£ N 3. GRAPHS

PEARSON
g =

Addison
Wesley

> basic definitions and applications

> graph connectivity and graph traversal
D > testing bipartiteness

L\ 2h > connectivity in directed graphs

| ﬂ, > DAGs and topological ordering

Ngmithm Jesinr

}\ JON KLEINBERG - EVA TARDOS

Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley

Last updated on 8/10/17 2:08 PM




3. GRAPHS

> basic definitions and applications

y .

N\ Mloithm Desia

\ |
t\ JON KLEINBERG - EVA TARDOS




Undirected graphs

Notation. G=(V, E)
* V= nodes (or vertices).
* FE=edges (or arcs) between pairs of nodes.
* Captures pairwise relationship between objects.
* Graph size parameters: n=|V|, m=|E|.

V:{1)2)3)4)5)6)7)8}

E={1-2,1-3, 2-3, 24, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6, 7-8 }

m=11,n=8
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The evolution of FCC lobbying coalitions
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“The Evolution of FCC Lobbying Coalitions” by Pierre de Vries in JoSS Visualization Symposium 2010



http://www.cmu.edu/joss/content/issues/2010jossviz/5_deVries.htm

Framingham heart study

Figrore 1, Langest Conneciad Subcompenent of the Social Network in the Framinghem Heart Study in the Year 2000,
Each circle (nosde] represents ane person in the data set, Thene are 2200 persans in this subcempaonen of the socisl
netwirk, Circles with red borders dencte women, and circles with blue borders denabe men, The size of each circle
a4 proportional 1o the persan's Body-mass index. The intericr calor of the circles indicates the person's abesity status
pellow derates an obese person [Body-mass index, 230) and green denotes a ranobese persan, The colers of the
ties between the nodes indicate the relationship between: them: purple denctes a fendship or marital tie arsd crarge

dencaes & Tamilial tie,

“The Spread of Obesity in a Large Social Network over 32 Years” by Christakis and Fowler in New England Journal of Medicine,
2007



http://www.cmu.edu/joss/content/issues/2010jossviz/5_deVries.htm

Some graph applications

communication
circuit
mechanical
financial
transportation
internet
game
social relationship
neural network
protein network

molecule

telephone, computer
gate, register, processor
joint
stock, currency
street intersection, airport
class C network
board position
person, actor
neuron
protein

atom

fiber optic cable
wire
rod, beam, spring
transactions
highway, airway route
connection
legal move
friendship, movie cast
synhapse
protein-protein interaction

bond



Graph representation: adjacency matrix

Adjacency matrix. n-by-n matrix with A, =1 if (u, v) Is an edge.
* Two representations of each edge.
* Space proportional to n?.
* Checking if (u, v) is an edge takes ©(1) time.
* |dentifying all edges takes ®(n?) time.

12345678
01100000
10111000
11001011
01001000
01110100
00001000
00100001
00100010

ONO Ol h~WDN B




Graph representation: adjacency lists

Adjacency lists. Node-indexed array of lists.
* Two representations of each edge.
* Space is ®(m + n). /
* Checking if (u, v) iIs an edge takes O(degree(u)) time.
* |dentifying all edges takes ®(m + n) time.

degree = number of neighbors of u

1 | 3| e 2| @

2 |1 - 3 —> 4 | &T— 5| @
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4 |2 | &1 5| e
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Paths and connectivity

Def. A path in an undirected graph G =(V, E) is a sequence of nodes
vi, Vo, ..., Vk With the property that each consecutive pair vy, vi IS joined

by an edge Iin E.
Def. A path is simple if all nodes are distinct.

Def. An undirected graph is connected if for every pair of nodes u and v,
there is a path between u and v.




Cycles

Def. A cycleis a path w1, v, ..., vi In Which v, =v,, k>2, and the first k-1
nodes are all distinct.

cycle C = 1-2-4-5-3-1



Trees

Def. An undirected graph is a tree if it iIs connected and does not contain
a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the

following statements imply the third:
* G Is connected.
®* G does not contain a cycle.
* Ghasn-1 edges.



Rooted trees

Given a tree T, choose a root node r and orient each edge away from r.

Importance. Models hierarchical structure.

a child of v

a tree the same tree, rooted at 1



Phylogeny trees

Describe evolutionary history of species.

gut bacteriaq
trees
mushrooms
fizh

mammals
birds
dragonflies

beetles



GUI containment hierarchy

Describe organization of GUI widgets.

