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Matching med-school students to hospitals

Goal.  Given a set of preferences among hospitals and med-school students, 

design a self-reinforcing admissions process. 

 
Unstable pair.  Hospital h and student s form an unstable pair if both: 

・h prefers s to one of its admitted students. 

・s prefers h to assigned hospital. 

 
Stable assignment.  Assignment with no unstable pairs. 

・Natural and desirable condition. 

・Individual self-interest prevents any hospital–student side deal.
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Stable matching problem: input

Input.  A set of n hospitals H and a set of n students S. 

・Each hospital h ∈ H ranks students. 

・Each student s ∈ S ranks hospitals.
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favorite

1st 2nd 3rd

Atlanta Xavier Yolanda Zeus

Boston Yolanda Xavier Zeus

Chicago Xavier Yolanda Zeus

hospitals’ preference lists

least favorite favorite

1st 2nd 3rd

Xavier Boston Atlanta Chicago

Yolanda Atlanta Boston Chicago

Zeus Atlanta Boston Chicago

students’ preference lists

least favorite

one student per hospital (for now)



Perfect matching

Def.  A  matching M is a set of ordered pairs h–s with h ∈ H and s ∈ S s.t. 

・Each hospital h ∈ H appears in at most one pair of M. 

・Each student s ∈ S appears in at most one pair of M. 

Def.  A matching M is perfect if | M | = | H | = | S | = n.
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1st 2nd 3rd

Atlanta Xavier Yolanda Zeus

Boston Yolanda Xavier Zeus

Chicago Xavier Yolanda Zeus

1st 2nd 3rd

Xavier Boston Atlanta Chicago

Yolanda Atlanta Boston Chicago

Zeus Atlanta Boston Chicago

a perfect matching M = { A–Z, B-Y, X-X }



Unstable pair

Def.  Given a perfect matching M, hospital h and student s form an  
unstable pair if both: 

・h prefers s to matched student. 

・s prefers h to matched hospital. 

Key point.  An unstable pair h–s could each improve by joint action.
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1st 2nd 3rd

Atlanta Xavier Yolanda Zeus

Boston Yolanda Xavier Zeus

Chicago Xavier Yolanda Zeus

1st 2nd 3rd

Xavier Boston Atlanta Chicago

Yolanda Atlanta Boston Chicago

Zeus Atlanta Boston Chicago

A-Y is an unstable pair



Stable matching problem

Def.  A stable matching is a perfect matching with no unstable pairs. 

Stable matching problem.  Given the preference lists of n hospitals and  
n students, find a stable matching (if one exists). 

・Natural, desirable, and self-reinforcing condition. 

・Individual self-interest prevents any hospital–student pair from eloping.
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1st 2nd 3rd

Atlanta Xavier Yolanda Zeus

Boston Yolanda Xavier Zeus

Chicago Xavier Yolanda Zeus

1st 2nd 3rd

Xavier Boston Atlanta Chicago

Yolanda Atlanta Boston Chicago

Zeus Atlanta Boston Chicago

a stable matching M = { A–X, B–Y, C–Z }



Stable roommate problem

Q.  Do stable matchings always exist? 

A.  Not obvious a priori. 

 
Stable roommate problem. 

・2 n people; each person ranks others from 1 to 2 n – 1. 

・Assign roommate pairs so that no unstable pairs. 
 
 
 
 
 
 
 
 

Observation.  Stable matchings need not exist.
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1st 2nd 3rd

A B C D

B C A D

C A B D

D A B C

A–B, C–D  ⇒    B–C unstable 

A–C, B–D  ⇒    A–B unstable 

A–D, B–C  ⇒    A–C unstable

no perfect matching is stable



Gale–Shapley deferred acceptance algorithm

An intuitive method that guarantees to find a stable matching.
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GALE–SHAPLEY (preference lists for hospitals and students)                          


INITIALIZE  M to empty matching.

WHILE  (some hospital h is unmatched and hasn’t proposed to every student)

    s  ← first student on h’s list to whom h has not yet proposed.

    IF  (s is unmatched)

Add h–s to matching M.

ELSE IF  (s prefers h to current partner hʹ)

Replace hʹ–s with h–s in matching M.
ELSE

s rejects h.

RETURN stable matching M.




Proof of correctness:  termination

Observation 1.  Hospitals propose to students in decreasing order of 

preference. 

 
Observation 2.  Once a student is matched, the student never becomes 

unmatched; only “trades up.” 

