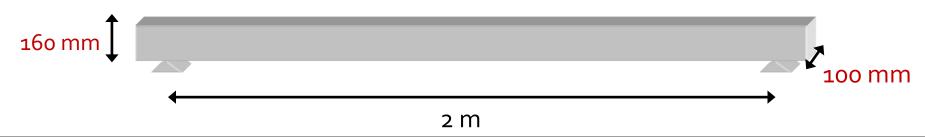
COMBINACIONES DE ACCIONES										
Combinación de cargas:	CP (0.18 kN/m)	U (1.0 kN/m)	P (2.0 kN)							
Combinación 1 (CP)	1,35	0	0							
Combinación 2 (CP+U)	1,35	1,5	0							
Combinación 3 (CP+P)	1,35	0	1,5							

Comprobación a vuelco lateral en vigas sometidas a flexión: ejemplo forjado

VUELCO LATERAL: ejemplo vigueta forjado

TENSIONES de cálculo ($\sigma_{m,y,d}$)

$$\sigma_{m,y,d} = M_{y,d}/W_{y}$$


M_{y,d}: momento flector

 W_y : módulo resistente, en piezas rectangulares: $W_y = b \cdot h^2/6 = 100 \cdot 160^2/6 = 426667 \text{ mm}^3$

ESTADOS LÍMITE ÚLTIMOS: VERIFICACIÓN DE RESISTENCIA

1. FLEXIÓN SIMPLE:

Combinación de acciones:	Cb.1	Cb.2	Cb.3	
Momento flector $(M_{y,d})$	123,55	873,55	1623,55	kN∙mm
Tensión cálculo $(\sigma_{m,v,d})$	0,29	2,05	3,81	N/mm ²

VUELCO LATERAL: ejemplo vigueta forjado

Expresión válida para desviación de la rectitud:

RESISTENCIAS de cálculo ($k_{crit} \cdot f_{m,y,d}$)

<1/300 para madera maciza

<l/>1/500 para madera laminada encolada y microlaminada

$$f_{m,y,d} = k_{\text{mod}} \cdot (f_{m,k}/\gamma_{\text{M}}) \cdot k_{\text{h}} \cdot k_{\text{sys}}$$

ESTADOS LÍMITE ÚLTIMOS: VERIFICACIÓN DE RESISTENCIA

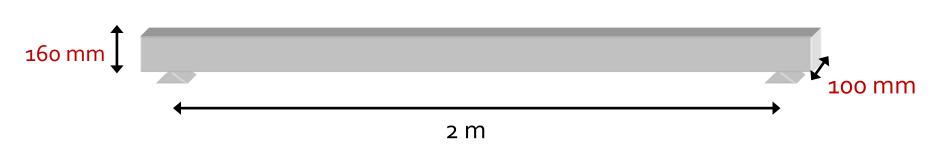
1. FLEXIÓN SIMPLE:

Combinación de acciones:

Cb.1

Cb.2

Cb.3


Resistencia cálculo(f_{m,y,d})

10,15

13,54

15,23

 N/mm^2

VUELCO LATERAL: ejemplo vigueta forjado

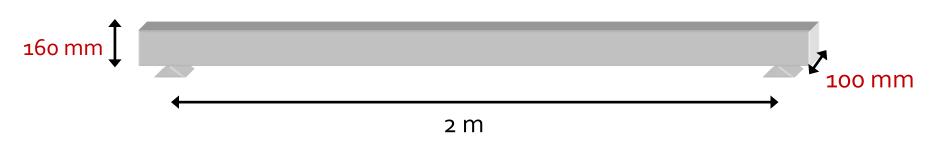
RESISTENCIAS de cálculo ($k_{crit} \cdot f_{m,v,d}$)

TENSIÓN CRÍTICA DE VUELCO LAT:

$$\sigma_{\text{m,crit}} = \frac{\pi \cdot \sqrt{(E_{0,05} \cdot Iz \cdot G_{0,05} \cdot IT)}}{I_{\text{ef}} \cdot Wv}$$
(Ec.6.31)