= Converter S} JFrame

1Panel
1TextField | Meters
1=T1der J

JComboBox

JPaneT
1TextFi1eld
15T1der

JF ramea
|
ah
JFana1 {custom content pane)
I I
JFanel JFane1
(ComyersionFanel ) (ComversionFPanel)
| | | |
JFane1 1ComboBox JComboEox JFanal
(custarm (custarm
I I | |
151ider 1TextFiald JTextField 1a3lidar
(DecimalField) (DacimalFiald)

http://java.sun.com/docs/books/tutorial/uiswing/overview/anatomy.html
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Connectivity

s-t connectivity problem. Given two nodes s and t, is there a path
between
sand t?

s-t shortest path problem. Given two nodes s and t, what is the length of
a shortest path between sand t?

Applications.
* Friendster.
* Maze traversal.
* Kevin Bacon number.
* Fewest hops in a communication network.



Breadth-first search

BFS intuition. Explore outward from s in all possible directions, adding
nodes one “layer” at a time.

BFS algorithm.
* I,={s}.
e L, = all neighbors of L,.
 I,=all nodes that do not belong to L, or L,, and that have an edge to
a node in L,.
* .., = all nodes that do not belong to an earlier layer, and that have an

edge to a node in L.



Breadth-first search

BFS(s):
Set Discovered|s] = true and Discovered|[v] = false for all other v
Initialize L[0] to consist of the single element s
Set the layer counter i=0
Set the current BFS tree T =0
While L[i{] is not empty
Initialize an empty list L[i+ 1]
For each node u € LJi]
Consider each edge (u,v) incident to u
If Discovered|[v] = false then
Set Discovered|[v] = true

Add edge (u,v) to the tree T
Add v to the list L[i+ 1]

Endif
Endfor

Increment the layer counter i by one
Endwhile



Breadth-first search: analysis

Theorem. The above implementation of BFS runs in O(m + n) time if the
graph is given by its adjacency representation.

Pf.
* Easy to prove O(n? running time:
- at most n lists L[i]
- each node occurs on at most one list; for loop runs <n times
- when we consider node u, there are < n incident edges (u, v),
and we spend O(1) processing each edge

* Actually runs in O(m + n) time:
- when we consider node u, there are degree(u) incident edges (u, v)
- total time processing edges is X, _, degree(u) = 2m. =

A

each edge (u, v) is counted exactly twice
in sum: once in degree(u) and once in degree(v)



Breadth-first search

Theorem. For each i, L, consists of all nodes at distance exactly i from s.
There is a path from s to ¢ iff t appears in some layer.

Property. Let T be a BFS tree of G=(V, E), let xand y be
nodes in T belonging to layers L,and L, respectively,
and let (x, y) be an edge of G.

Then, the levels of x and y differ by at most 1.

(a)



Depth-First Search

You might take if the graph G were truly a maze of interconnected rooms
and you were walking around in it.

DFS(u):
Mark u as "Explored" and add u to R
For each edge (u,v) incident to u
If v 1s not marked "Explored" then
Recursively invoke DFS(v)
Endif
Endfor



Depth-First Search

(a) (b) (c) (d)
N \ \
\ \ \
\ \ \
\ \ \
| \ |
A2) A2) A2)
,/ // ;J }/ /f ,.rI // ,/ f}
/ / / / / / / / /
/ ! / / / / p / py
S - / ," g / : -
ro 3 [ 3 [ 3 “~o
] I 1 ~
\ 1 1 ~
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| ) | } | \ N
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> . > . > ~
S 4 S 4 S 4
(e) ® (8)

Figure 3.5 The construction of a depth-first search tree T for the graph in Figure 3.2,
with (a) through (g) depicting the nodes as they are discovered in sequence. The solid
edges are the edges of T; the dotted edges are edges of G that do not belong to T.



Implementing Depth-First Search

DFS(s):
Initialize S to be a stack with one element s
While S is not empty
Take a node u from S
If Explored[u] = false then
Set Explored|u] = true
For each edge (u,v) incident to u
Add v to the stack S
Endfor
Endif
Endwhile

* implements DFS, in the sense that it visits the nodes in exactly the same order
as the recursive DFS procedure in the previous section (except that each
adjacency list is processed in reverse order).

* runs in time O(m + n), if the graph is given by the adjacency list representation.



Depth-First Search

Property. For a given recursive call DFS(u), all nodes that are marked
“Explored” between the invocation and end of this recursive call are

descendants of uin T.

Property. Let T be a depth-first search tree, let xand y be nodes in T, and
let (x,y) be an edge of G that is not an edge of . Then one of x or y is an
ancestor of the other.



Connected component

Connected component. Find all nodes reachable from s.

Connected component containing node 1={1,2,3,4,5,6, 7,8 }.



Flood fill

Flood fill. Given lime green pixel in an image, change color of entire blob
of neighboring lime pixels to blue.

* Node: pixel.

* Edge: two neighboring lime pixels.

