PEARSON

. ma 4. GREEDY ALGORITHMS I

» Dijkstra’s algorithm
» minimum spanning trees
2 » Prim, Kruskal
o /i » Union-Find Structure

N Algorithm Desgn

\
N JON KLEINBERG - EVA TARDOS

Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on 10/9/24 11:03AM

http://www.cs.princeton.edu/~wayne
http://www.cs.princeton.edu/~wayne/kleinberg-tardos

4. GREEDY ALGORITHMS |l

» Dijkstra’s algorithm

5
Y
! 1
s

Alqorithm Uesion

/

Y

R JON KLEINBERG - EVA TARDOS

’ Y/ 4/
(]
\
-
\

Single-pair shortest path problem

Problem. Given a digraph G = (V, E), edge lengths { = 0, source s € V,

and destination 7 € V, find a shortest directed path from s to .

B ()

source s 3

4 13
@/)

lengthof path=9+4 + 1+ 11 = 25

destination t

Single-source shortest paths problem

Problem. Given a digraph G = (V, E), edge lengths { = 0, source s € V,
find a shortest directed path from s to every node.

s (2)

5/'@ A
0 @6)

shortest-paths tree

Car navigation

Q. Which kind of shortest path problem?
A. Single-destination shortest paths problem.

g e
AT U

)

va?vVvVvV??VVQV

Sty ety
L) l'.vv

Wiy v o itV Ve Yy

LA A A AL A AL AL AL
Y

vl Almaden Blvd fiiiiss

S)
)

185 West San Carlos Street (CA82) |

Shortest path applications

* PERT/CPM.

* Map routing.

* Seam carving.

* Robot navigation.

* Texture mapping.

* Typesetting in LaTeX.

* Urban traffic planning.

* Telemarketer operator scheduling.

* Routing of telecommunications messages.

* Network routing protocols (OSPF, BGP, RIP).
* Optimal truck routing through given traffic congestion pattern.

Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.

Dijkstra’s algorithm

Greedy approach. Maintain a set of explored nodes S for which
algorithm has determined the shortest path distance d(u) from s to u.
* |nitialize S={s}, d(s) =0.
* Repeatedly choose unexplored node v which minimizes

! (V) = o - (LI,I};I)nuESCd(u) + KQD \ shortest path to some node

u in explored part,

followed by a single edge (u, V)

)
o N

Dijkstra’s algorithm

Greedy approach. Maintain a set of explored nodes S for which
algorithm has determined the shortest path distance d(u) from s to u.
* |nitialize S={s}, d(s) =0.
* Repeatedly choose unexplored node v which minimizes

= min +)
7 (v) e = (u,v) : uES du) + £, \ shortest path to some node
u in explored part,
add v to S, and set d(v) = wt(v). followed by a single edge (u, v)

* To recover path, set pred(v) = (u, v) that achieves min.

d(v)

o

Dijkstra’s algorithm: proof of correctness

Invariant. For each node u € S, d(u) is the length of a shortest s~u path.
Pf. [by inductionon [S|]
Base case: |SI=1Iseasy since S={s } and d(s) =0.
Inductive hypothesis: Assume true for I[S1=%k = 1.
* Let v be next node added to S, and let (u, v) be the final edge.
* A shortest s~u path plus (u, v) is an s~v path of length m(v).
* Consider any s~v path P. We show that it is no shorter than m(v).
Let (x, y) be the first edge in P that leaves S,
and let P’ be the subpath to x. o
P is already too long as soon as it reaches y. AN O ’®

v
-

-

(H ::~-.____ ___!:)
S b
a
n(y) = 7))

(P) = (P') +{x,y) = dx)+{x,y) =
t 1 t 1
non-negative inductive definition Dijkstra chose v

lengths hypothesis of 7(y) instead of y

Dijkstra’s algorithm: efficient implementation

Critical optimization 1. For each unexplored node v, explicitly
maintain n(v) instead of computing directly from formula:

a(v)= min du)+/,.
e=(u,y): ucs

* Foreachv ¢ S, m(v) can only decrease (because S only increases).
* More specifically, suppose u is added to S and there is an edge (u, v) leaving u.
Then, it suffices to update:

t(v) =min { 7(v), d(u) + u,v) }

Critical optimization 2. Use a priority queue to choose an unexplored node that
minimizes m(v).

10

Dijkstra’s algorithm: efficient implementation

Implementation.
* Algorithm stores s(v) for each node v.

* Priority queue stores r(v) for each unexplored node v.
* Recall that 7 (v) = d(v) once vertex is deleted from priority queue.

DIJKSTRA (V, E £ s)
pq <— CREATE-PRIORITY-QUEUE().
FOREACHV Zs: m(v) «— o0; q(s) «— O.
FOREACH v € V' : INSERT(pq, v, 7t(v)).
WHILE (IS-NOT-EMPTY(pg))

u <— DEL-MIN(pg).

FOREACH edge (u, v) € E leaving u:

IF w(v) > wu) + €u, v)
DECREASE-KEY(pq, v, m(u) + {u, v)).

a(v) «— m(u) +4u,v); pred(v) «— (u,v).

11

Dijkstra’s algorithm: which priority queue?

Performance. Depends on priority queue: n INSERT, n DELETE-MIN, m DECREASE-KEY.