 I_T : módulo de torsión (rectangular: $I_T = (h \cdot b^3/3) \cdot (1 - (0.63 \cdot b/h))$

G_{0,05}: módulo de elasticidad transversal


l_z: momento de inercia de la sección respecto al eje z

E_{0,05}: valor característico módulo elasticidad longitudinal

 W_v : módulo resistente (secc.rectangular: $W_v = b \cdot h^2/6$)

 I_{ef} : longitud eficaz de vuelco ($I_{ef} = \beta_v \cdot \ell$)

 β_{v} : coeficiente de vuelco lateral

VUELCO LATERAL: ejemplo vigueta forjado

RESISTENCIAS de cálculo ($k_{crit} \cdot f_{m,y,d}$)

TENSIÓN CRÍTICA DE VUELCO LAT:

$$\sigma_{\text{m,crit}} = \frac{\pi \cdot \sqrt{(E_{\text{o,o5}} \cdot \text{Iz} \cdot G_{\text{o,o5}} \cdot \text{IT})}}{I_{\text{ef}} \cdot \text{wy}}$$
(Ec.6.31)

Tabla 1 - Clases resistentes. Valores características

		Conife	ras y cho	оро										Frondo	sas						
		C14	C16	C18	C20	C22	C24	C27	C30	C35	C40	C45	C50	D18	D24	D30	D35	D40	D50	D60	D70
Propiedades de resistencia (en l	N/mm ²)																				
Flexión	$f_{ m m,k}$	14	16	18	20	22	24	27	30	35	40	45	50	18	24	30	35	40	50	60	70
Tracción paralela a la fibra	ft,0,k	8	10	11	12	13	14	16	18	21	24	27	30	11	14	18	21	24	30	36	42
Tracción perpendicular a la fibra	$f_{ m t,90,k}$	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6
Compresión paralela a la fibra	$f_{c,0,k}$	16	17	18	19	20	21	22	23	25	26	27	29	18	21	23	25	26	29	32	34
Compresión perpendicular a la fibra	f _{c,90,k}	2,0	2,2	2,2	2,3	2,4	2,5	2,6	2,7	2,8	2,9	3,1	3,2	7,5	7,8	8,0	8,1	8,3	9,3	10,5	13,5
Cortante	$f_{ m v,k}$	3,0	3,2	3,4	3,6	3,8	4,0	4,0	4,0	4,0	4,0	4,0	4,0	3,4	4,0	4,0	4,0	4,0	4,0	4,5	5,0
Propiedades de rigidez (en kN/i	mm²)																				
Módulo de elasticidad medio paralelo a la fibra	E _{0,medio}	7	8	9	9,5	10	11	11,5	12	13	14	15	16	9,5	10	11	12	13	14	17	20
Módulo de elasticidad paralelo a la fibra (5% percentil)	E _{0,05}	4,7	5,4	6,0	6,4	6,7	7,4	7,7	8,0	8,7	9,4	10,0	10,7	8	8,5	9,2	10,1	10,9	11,8	14,3	16,8
Módulo de elasticidad medio perpendicular a la fibra	$E_{90,\mathrm{medio}}$	0,23	0,27	0,30	0,32	0,33	0,37	0,38	0,40	0,43	0,47	0,50	0,53	0,63	0,67	0,73	0,80	0,86	0,93	1,13	1,33
Módulo medio de cortante	$G_{ m medio}$	0,44	0,5	0,56	0,59	0,63	0,69	0,72	0,75	0,81	0,88	0,94	1,00	0,59	0,62	0,69	0,75	0,81	0,88	1,06	1,25
Densidad (en kg/m³)																					
Densidad	$\rho_{\mathbf{k}}$	290	310	320	330	340	350	370	380	400	420	440	460	475	485	530	540	550	620	700	900
Densidad media	ρ_{medio}	350	370	380	390	410	420	450	460	480	500	520	550	570	580	640	650	660	750	840	1080

