
Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley

Last updated on 8/10/17 2:08 PM

Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley

Last updated on 8/10/17 2:08 PM

3. GRAPHS

‣ basic definitions and applications
‣ graph connectivity and graph traversal
‣ testing bipartiteness
‣ connectivity in directed graphs
‣ DAGs and topological ordering

3. GRAPHS

‣ basic definitions and applications
‣ graph connectivity and graph traversal
‣ testing bipartiteness
‣ connectivity in directed graphs
‣ DAGs and topological ordering

Undirected graphs

Notation. G = (V, E)・V = nodes (or vertices).・E = edges (or arcs) between pairs of nodes.・Captures pairwise relationship between objects.・Graph size parameters: n = | V |, m = | E |.

V = { 1, 2, 3, 4, 5, 6, 7, 8 }

E = { 1–2, 1–3, 2–3, 2–4, 2–5, 3–5, 3–7, 3–8, 4–5, 5–6, 7–8 }

m = 11, n = 8

One week of Enron emails

The evolution of FCC lobbying coalitions

“The Evolution of FCC Lobbying Coalitions” by Pierre de Vries in JoSS Visualization Symposium 2010

http://www.cmu.edu/joss/content/issues/2010jossviz/5_deVries.htm

Framingham heart study

“The Spread of Obesity in a Large Social Network over 32 Years” by Christakis and Fowler in New England Journal of Medicine,
2007

http://www.cmu.edu/joss/content/issues/2010jossviz/5_deVries.htm

Some graph applications

graph node edge

communication telephone, computer fiber optic cable

circuit gate, register, processor wire

mechanical joint rod, beam, spring

financial stock, currency transactions

transportation street intersection, airport highway, airway route

internet class C network connection

game board position legal move

social relationship person, actor friendship, movie cast

neural network neuron synapse

protein network protein protein-protein interaction

molecule atom bond

Graph representation: adjacency matrix

Adjacency matrix. n-by-n matrix with Auv = 1 if (u, v) is an edge.・Two representations of each edge.・Space proportional to n2.・Checking if (u, v) is an edge takes Q(1) time. ・Identifying all edges takes Q(n2) time.

 1 2 3 4 5 6 7 8
1 0 1 1 0 0 0 0 0
2 1 0 1 1 1 0 0 0
3 1 1 0 0 1 0 1 1
4 0 1 0 0 1 0 0 0
5 0 1 1 1 0 1 0 0
6 0 0 0 0 1 0 0 0
7 0 0 1 0 0 0 0 1
8 0 0 1 0 0 0 1 0

Graph representation: adjacency lists

Adjacency lists. Node-indexed array of lists.・Two representations of each edge.・Space is Q(m + n).・Checking if (u, v) is an edge takes O(degree(u)) time.・Identifying all edges takes Q(m + n) time.

1 3 2

2

3

4 2 5

5

6

7 3 8

8

1 3 4 5

2 1 5 87

2 3 4 6

5

degree = number of neighbors of u

3 7

Paths and connectivity

Def. A path in an undirected graph G = (V, E) is a sequence of nodes
v1, v2, …, vk with the property that each consecutive pair vi–1, vi is joined
by an edge in E.

Def. A path is simple if all nodes are distinct.

Def. An undirected graph is connected if for every pair of nodes u and v,
there is a path between u and v.

Cycles

Def. A cycle is a path v1, v2, …, vk in which v1 = vk, k > 2, and the first k – 1
nodes are all distinct.

cycle C = 1-2-4-5-3-1

Trees

Def. An undirected graph is a tree if it is connected and does not contain
a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the
following statements imply the third:・G is connected.・G does not contain a cycle.・G has n – 1 edges.

Rooted trees

Given a tree T, choose a root node r and orient each edge away from r.

Importance. Models hierarchical structure.

a tree the same tree, rooted at 1

v

the parent of v

a child of v

root r

Phylogeny trees

Describe evolutionary history of species.

Describe organization of GUI widgets.