* Blob: connected component of lime pixels.

recolor lime green blob to blue

enn Tux Paint _ _
L.
aint  Stamp RainbowSparkles
= = o o o o
Lines 'Shapes Mirrar * Flip
e © o ©
Abc —=
Text Blur " Blocks
v o\ R JfC
Undo Redo Negative' Fade
20 0 S .
Eraser = New Chalk ' Drip
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Flood fill

Flood fill. Given lime green pixel in an image, change color of entire blob
of neighboring lime pixels to blue.

* Node: pixel.

* Edge: two neighboring lime pixels.

* Blob: connected component of lime pixels.

recolor lime green blob to blue

86ec Tux Paint
fTools) Magid
-
aint | Stamp HalnbuwS;érkles
= ® = o o o o
Lines Shapes Mirrar Flip

® ©o e ©o
Abc ¥ —
Text \Magic Blur "' Blocks
= ) o O ® ©o
1 /k o\
Undo ' Redo Negative' Fade
20 0 m * o U C
Eraser = MNew Chalk Drip

® 6 o o e O

é Z‘ / o S

Colordf™ ) ™
W Click in the picture to fill that area with color.




Connected component

Connected component. Find all nodes reachable from s.

R will consist of nodes to which s has a path R
Initially R={s}

While there 1s an edge (u,v) where ue€R and v ¢R

Add v to R @

Endwhile

it’s safe to add v

Theorem. Upon termination, R is the connected component containing s.

Theorem. For any two nodes s and tin a graph, their connected
components are either identical o disjoint.
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Bipartite graphs

Def. An undirected graph G =(V, E) Is bipartite if the nodes can be colored
blue or white such that every edge has one white and one blue end.

Applications.
* Stable matching: med-school residents = blue, hospitals = white.

* Scheduling: machines = blue, jobs = white.

a bipartite graph



Testing bipartiteness

Many graph problems become:
* Easier if the underlying graph is bipartite (matching).
* Tractable if the underlying graph is bipartite (independent set).

Before attempting to design an algorithm, we need to understand
structure of bipartite graphs.

X7\

N2/

)

a bipartite graph G another drawing of G




An obstruction to bipartiteness

Lemma. If a graph G is bipartite, it cannot contain an odd-length cycle.

Pf. Not possible to 2-color the odd-length cycle, let alone G.

(R sb

bipartite not bipartite
(2-colorable) (not 2-colorable)



Bipartite graphs

Lemma. Let G be a connected graph, and letL, ...,L, be the layers

produced by BFS starting at node s. Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is bipartite.

(ii) An edge of G joins two nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

@ @‘<i/§1§
L, L, L, L, L, L

Case (i) Case (ii)



Bipartite graphs

Lemma. Let G be a connected graph, and letL, ...,L, be the layers

produced by BFS starting at node s. Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is bipartite.

(ii) An edge of G joins two nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

Pf. (i)
* Suppose no edge joins two nodes in same layer.
* By BFS property, each edge joins two nodes in adjacent levels.
* Bipartition: white = nodes on odd levels, blue = nodes on even

levels.

)




Bipartite graphs

Lemma. Let G be a connected graph, and letL, ..., L, be the layers

produced by BFS starting at node s. Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is bipartite.

(ii) An edge of G joins two nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

Pf. (ii)
* Suppose (x,y) is an edge with x, y in same level L.
* Letz=Ica(x, y) = lowest common ancestor.
* Let L, be level containing z.
* Consider cycle that takes edge from x to y,
then path from y to z, then path from z to x.
* ltslengthis 1 + (j-i) + (j—i), whichisodd. =

- Y

(x,y)  pathfrom path from
y to z Z to x




The only obstruction to bipartiteness

Corollary. A graph G is bipartite iff it contains no odd-length cycle.

(R sb

< 5-cycle C

bipartite not bipartite
(2-colorable) (not 2-colorable)
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Directed graphs

Notation. G =(V, E).
* Edge (u,v) leaves node u and enters node v.

Ex. Web graph: hyperlink points from one web page to another.
* Orientation of edges is crucial.
* Modern web search engines exploit hyperlink structure to rank web
pages by importance.



World wide web

Web graph.
* Node: web page.
* Edge: hyperlink from one page to another (orientation is crucial).
* Modern search engines exploit hyperlink structure to rank web pages

cnn.com

netscape.com novell.com cnnsi.com timewarner.com

v
hbo.com
A

gameofthrones.com



Road network

Node = intersection; edge = one-way street.
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Political blogosphere graph

Node = political blog; edge = link.