VUELCO LATERAL: ejemplo vigueta forjado

RESISTENCIAS de cálculo ($k_{crit} \cdot f_{m,y,d}$)

TENSIÓN CRÍTICA DE VUELCO LAT:

$$\sigma_{\text{m,crit}} = \frac{\pi \cdot \sqrt{(E_{0,05} \cdot Iz \cdot G_{0,05} \cdot IT)}}{I_{\text{ef}} \cdot \text{wy}}$$
 (Ec.6.31) **E/G=16**

Tabla 1 – Clases resistentes. Valores características

		Conife	ras y cho	оро										Frondo	sas						
		C14	C16	C18	C20	C22	C24	C27	C30	C35	C40	C45	C50	D18	D24	D30	D35	D40	D50	D60	D70
Propiedades de resistencia (en l	N/mm ²)																				
Flexión	$f_{ m m,k}$	14	16	18	20	22	24	27	30	35	40	45	50	18	24	30	35	40	50	60	70
Tracción paralela a la fibra	ft,0,k	8	10	11	12	13	14	16	18	21	24	27	30	11	14	18	21	24	30	36	42
Tracción perpendicular a la fibra	$f_{ m t,90,k}$	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6
Compresión paralela a la fibra	$f_{c,0,k}$	16	17	18	19	20	21	22	23	25	26	27	29	18	21	23	25	26	29	32	34
Compresión perpendicular a la fibra	f _{c,90,k}	2,0	2,2	2,2	2,3	2,4	2,5	2,6	2,7	2,8	2,9	3,1	3,2	7,5	7,8	8,0	8,1	8,3	9,3	10,5	13,5
Cortante	$f_{ m v,k}$	3,0	3,2	3,4	3,6	3,8	4,0	4,0	4,0	4,0	4,0	4,0	4,0	3,4	4,0	4,0	4,0	4,0	4,0	4,5	5,0
Propiedades de rigidez (en kN/i	mm²)																				
Módulo de elasticidad medio paralelo a la fibra	E _{0,medio}	7	8	9	9,5	10	11	11,5	12	13	14	15	16	9,5	10	11	12	13	14	17	20
Módulo de elasticidad paralelo a la fibra (5% percentil)	E _{0,05}	4,7	5,4	6,0	6,4	6,7	7,4	7,7	8,0	8,7	9,4	10,0	10,7	8	8,5	9,2	10,1	10,9	11,8	14,3	16,8
Módulo de elasticidad medio perpendicular a la fibra	$E_{90,\mathrm{medio}}$	0,23	0,27	0,30	0,32	0,33	0,37	0,38	0,40	0,43	0,47	0,50	0,53	0,63	0,67	0,73	0,80	0,86	0,93	1,13	1,33
Módulo medio de cortante	$G_{ m medio}$	0,44	0,5	0,56	0,59	0,63	0,69	0,72	0,75	0,81	0,88	0,94	1,00	0,59	0,62	0,69	0,75	0,81	0,88	1,06	1,25
Densidad (en kg/m³)																					
Densidad	$\rho_{\mathbf{k}}$	290	310	320	330	340	350	370	380	400	420	440	460	475	485	530	540	550	620	700	900
Densidad media	ρ_{medio}	350	370	380	390	410	420	450	460	480	500	520	550	570	580	640	650	660	750	840	1080

VUELCO LATERAL: ejemplo vigueta forjado

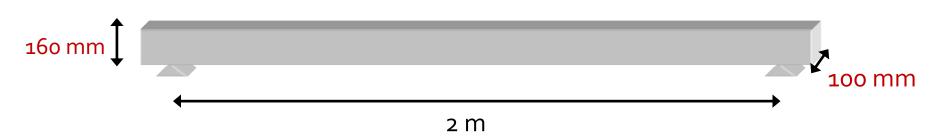
RESISTENCIAS de cálculo ($k_{crit} \cdot f_{m,y,d}$)