* Array implementation optimal for dense graphs.
* Binary heap much faster for sparse graphs.

riority queue DECREASE-
_p A _ INSERT DELETE-MIN total
implementation KEY

unordered array O(1) O(n) O(1) O(n?)

binary heap O(log n) O(log n) O(log n) O(m log n)

+ amortized 12

4. GREEDY ALGORITHMS |l

» minimum spanning trees

jorthm Design

N JON KLEINBERG - EVA TARDOS

Spanning tree definition

Def. Let H=(V, T) be a subgraph of an undirected graph G = (V, E).
H is a spanning tree of G if H is both acyclic and connected.

H=(V,T)is a spanning tree of G = (V, E)

14

Spanning tree properties

Proposition. Let H=(V, T) be a subgraph of an undirected graph G = (V, E). Then,
the following are equivalent:

* His a spanning tree of G.

* His acyclic and connected.

* His connected and has n — 1 edges.

* His acyclic and has n — 1 edges.

* His minimally connected: removal of any edge disconnects it.

* His maximally acyclic: addition of any edge creates a cycle.

* H has a unique simple path between every pair of nodes.

Minimum spanning tree (MST)

Def. Given a connected, undirected graph G = (V, E) with edge costs c,,
a minimum spanning tree (V, T) is a spanning tree of G such that
the sum of the edge costs in 7 is minimized.

<~ 7

6 23
1

9

8

16 ; N\ 5 y

8
10 14 :

21 b

MSTcost=50=4+6+8+5+11+9+ 7

Cayley’s theorem. There are n»2 spanning trees of complete graph on

n vertices. <— can'tsolve by brute force

16

Applications

MST is fundamental problem with diverse applications.

Dithering.

Cluster analysis.

Max bottleneck paths.

Real-time face verification.

LDPC codes for error correction.

Image registration with Renyi entropy.

Find road networks in satellite and aerial imagery.

Reducing data storage in sequencing amino acids in a protein.

Model locality of particle interactions in turbulent fluid flows.
Autoconfig protocol for Ethernet bridging to avoid cycles in a network.

Approximation algorithms for NP-hard problems (e.g., TSP, Steiner tree).

Network design (communication, electrical, hydraulic, computer, road).

17

4. GREEDY ALGORITHMS |l

» Prim, Kruskal

E
vl
) { ¥
p

Alqorithm Uesion

/

Y

R JON KLEINBERG - EVA TARDOS

’ Y/ 4/
(]
\
-
\

Prim’s algorithm

Initialize S = any node, T= @.

Repeat n — 1 times:
* Add to T'a min-weight edge with one endpoint in S.
* Add new node to S.

19

Prim’s algorithm: implementation

Theorem. Prim’s algorithm can be implemented to run in O(m log n) time.
Pf. Implementation almost identical to Dijkstra’s algorithm.

PrRIM (V, E, ¢)

Create an empty priority queue pq.

T — & r(v) = weight of cheapest
known edge

§ «— anynodein'V. / between v and S

FOREACHV # s : m(v) «— ©; qa(s) « 0.
FOREACH v € V: INSERT(pg, v, (v)).
WHILE (IS-NOT-EMPTY(pg))
u <— DEL-MIN(pg).
T «— T u pred(u).
FOREACH edge (u, v) € E incident to u:
IF (v) > c(u,v)
DECREASE-KEY(pg, v, c(u, v)).

a(v) < c(u,v); pred(v) < (u,v).

20

Kruskal’s algorithm

Consider edges in ascending order of weight:
* Add to tree unless it would create a cycle.

21

Kruskal’s algorithm: implementation

Theorem. Kruskal’s algorithm can be implemented to run in O(m log m) time.
* Sort edges by weight.
* Use union—find data structure to dynamically maintain connected components.

KRUSKAL (V, E, ¢)

SORT m edges by weight so that c(e1) < c(e2) <... < c(em).
T — .
FOREACH v € V: MAKE-SET(V).

FOR i=1TO m
(M,V) «— €.
areuand v in

IF FIND-SET(#) # FIND-SET(v) <«—
T — T u{ei}.

same component?

UNION(M V) make u and v in
’) same component

RETURN T.

22

Reverse-delete algorithm

Consider edges in descending order of weight:
* Remove edge unless it would disconnect the graph.

23

Cycles and cuts

Def. A cutis a partition of the nodes into two nonempty subsets S and V - S.

Def. The cutset of a cut S is the set of edges with exactly one endpoint in S.

(2) (3)

(1) @ 5) ° cut S

@ O

cutset D = { (3, 4), (3, 5), (5, 6), (5, 7), (8, 7) }

24

Fundamental cutset

Fundamental cutset. Let (V,T) be a spanning tree of G = (V, E).
* Deleting any tree edge ffrom T divides nodes of spanning tree into
two connected components. Let D be cutset.
* Adding any edge e e D to T { f } results in a spanning tree.

T=(VF

Observation. If c. < ¢f, then (V, T) is not an MST.

25

Cycles and cuts

Def. A path is a sequence of edges which connects a sequence of nodes.

Def. Acycle is a path with no repeated nodes or edges other than the starting and
ending nodes.

(2) (3)

@ () (5) @

@

cycle C = { (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 1) }

26

Fundamental cycle

Fundamental cycle. Let (V,T) be a spanning tree of G = (V, E).
* Adding any non-tree edge ¢ € E to T forms unique cycle C.
* Deleting any edge f € Cfrom T u { e } results in a spanning tree.

T=(VF

Observation. If c. < ¢f, then (V, T) is not an MST.

27