 
Claim.  Algorithm terminates after at most n 2 iterations of while loop. 

Pf.  Each time through the while loop a hospital proposes to a new student. 

There are only n 2 possible proposals.  ▪
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Proof of correctness:  perfection

Claim.  Gale–Shapley produces a matching. 

Pf.  Hospital proposes only if unmatched; student  

Claim.  In Gale–Shapley matching, all hospitals get matched. 

Pf.  [by contradiction] 

・Suppose, for sake of contradiction, that some hospital h ∈ H is  
not matched upon termination of Gale–Shapley algorithm. 

・Then some student, say s ∈ S, is not matched upon termination. 

・By Observation 2, s was never proposed to. 

・But, h proposes to every student, since h ends up unmatched. 

Claim.  In Gale–Shapley matching, all students get matched. 

Pf.  

・By previous claim, all n hospitals get matched. 

・Thus, all n students get matched.  ▪
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Proof of correctness:  stability

Claim.  In Gale–Shapley matching M*, there are no unstable pairs. 

Pf.  Suppose that M* does not contain the pair h–s. 

・Case 1:  h never proposed to s. 
  ⇒  h prefers its Gale–Shapley partner sʹ to s.  
  ⇒  h–s is not unstable. 

・Case 2:  h proposed to s. 
  ⇒  s rejected h (right away or later) 
  ⇒  s prefers Gale–Shapley partner hʹ to h. 
  ⇒  h–s is not unstable. 

・In either case, the pair h–s is not unstable.  ▪
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hospitals propose in 
decreasing order 

of preference

students only trade up

  h – sʹ

hʹ – s

⋮

Gale–Shapley matching M*



Summary

Stable matching problem.  Given n hospitals and n students, and their 

preferences, find a stable matching if one exists. 

 
Theorem.  [Gale–Shapley 1962]  The Gale–Shapley algorithm guarantees  
to find a stable matching for any problem instance. 

Q.   How to implement Gale–Shapley algorithm efficiently? 

Q.   If multiple stable matchings, which one does Gale–Shapley find?
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Efficient implementation

Efficient implementation.  We describe an O(n 2) time implementation. 

 
Representing hospitals and students.  Index hospitals and students 1, …, n. 

 
Representing the matching. 

・Maintain a list of free hospitals (in a stack or queue). 

・Maintain two arrays student[h] and hospital[s]. 
- if h matched to s, then student[h] = s and hospital[s] = h
- use value 0 to designate that hospital or student is unmatched 

Hospitals proposing. 

・For each hospital, maintain a list of students, ordered by preference. 

・For each hospital, maintain a pointer to students in list for next proposal.
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Efficient implementation (continued)

Students rejecting/accepting. 

・Does student s prefer hospital h to hospital hʹ ? 

・For each student, create inverse of preference list of hospitals. 

・Constant time access for each query after O(n) preprocessing.
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for i = 1 to n 
    inverse[pref[i]] = i

student prefers hospital 3 to 6 
since inverse[3] < inverse[6]

1st 2nd 3rd 4th 5th 6th 7th 8th

8 3 7 1 4 5 6 2
pref[]

1 2 3 4 5 6 7 8

4th 8th 2nd 5th 6th 7th 3rd 1st
inverse[]



Understanding the solution

For a given problem instance, there may be several stable matchings. 

・Do all executions of Gale–Shapley yield the same stable matching? 

・If so, which one? 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1st 2nd 3rd

Atlanta Xavier Yolanda Zeus

Boston Yolanda Xavier Zeus

Chicago Xavier Yolanda Zeus

1st 2nd 3rd

Xavier Boston Atlanta Chicago

Yolanda Atlanta Boston Chicago

Zeus Atlanta Boston Chicago

an instance with two stable matchings:  S = { A-X, B-Y, C-Z } and S′ = { A-Y, B-X, C-Z } 



Understanding the solution

Def.  Student s is a valid partner for hospital h if there exists any stable 

matching in which h and s are matched. 

Ex. 

・Both Xavier and Yolanda are valid partners for Atlanta. 

・Both Xavier and Yolanda are valid partners for Boston. 

・Zeus is the only valid partner for Chicago.
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an instance with two stable matchings:  S = { A-X, B-Y, C-Z } and S′ = { A-Y, B-X, C-Z } 

1st 2nd 3rd

Atlanta Xavier Yolanda Zeus

Boston Yolanda Xavier Zeus

Chicago Xavier Yolanda Zeus

1st 2nd 3rd

Xavier Boston Atlanta Chicago

Yolanda Atlanta Boston Chicago

Zeus Atlanta Boston Chicago



Understanding the solution

Def.  Student s is a valid partner for hospital h if there exists any stable 

matching in which h and s are matched. 