TENSIÓN CRÍTICA DE VUELCO LAT:

$$\sigma_{\text{m,crit}} = \frac{\pi \cdot \sqrt{(E_{\text{o,o5}} \cdot \text{Iz} \cdot G_{\text{o,o5}} \cdot \text{IT})}}{I_{\text{ef}} \cdot \text{wy}}$$
(Ec.6.31)

 $E_{0,05}$: módulo elasticidad longitudinal = 6.4 kN/mm² (c20)

 $G_{0,05}$: módulo de elasticidad transversal = 0.4 kN/mm² (E/G=16)


 I_z : momento de inercia de la sección respecto al eje $z = h \cdot b^3/12 = 13333333 \text{ mm}^4$

 I_T : módulo de torsión (rectangular: $I_T = (h \cdot b^3/3) \cdot (1 - (0.63 \cdot b/h)) = 32600362 \text{ mm}^4$

 w_y : módulo resistente = $b \cdot h^2/6 = 426667 \text{ mm}^3$

 β_{v} : coeficiente de vuelco lateral

 I_{ef} : longitud eficaz de vuelco ($I_{ef} = \beta_v \cdot \ell$)

VUELCO LATERAL: ejemplo vigueta forjado

RESISTENCIAS de	cálculo	$(\mathbf{k_{crit}} \cdot f_{m,y,d})$
-----------------	---------	---------------------------------------

TENSIÓN CRÍTICA DE VUELCO LAT:

 $\sigma_{\text{m,crit}} = \frac{\pi \cdot \sqrt{(E_{0,05} \cdot Iz \cdot G_{0,05} \cdot IT)}}{I_{\text{cs:WV}}}$ (Ec.6.31)

Tipo viga	Tipo carga	β _ν *
Simplemente apoyada	Momento constante	1.0
	Carga uniformemente distribuida	0.9
	Carga concentrada en el centro de la luz	0.8
Voladizo	Carga uniformemente distribuida	0.5
	Carga concentrada en el extremo del voladizo	0.8

^{*}β_ν es válido para una viga con apoyos con restricción a la torsión y cargada en el centro de gravedad.

Si la carga se aplica en el borde comprimido de la viga, \emph{I}_{ef} debería incrementarse en 2h

Si la carga se aplica en el borde traccionado de la viga, I_{ef} puede disminuirse en ${f 0.5h}$

βv- carga uniforme

0,9

 $I_{ef-carga\ uniforme} = \ell \cdot \beta_v + (2 \cdot h) = 2 \cdot 0.9 + 2 \cdot 0.160 = 2.12 \text{ m}$

βv-carga puntual

0,8

 $I_{ef-carga\ puntual} = \ell \cdot \beta_v + (2 \cdot h) = 2 \cdot 0.8 + 2 \cdot 0.160 = 1.92 \text{ m}$

VUELCO LATERAL: ejemplo vigueta forjado

RESISTENCIAS de cálculo ($k_{crit} \cdot f_{m,y,d}$)

TENSIÓN CRÍTICA DE VUELCO LAT:

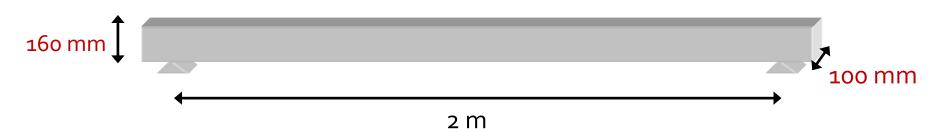
$$\sigma_{\text{m,crit}} = \frac{\pi \cdot \sqrt{(E_{0,05} \cdot Iz \cdot G_{0,05} \cdot IT)}}{I_{\text{ef}} \cdot wy}$$
 (Ec.6.31)

 $E_{o,k}$: módulo elasticidad longitudinal = 6.4 kN/mm² (c20)

 $G_{0,05}$: módulo de elasticidad transversal = 0.4 kN/mm² (E/G=16)

 l_z : momento de inercia de la sección respecto al eje $z = h \cdot b^3/12 = 133333333 \text{ mm}^4$