GUI containment hierarchy

http://java.sun.com/docs/books/tutorial/uiswing/overview/anatomy.html

3. GRAPHS

‣ basic definitions and applications
‣ graph connectivity and graph traversal
‣ testing bipartiteness
‣ connectivity in directed graphs
‣ DAGs and topological ordering

Connectivity

s-t connectivity problem. Given two nodes s and t, is there a path
between
s and t ?

s-t shortest path problem. Given two nodes s and t, what is the length of
a shortest path between s and t ?

Applications.・Friendster.・Maze traversal.・Kevin Bacon number.・Fewest hops in a communication network.

Breadth-first search

BFS intuition. Explore outward from s in all possible directions, adding
nodes one “layer” at a time.

BFS algorithm.・L0 = { s }.・L1 = all neighbors of L0.・L2 = all nodes that do not belong to L0 or L1, and that have an edge to
a node in L1.・Li+1 = all nodes that do not belong to an earlier layer, and that have an
edge to a node in Li.

s L1 L2 Ln–1

Breadth-first search

Breadth-first search: analysis

Theorem. The above implementation of BFS runs in O(m + n) time if the
graph is given by its adjacency representation.

Pf.・Easy to prove O(n2) running time:
- at most n lists L[i]
- each node occurs on at most one list; for loop runs ≤ n times
- when we consider node u, there are ≤ n incident edges (u, v),

and we spend O(1) processing each edge

・Actually runs in O(m + n) time:
- when we consider node u, there are degree(u) incident edges (u, v)
- total time processing edges is Σu∈V degree(u) = 2m. ▪

each edge (u, v) is counted exactly twice

in sum: once in degree(u) and once in degree(v)

Breadth-first search

Theorem. For each i, Li consists of all nodes at distance exactly i from s.
There is a path from s to t iff t appears in some layer.

Property. Let T be a BFS tree of G = (V, E), let x and y be
nodes in T belonging to layers Li and Lj respectively,
and let (x, y) be an edge of G.
Then, the levels of x and y differ by at most 1.

L0

L1

L2

L3

Depth-First Search

You might take if the graph G were truly a maze of interconnected rooms
and you were walking around in it.

Depth-First Search

Implementing Depth-First Search

 implements DFS, in the sense that it visits the nodes in exactly the same order
as the recursive DFS procedure in the previous section (except that each
adjacency list is processed in reverse order).

 runs in time O(m + n), if the graph is given by the adjacency list representation.

Depth-First Search

Property. For a given recursive call DFS(u), all nodes that are marked
“Explored” between the invocation and end of this recursive call are
descendants of u in T.

Property. Let T be a depth-first search tree, let x and y be nodes in T, and
let (x, y) be an edge of G that is not an edge of T. Then one of x or y is an
ancestor of the other.

Connected component

Connected component. Find all nodes reachable from s.

Connected component containing node 1 = { 1, 2, 3, 4, 5, 6, 7, 8 }.

Flood fill

Flood fill. Given lime green pixel in an image, change color of entire blob
of neighboring lime pixels to blue.・Node: pixel.・Edge: two neighboring lime pixels.・Blob: connected component of lime pixels.

recolor lime green blob to blue

Flood fill

Flood fill. Given lime green pixel in an image, change color of entire blob
of neighboring lime pixels to blue.・Node: pixel.・Edge: two neighboring lime pixels.・Blob: connected component of lime pixels.

recolor lime green blob to blue

Connected component

Connected component. Find all nodes reachable from s.

Theorem. Upon termination, R is the connected component containing s.

Theorem. For any two nodes s and t in a graph, their connected
components are either identical o disjoint.

s

u v

R

it’s safe to add v

3. GRAPHS

‣ basic definitions and applications
‣ graph connectivity and graph traversal
‣ testing bipartiteness
‣ connectivity in directed graphs
‣ DAGs and topological ordering

Bipartite graphs

Def. An undirected graph G = (V, E) is bipartite if the nodes can be colored
blue or white such that every edge has one white and one blue end.