Hospital-optimal assignment.  Each hospital receives best valid partner. 

・Is it perfect? 

・Is it stable? 

Claim.  All executions of Gale–Shapley yield hospital-optimal assignment. 

Corollary.  Hospital-optimal assignment is a stable matching!

18



Hospital optimality

Claim.  Gale–Shapley matching S* is hospital-optimal. 

Pf.  [by contradiction] 

・Suppose a hospital is matched with student other than best valid partner.  

・Hospitals propose in decreasing order of preference  
⇒  some hospital is rejected by valid partner during Gale–Shapley. 

・Let h be first such hospital, and let s be the first 
valid student that rejects h. 

・Let M be a stable matching where h and s are matched. 

・When s rejects h in Gale–Shapley, s forms (or re-affirms)  
commitment to a hospital, say hʹ. 
⇒  s prefers hʹ to h. 

・Let sʹ be partner of hʹ in M. 

・hʹ had not been rejected by any valid partner 
(including sʹ) at the point when h is rejected by s. 

・Thus, hʹ had not yet proposed to sʹ when hʹ proposed to s. 
⇒  hʹ prefers s to sʹ. 

・Thus h– sʹ is unstable in S, a contradiction.  ▪
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because this is the first 
rejection by a valid partner

h – s

hʹ – sʹ

⋮

stable matching M



Student pessimality

Q.  Does hospital-optimality come at the expense of the students?  

A.  Yes. 

 
Student-pessimal assignment.  Each student receives worst valid partner. 

 
Claim.  Gale–Shapley finds student-pessimal stable matching M*. 

Pf.  [by contradiction] 

・Suppose h–s matched in M* but h is not the worst valid partner for s. 

・There exists stable matching M in which s is paired with a hospital,  
say hʹ, whom s prefers less than h. 
⇒  s prefers h to hʹ. 

・Let sʹ be the partner of h in M. By hospital-optimality,  
s is the best valid partner for h.  
⇒  h prefers s to sʹ. 

・Thus, h–s is an unstable pair in M, a contradiction.  ▪
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 hʹ – s

h – sʹ

⋮

stable matching M



Deceit:  Machiavelli meets Gale–Shapley

Q.  Can there be an incentive to misrepresent your preference list? 

・Assume you know hospital’s propose-and-reject algorithm will be run. 

・Assume preference lists of all other participants are known. 

 
Fact.  No, for any hospital; yes, for some students.
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1st 2nd 3rd

A X Y Z

B Y X Z

C X Y Z

hospitals’ preference lists

1st 2nd 3rd

X B A C

Y A B C

Z A B C

students’ preference lists

1st 2nd 3rd

X B C A

Y A B C

Z A B C

X lies



Extensions

Extension 1.  Some participants declare others as unacceptable. 

Extension 2.  Some hospitals have more than one position. 

Extension 3.  Unequal number of positions and students. 

 
 
 
 
 
Def.  Matching M is unstable if there is a hospital h and student s such that: 

・h and s are acceptable to each other; and 

・Either s is unmatched, or s prefers h to assigned hospital; and 

・Either h does not have all its places filled, or h prefers s to at least  
one of its assigned students.
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med-school student  
unwilling to work 

in Cleveland

more than 43K med-school 
students; only 31K positions



Historical context

National resident matching program (NRMP). 

・Centralized clearinghouse to match med-school students to hospitals.  

・Began in 1952 to fix unraveling of offer dates. 

・Originally used the “Boston Pool” algorithm. 