 I_T : módulo de torsión (rectangular: $I_T = (h \cdot b^3/3) \cdot (1 - (0.63 \cdot b/h)) = 32600362 \text{ mm}^4$


 w_v : módulo resistente = $b \cdot h^2/6 = 426667 \text{ mm}^3$

 β_{v} : coeficiente de vuelco lateral (carga uniforme=0.9; carga puntual=0.8)

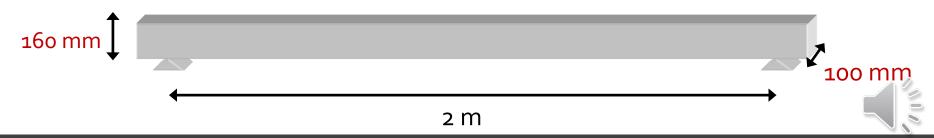
 l_{ef} : longitud eficaz de vuelco ($l_{ef} = \beta_v \cdot \ell + 2 \cdot h$) = 2.12m para carga uniforme; 1.92 m para carga puntual

ESTADOS LÍMITE ÚLTIMOS: INESTABILIDAD

4. VUELCO LATERAL:	Comprobac	Comprobación a vuelco lateral: $\sigma_{m,y,d} \le k_{crit} \cdot f_{m,y,d}$								
Combinación de cargas:	1	2	3							
Tens. cálc. flex.: $(\sigma_{m,y,d})$	0,29	2,05	3,81	N/mm² (RM-6)						
Tens.crít.:σ _{m,crit} EC-5(Ec.6.31)	115,9	115,9	127,9	N/mm ²						

VUELCO LATERAL: ejemplo vigueta forjado

RESISTENCIAS de cálculo ($k_{crit} \cdot f_{m,y,d}$)


ESBELTEZ RELATIVA:

$$\lambda_{\text{rel,m}} = \sqrt{\text{(fm}_{,k/\sigma m,\text{crit}})}$$
 (Ec.6.30)

$$f_{m,k}(C20) = 20 \text{ N/mm}^2$$

ESTADOS LÍMITE ÚLTIMOS: INESTABILIDAD

4. VUELCO LATERAL:	Comprobac	EC5:1-1(Ec6.33)		
Combinación de cargas:	1	2	3	
Tens. cálc. flex.: $(\sigma_{m,y,d})$	0,29	2,05	3,81	N/mm^2 (RM-6)
Tens.crít.: $\sigma_{m,crit}$ EC-5(Ec.6.31)	115,9	115,9	127,9	N/mm ²
$\lambda_{\text{rel,m}}$ EC-5(Ec.6.30)	0,42	0,42	0,40	

VUELCO LATERAL: ejemplo vigueta forjado

RESISTENCIAS de cálculo ($k_{crit} \cdot f_{m,y,d}$)

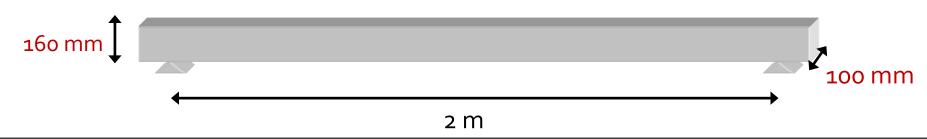
COEFICIENTE VUELCO LATERAL:

k_{crit}

K_{crit}=1 para

para λ_{rel,m}≤ 0.75

 $K_{crit}=1.56-0.75\cdot\lambda_{rel,m}$


para $0.75 < \lambda_{rel,m} \le 1.4$

 $K_{crit}=1/\lambda^2_{rel,m}$

para 1.4 $<\lambda_{rel,m}$

ESTADOS LÍMITE ÚLTIMOS: INESTABILIDAD

4. VUELCO LATERAL:	Comprobac	EC5:1-1(Ec6.33)		
Combinación de cargas:	1	2	3	
Tens. cálc. flex.: $(\sigma_{m,y,d})$	0,29	2,05	3,81	N/mm^2 (RM-6)
Tens.crít.: $\sigma_{m,crit}$ EC-5(Ec.6.31)	115,9	115,9	127,9	N/mm²
$\lambda_{\text{rel,m}}$ EC-5(Ec.6.30)	0,42	0,42	0,40	
k _{crit} EC-5:(Ec.6.34)	1,00	1,00	1,00	