Applications.・Stable matching: med-school residents = blue, hospitals = white.・Scheduling: machines = blue, jobs = white.

a bipartite graph

Testing bipartiteness

Many graph problems become:・Easier if the underlying graph is bipartite (matching).・Tractable if the underlying graph is bipartite (independent set).

Before attempting to design an algorithm, we need to understand
structure of bipartite graphs.

v1

v2 v3

v6 v5 v4

v7

v2

v4

v5

v7

v1

v3

v6

a bipartite graph G another drawing of G

An obstruction to bipartiteness

Lemma. If a graph G is bipartite, it cannot contain an odd-length cycle.

Pf. Not possible to 2-color the odd-length cycle, let alone G.

bipartite
(2-colorable)

not bipartite
(not 2-colorable)

Bipartite graphs

Lemma. Let G be a connected graph, and let L0, …, Lk be the layers
produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an
 odd-length cycle (and hence is not bipartite).

Case (i)

L1 L2 L3

Case (ii)

L1 L2 L3

Bipartite graphs

Lemma. Let G be a connected graph, and let L0, …, Lk be the layers
produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an
 odd-length cycle (and hence is not bipartite).

Pf. (i)・Suppose no edge joins two nodes in same layer.・By BFS property, each edge joins two nodes in adjacent levels.・Bipartition: white = nodes on odd levels, blue = nodes on even
levels.

Case (i)

L1 L2 L3

Bipartite graphs

Lemma. Let G be a connected graph, and let L0, …, Lk be the layers
produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an
 odd-length cycle (and hence is not bipartite).

Pf. (ii)・Suppose (x, y) is an edge with x, y in same level Lj.・Let z = lca(x, y) = lowest common ancestor.・Let Li be level containing z.・Consider cycle that takes edge from x to y,
then path from y to z, then path from z to x.・Its length is 1 + (j – i) + (j – i), which is odd. ▪

z = lca(x, y)

(x, y) path from
y to z

path from
z to x

The only obstruction to bipartiteness

Corollary. A graph G is bipartite iff it contains no odd-length cycle.

5-cycle C

bipartite
(2-colorable)

not bipartite
(not 2-colorable)

3. GRAPHS

‣ basic definitions and applications
‣ graph connectivity and graph traversal
‣ testing bipartiteness
‣ connectivity in directed graphs
‣ DAGs and topological ordering

Directed graphs

Notation. G = (V, E).・Edge (u, v) leaves node u and enters node v.

Ex. Web graph: hyperlink points from one web page to another.・Orientation of edges is crucial.・Modern web search engines exploit hyperlink structure to rank web
pages by importance.

Web graph.・Node: web page.・Edge: hyperlink from one page to another (orientation is crucial).・Modern search engines exploit hyperlink structure to rank web pages
by importance.

World wide web

Road network

Node = intersection; edge = one-way street.

Node = political blog; edge = link.

Political blogosphere graph

The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance,
2005

Ecological food web

Food web graph.・Node = species. ・Edge = from prey to predator.

Reference: http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.giff

Some directed graph applications

directed graph node directed edge

transportation street intersection one-way street

web web page hyperlink

food web species predator-prey relationship

WordNet synset hypernym

scheduling task precedence constraint

financial bank transaction

cell phone person placed call

infectious disease person infection

game board position legal move

citation journal article citation

object graph object pointer

inheritance

hierarchy

class inherits from

control flow code block jump

Graph search

Directed reachability. Given a node s, find all nodes reachable from s.

Directed s–t shortest path problem. Given two nodes s and t,
what is the length of a shortest path from s to t ?

Graph search. BFS extends naturally to directed graphs.

Web crawler. Start from web page s. Find all web pages linked from s,
either directly or indirectly.

Strong connectivity

Def. Nodes u and v are mutually reachable if there is both a path from u
to v and also a path from v to u.

Def. A graph is strongly connected if every pair of nodes is mutually
reachable.