・Algorithm overhauled in 1998. 
- med-school student optimal 
- deals with various side constraints  

(e.g., allow couples to match together)

23

stable matching is no 
longer guaranteed to exist

hospitals began making 
offers earlier and earlier, 
up to 2 years in advance

The Redesign of the Matching Market for American Physicians:

Some Engineering Aspects of Economic Design

By ALVIN E. ROTH AND ELLIOTT PERANSON*

We report on the design of the new clearinghouse adopted by the National Resident
Matching Program, which annually fills approximately 20,000 jobs for new physi-
cians. Because the market has complementarities between applicants and between
positions, the theory of simple matching markets does not apply directly. However,
computational experiments show the theory provides good approximations. Fur-
thermore, the set of stable matchings, and the opportunities for strategic manipu-
lation, are surprisingly small. A new kind of “core convergence” result explains
this; that each applicant interviews only a small fraction of available positions is
important. We also describe engineering aspects of the design process. (JEL C78,
B41, J44)

The entry-level labor market for new physi-
cians in the United States is organized via a
centralized clearinghouse called the National
Resident Matching Program (NRMP). Each
year, approximately 20,000 jobs are filled in a
process in which graduating physicians and
other applicants interview at residency pro-
grams throughout the country and then compose
and submit Rank Order Lists (ROLs) to the
NRMP, each indicating an applicant’s prefer-
ence ordering among the positions for which
she has interviewed. Similarly, the residency
programs submit ROLs of the applicants they
have interviewed, along with the number of
positions they wish to fill. The NRMP processes
these ROLs and capacities to produce a match-
ing of applicants to residency programs.
The clearinghouse used in this market dates

from the early 1950’s. It replaced a decentral-
ized process that suffered a market failure when
residency programs and applicants started to
seek each other out individually through infor-
mal channels, earlier and earlier in advance of

employment, rather than waiting to participate
in the larger market. (By the 1940’s, contracts
were typically being signed two years in ad-
vance of employment.) Although the matching
algorithm has been adapted over time to meet
changes in the structure of medical employ-
ment, roughly the same form of clearinghouse
market mechanism has been used since 1951
(see Roth, 1984). The kind of market failure that
gave rise to this clearinghouse has since been
seen in many markets (Roth and Xiaolin Xing,
1994), a number of which have also organized
clearinghouses in response.
In the mid 1990’s, in an environment of rap-

idly changing health-care financing with many
implications for the medical labor market, the
market began to suffer a crisis of confidence
concerning whether the matching algorithm was
unreasonably favorable to employers at the ex-
pense of applicants, and whether applicants
could “game the system” by strategically ma-
nipulating the ROLs they submitted. The con-
troversy was most clearly expressed in an
exchange in Academic Medicine (Peranson and
Richard R. Randlett, 1995a, b; Kevin J.
Williams, 1995a, b). In reaction to this ex-
change, groups such as the American Medical
Student Association together with Ralph Nad-
er’s Public Citizen Health Research Group
(1995), and the Medical Student Section of the
American Medical Association (AMA-MSS,
1995) advocated that the matching algorithm be

* Roth: Department of Economics, and Graduate School
of Business Administration, Harvard University, Cam-
bridge, MA 02138 (e-mail: al_roth@harvard.edu); Peran-
son: National Matching Services, Inc., 595 Bay Street, Suite
301, Box 29, Toronto, ON M5G 2C2, Canada. We thank
Aljosa Feldin for able assistance with the theoretical com-
putations reported in Section VI. Parts of this work were
sponsored by the National Resident Matching Program, and
parts by the National Science Foundation.
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Lloyd Shapley.  Stable matching theory and Gale–Shapley algorithm. 

 
 
 
 
 
 
 
Alvin Roth.  Applied Gale–Shapley to matching med-school students with 

hospitals, students with schools, and organ donors with patients.

2012 Nobel Prize in Economics
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Lloyd Shapley

original applications: 
college admissions and 
“traditional marriage”

Alvin Roth



Content delivery networks.  Distribute much of world’s content on web.  

User.  Prefers web server that provides fast response time. 

Web server.  Prefers to serve users with low cost. 

Goal.  Assign billions of users to servers, every 10 seconds.

A modern application
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Algorithmic Nuggets in Content Delivery

Bruce M. Maggs Ramesh K. Sitaraman
Duke and Akamai UMass, Amherst and Akamai

bmm@cs.duke.edu ramesh@cs.umass.edu

This article is an editorial note submitted to CCR. It has NOT been peer reviewed.
The authors take full responsibility for this article’s technical content. Comments can be posted through CCR Online.

ABSTRACT
This paper “peeks under the covers” at the subsystems that
provide the basic functionality of a leading content deliv-
ery network. Based on our experiences in building one of
the largest distributed systems in the world, we illustrate
how sophisticated algorithmic research has been adapted to
balance the load between and within server clusters, man-
age the caches on servers, select paths through an overlay
routing network, and elect leaders in various contexts. In
each instance, we first explain the theory underlying the
algorithms, then introduce practical considerations not cap-
tured by the theoretical models, and finally describe what is
implemented in practice. Through these examples, we high-
light the role of algorithmic research in the design of com-
plex networked systems. The paper also illustrates the close
synergy that exists between research and industry where
research ideas cross over into products and product require-
ments drive future research.