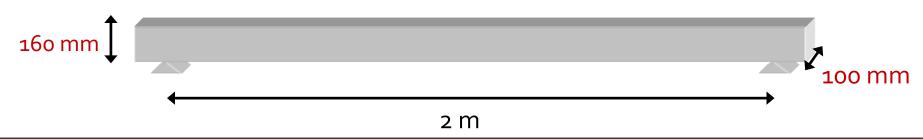
VUELCO LATERAL: ejemplo vigueta forjado

CR	Coeficiente de esbeltez geométrica en flexión C _e															
	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40
C14 C16 C18 C20	1,00 1,00 1,00 1,00	1,00 1,00 1,00 0,99	0,92 0,91	0,82	0,73 0,73 0,73 0,71	0,64 0,64 0,63 0,61	0,54 0,55 0,54 0,52	0,46 0,46 0,45 0,44	0,39 0,39 0,39 0,37	0,34 0,34 0,33 0,32	0,29 0,29 0,29 0,28	0,26 0,26 0,26 0,25	0,23 0,23 0,23 0,22	0,20 0,20 0,20 0,19	0,18 0,18 0,18 0,17	0,16 0,17 0,16 0,16
C22	1,00	0,98	0,88	0,78	0,69	0,59	0,49	0,42	0,35	0,31	0,27	0,23	0,21	0,18	0,17	0,15
C24	1,00	0,98	0,89	0,79	0,69	0,60	0,50	0,42	0,36	0,31	0,27	0,24	0,21	0,19	0,17	0,15
C27	1,00	0,96	0,86	0,76	0,66	0,56	0,46	0,39	0,33	0,29	0,25	0,22	0,19	0,17	0,16	0,14
C30	1,00	0,94	0,83	0,73	0,63	0,52	0,43	0,36	0,31	0,27	0,23	0,20	0,18	0,16	0,15	0,13
C35	1,00	0,92	0,81	0,70	0,59	0,49	0,40	0,34	0,29	0,25	0,22	0,19	0,17	0,15	0,14	0,12
C40	1,00	0,90	0,79	0,68	0,57	0,46	0,38	0,32	0,27	0,24	0,21	0,18	0,16	0,14	0,13	0,12
C45	0,99	0,88	0,77	0,65	0,54	0,44	0,36	0,30	0,26	0,22	0,19	0,17	0,15	0,13	0,12	0,11
C50	0,98	0,87	0,75	0,63	0,52	0,42	0,35	0,29	0,25	0,21	0,19	0,16	0,15	0,13	0,12	0,11
D18	1,00	1,00	1,00	0,92	0,84	0,76	0,68	0,60	0,52	0,45	0,39	0,34	0,30	0,27	0,24	0,22
D24	1,00	1,00	0,93	0,84	0,75	0,66	0,57	0,48	0,41	0,35	0,31	0,27	0,24	0,21	0,19	0,17
D30	1,00	0,98	0,88	0,79	0,69	0,59	0,50	0,42	0,36	0,31	0,27	0,24	0,21	0,19	0,17	0,15
D35	1,00	0,96	0,86	0,76	0,66	0,56	0,47	0,39	0,34	0,29	0,25	0,22	0,20	0,17	0,16	0,14
D40	1,00	0,94	0,84	0,74	0,64	0,53	0,44	0,37	0,32	0,27	0,24	0,21	0,19	0,17	0,15	0,13
D50	1,00	0,90	0,79	0,68	0,57	0,46	0,38	0,32	0,27	0,24	0,21	0,18	0,16	0,14	0,13	0,12
D60	1,00	0,90	0,79	0,68	0,57	0,47	0,39	0,32	0,28	0,24	0,21	0,18	0,16	0,14	0,13	0,12
D70	1,00	0,90	0,80	0,69	0,58	0,47	0,39	0,33	0,28	0,24	0,21	0,18	0,16	0,15	0,13	0,12