Lemma. Let s be any node. G is strongly connected iff every node is
reachable from s, and s is reachable from every node.

Pf. Þ Follows from definition.
Pf. Ü Path from u to v: concatenate u↝s path with s↝v path.
 Path from v to u: concatenate v↝s path with s↝u path. ▪

s

v

u

ok if paths overlap

Strong connectivity: algorithm

Theorem. Can determine if G is strongly connected in O(m + n) time.
Pf.・Pick any node s.・Run BFS from s in G.・Run BFS from s in Greverse.・Return true iff all nodes reached in both BFS executions.・Correctness follows immediately from previous lemma. ▪

reverse orientation of every edge in G

strongly connected not strongly connected

Strong components

Def. A strong component is a maximal subset of mutually reachable nodes.

Theorem. [Tarjan 1972] Can find all strong components in O(m + n) time.

3. GRAPHS

‣ basic definitions and applications
‣ graph connectivity and graph traversal
‣ testing bipartiteness
‣ connectivity in directed graphs
‣ DAGs and topological ordering

Directed acyclic graphs

Def. A DAG is a directed graph that contains no directed cycles.

Def. A topological order of a directed graph G = (V, E) is an ordering of its
nodes as v1, v2, …, vn so that for every edge (vi, vj) we have i < j.

a DAG a topological ordering

v2 v3

v6 v5 v4

v7 v1

v1 v2 v3 v4 v5 v6 v7

Precedence constraints

Precedence constraints. Edge (vi, vj) means task vi must occur before vj.

Applications.・Course prerequisite graph: course vi must be taken before vj.・Compilation: module vi must be compiled before vj.・Pipeline of computing jobs: output of job vi needed to determine input
of job vj.

Precedence constraints

Directed acyclic graphs

Lemma. If G has a topological order, then G is a DAG.

Pf. [by contradiction]・Suppose that G has a topological order v1, v2, …, vn and that G also has
a directed cycle C. Let’s see what happens.・Let vi be the lowest-indexed node in C, and let vj be the node just
before vi; thus (vj, vi) is an edge.・By our choice of i, we have i < j.・On the other hand, since (vj, vi) is an edge and v1, v2, …, vn is a
topological order, we must have j < i, a contradiction. ▪

v1 vi vj vn

the supposed topological order: v1, …, vn

the directed cycle C

Directed acyclic graphs

Lemma. If G has a topological order, then G is a DAG.

Q. Does every DAG have a topological ordering?

Q. If so, how do we compute one?

Directed acyclic graphs

Lemma. If G is a DAG, then G has a node with no entering edges.

Pf. [by contradiction]・Suppose that G is a DAG and every node has at least one entering
edge. Let’s see what happens.・Pick any node v, and begin following edges backward from v. Since v
has at least one entering edge (u, v) we can walk backward to u.・Then, since u has at least one entering edge (x, u), we can walk
backward to x.・Repeat until we visit a node, say w, twice.・Let C denote the sequence of nodes encountered between successive
visits to w. C is a cycle. ▪

w x u v

Directed acyclic graphs

Lemma. If G is a DAG, then G has a topological ordering.

Pf. [by induction on n]・Base case: true if n = 1.・Given DAG on n > 1 nodes, find a node v with no entering edges.・G – { v } is a DAG, since deleting v cannot create cycles.・By inductive hypothesis, G – { v } has a topological ordering.・Place v first in topological ordering; then append nodes of G – { v }
in topological order. This is valid since v has no entering edges. ▪

DAG

v

Directed acyclic graphs

Topological sorting algorithm: running time

Theorem. Algorithm finds a topological order in O(m + n) time.
Pf. ・Maintain the following information:

- count(w) = remaining number of incoming edges
- S = set of remaining nodes with no incoming edges・Initialization: O(m + n) via single scan through graph.・Update: to delete v
- remove v from S
- decrement count(w) for all edges from v to w;

and add w to S if count(w) hits 0
- this is O(1) per edge ▪

Solved Exercise 1

Solved Exercise 1

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