1. INTRODUCTION
The top-three objectives for the designers and operators

of a content delivery network (CDN) are high reliability,
fast and consistent performance, and low operating cost.
While many techniques must be employed to achieve these
objectives, this paper focuses on technically interesting al-
gorithms that are invoked at crucial junctures to provide
provable guarantees on solution quality, computation time,
and robustness to failures. In particular, the paper walks
through the steps that take place from the instant that a
browser or other application makes a request for content
until that content is delivered, stopping along the way to
examine some of the most important algorithms that are
employed by a leading CDN.

One of our aims, as we survey the various algorithms, is
to demonstrate that algorithm design does not end when
the last theorem is proved. Indeed, in order to develop fast,
scalable, and cost-e↵ective implementations, significant in-
tellectual creativity is often required to address practical
concerns and messy details that are not easily captured by
the theoretical models or that were not anticipated by the
original algorithm designers. Hence, much of this paper fo-
cuses on the translation of algorithms that are the fruits of
research into industrial practice. In several instances, we
demonstrate the benefits that these algorithms provide by
describing experiments conducted on the CDN.

A typical request for content begins with a DNS query
issued by a client to its resolving name server (cf. Figure 1).
The resolving name server then forwards the request to the

Edge%Server%

Client%

Origin%

Authorita4ve%Name%Server%
%(Global%and%Local%Load%

Balancing)%

Overlay%
Rou4ng%

Content%

DNS%

Figure 1: A CDN serves content in response to a
client’s request.

CDN’s authoritative name server. The authoritative name
server examines the network address of the resolving name
server, or, in some cases, the edns-client-subnet provided by
the resolving name server [9], and, based primarily on this
address, makes a decision about which of the CDN’s clusters
to serve the content from. A variant of the stable marriage
algorithm makes this decision, with the aim of providing
good performance to clients while balancing load across all
clusters and keeping costs low. This algorithm is described
in Section 2.

But DNS resolution does not end here. The task of indi-
cating which particular web server or servers within the clus-
ter will serve the content is delegated to a second set of name
servers. Within the cluster, load is managed using a consis-
tent hashing algorithm, as described in Section 3. The web
server address or addresses are returned through the resolv-
ing name server to the client so that the client’s application,
such as a browser, can issue the request to the web server.
The web servers that serve content to clients are called edge
servers as they are located proximal to clients at the “edges”
of the Internet. As such, Akamai’s CDN currently has over
170,000 edge servers located in over 1300 networks in 102
countries and serves 15-30% of all Web tra�c.

When an edge server receives an HTTP request, it checks
to see if the requested object is already present in the server’s
cache. If not, the server begins to query other servers in

ACM SIGCOMM Computer Communication Review 52 Volume 45, Number 3, July 2015
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Interval scheduling

Input.  Set of jobs with start times and finish times. 

Goal.  Find maximum cardinality subset of mutually compatible jobs.
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jobs don’t overlap
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Weighted interval scheduling

Input.  Set of jobs with start times, finish times, and weights. 

Goal.  Find maximum weight subset of mutually compatible jobs.
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Bipartite matching

Problem.  Given a bipartite graph G = (L ∪ R, E), find a max cardinality 

matching. 

Def. A subset of edges M ⊆ E is a matching if each node appears  
in exactly one edge in M.
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matching



Independent set

Problem.  Given a graph G = (V, E), find a max cardinality independent set. 

Def.  A subset S ⊆ V is independent if for every (u, v) ∈ E, either u ∉ S 
or v ∉ S  (or both).

30

independent set



Competitive facility location

Input.  Graph with weight on each node. 

Game.  Two competing players alternate in selecting nodes. 
Not allowed to select a node if any of its neighbors have been selected. 

Goal.  Select a maximum weight subset of nodes.
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10 1 5 15 5 1 5 1 15 10

Second player can guarantee 20, but not 25.



Five representative problems

Variations on a theme:  independent set. 

Interval scheduling:  O(n log n) greedy algorithm. 

Weighted interval scheduling:  O(n log n) dynamic programming algorithm. 

Bipartite matching:  O(nk) max-flow based algorithm. 

Independent set:  NP-complete. 

Competitive facility location:  PSPACE-complete.
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