$$C_e = \sqrt{\frac{l_{ef}h}{b^2(1 - 0.6b/h)}}$$

ESTADOS LÍMITE ÚLTIMOS: INESTABILIDAD

4. VUELCO LATERAL:	Comprobac	EC5:1-1(Ec6.33)		
Combinación de cargas:	1	2	3	
Tens. cálc. flex.: $(\sigma_{m,y,d})$	0,29	2,05	3,81	N/mm^2 (RM-6)
Tens.crít.: $\sigma_{m,crit}$ EC-5(Ec.6.31)	115,9	115,9	127,9	N/mm ²
$\lambda_{\text{rel,m}}$ EC-5(Ec.6.30)	0,42	0,42	0,40	
k _{crit} EC-5:(Ec.6.34)	1,00	1,00	1,00	

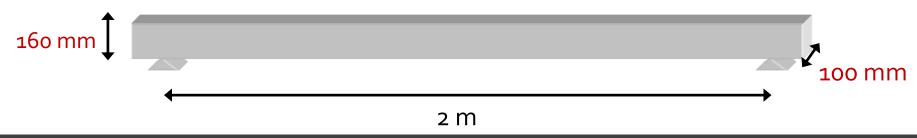

VUELCO LATERAL: ejemplo vigueta forjado

TENSIONES de cálculo ($\sigma_{m,y,d}$)

RESISTENCIAS de cálculo ($k_{crit} \cdot f_{m,y,d}$)

ESTADOS LÍMITE ÚLTIMOS: INESTABILIDAD								
4. VUELCO LATERAL:	EC5:1-1(Ec6.33)							
Combinación de cargas:	1	2	ral: $\sigma_{m,y,d} \le k_{crit} \cdot f_{m,y,d}$					
Tens. cálc. flex.: $(\sigma_{m,y,d})$	0,29	2,05	3,81	N/mm^2 (RM-6)				
Tens.crít.: $\sigma_{m,crit}$ EC-5(Ec.6.31)	115,9	115,9	127,9	N/mm ²				
$\lambda_{rel,m}$ EC-5(Ec.6.30)	0,42	0,42	0,40					
k _{crit} EC-5:(Ec.6.34)	1,00	1,00	1,00					
Resist. cálc.flex.(k _{crit} ·f _{m,y,d})	10,15	13,54	15,23	N/mm ²				

VUELCO LATERAL: ejemplo vigueta forjado


TENSIONES de cálculo ($\sigma_{m,y,d}$)

RESISTENCIAS de cálculo ($k_{crit} \cdot f_{m,y,d}$)

ESTADOS LÍMITE ÚLTIMOS: INESTABILIDAD								
4. VUELCO LATERAL:	EC5:1-1(Ec6.33)							
Combinación de cargas:	1	2	eral: $\sigma_{m,y,d}$ ≤ k_{crit} · $f_{m,y,d}$					
Tens. cálc. flex.: $(\sigma_{m,y,d})$	0,29	2,05	3,81	N/mm ² (RM-6)				
Tens.crít.: $\sigma_{m,crit}$ EC-5(Ec.6.31)	115,9	115,9	127,9	N/mm ²				
$\lambda_{\text{rel,m}}$ EC-5(Ec.6.30)	0,42	0,42	0,40					
k _{crit} EC-5:(Ec.6.34)	1,00	1,00	1,00					
Resist. cálc.flex.(k _{crit} ·f _{m,y,d})	10,15	13,54	15,23	N/mm²				
Comprobació	n 2,85	15,12	24,98	%				

Se cumple la verificación a resistencia a vuelco lateral

Gracias por la atención