The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance,
2005



Ecological food web

Food web graph.
* Node = species.
* Edge = from prey to predator.

narthemn copperbelly
water snake

algae (magnified)

Reference: http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.qgiff



Some directed graph applications

directed graph directed edge

transportation street intersection one-way street

web web page hyperlink
food web species predator-prey relationship
WordNet synset hypernym
scheduling task precedence constraint
financial bank transaction
cell phone person placed call
infectious disease person infection
game board position legal move
citation journal article Citation
object graph object pointer
inheritance class inherits from
hierarchy
control flow code block jump



Graph search

Directed reachability. Given a node s, find all nodes reachable from s.

Directed s-t shortest path problem. Given two nodes s and t,
what is the length of a shortest path from sto t?

Graph search. BFS extends naturally to directed graphs.

Web crawler. Start from web page s. Find all web pages linked from s,
either directly or indirectly.



Strong connectivity

Def. Nodes u and v are mutually reachable if there is both a path from u
to v and also a path from v to u.

Def. A graph is strongly connected if every pair of nodes is mutually
reachable.

Lemma. Lets be any node. G is strongly connected iff every node is
reachable from s, and s is reachable from every node.

Pf. = Follows from definition.
Pf. « Path from u to v: concatenate u~s path with s~v path.
Path from v to u: concatenate v~s path with s~u path. =

N

ok if paths overlap



Strong connectivity: algorithm

Theorem. Can determine if G is strongly connected in O(m + n) time.
Pf.
* Pick any node s. reverse orientation of every edge in G
®* Run BFS fromsinG. -
* Run BFS from s in Grevers,
* Return true iff all nodes reached in both BFS executions.
* Correctness follows immediately from previous lemma. =

strongly connected not strongly connected




Strong components

@ &

Theorem. [Tarjan 1972] Can find all strong components in O(m + n) time.
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Abstract. The value ol depth-firsl search or “backiracking™ as a technigue for solving problems is
illastrated by iwo examples. An improved version of an algorithm for finding the sirongly conmecied
compoenenis of @ direcied graph and an algerithm for finding the bicopnected components of an un-
direct graph are presented. The space and tme requirements of both algorithms are bounded by
EF + & E + kylor some constants &, ky, and k,, where Vis the number of vertices and E s the namber
of edges of the graph being examined.
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Directed acyclic graphs

Def. A DAG is a directed graph that contains no directed cycles.

Def. A topological order of a directed graph G = (V, E) iIs an ordering of its

nodes as v, v,, ..., v, so that for every edge (v, v) we have i <j.

a DAG a topological ordering



Precedence constraints

Precedence constraints. Edge (v, v) means task v, must occur before v..

1

Applications.
e Course prerequisite graph: course v, must be taken before v..

e Compilation: module v, must be compiled before v..
* Pipeline of computing jobs: output of job v. needed to determine input
of job v..






Directed acyclic graphs

Lemma. If G has a topological order, then G is a DAG.

Pf. [by contradiction]
* Suppose that G has a topological order v, v,, ..., v. and that G also has

a directed cycle C. Let’'s see what happens.
* Let v, be the lowest-indexed node in C, and let v, be the node just

before v; thus (v, v) is an edge.

* By our choice of i, we have i <j.

* On the other hand, since (v, v, is an edge and v, v,, ..., v, iS a
topological order, we must have j<i, a contradiction. =

the directed cycle C

@@@%\o@/c_)/\@ O ®

the supposed topological order: v,, ..., v,




Directed acyclic graphs

Lemma. If G has a topological order, then G is a DAG.
Q. Does every DAG have a topological ordering?

Q. If so, how do we compute one?



Directed acyclic graphs

Lemma. If Gis a DAG, then G has a node with no entering edges.

Pf. [by contradiction]

* Suppose that G is a DAG and every node has at least one entering
edge. Let’s see what happens.

* Pick any node v, and begin following edges backward from v. Since v
has at least one entering edge (u, v) we can walk backward to u.

* Then, since u has at least one entering edge (x, u), we can walk
backward to x.

* Repeat until we visit a node, say w, twice.

* Let C denote the sequence of nodes encountered between successive
visitstow. Cis a cycle. =

Q

O
G




Directed acyclic graphs

Lemma. If Gis a DAG, then G has a topological ordering.

Pf.

[by induction on n] -
Base case: true if n=1. >
Given DAG on n > 1 nodes, find a node v with no entering edges.
G-{v}isaDAG, since deleting v cannot create cycles.

By inductive hypothesis, G- { v } has a topological ordering.

Place v first in topological ordering; then append nodes of G- { v }

In topological order. This is valid since v has no entering edges. =

To compute a topological ordering of G: DAG
Find a node v with no incoming edges and order it first
Delete v from G \kl{/

Recursively compute a topological ordering of G—{v}

and append this order after v



Directed acyclic graphs

(b)

(d) (e) (f)

Figure 3.8 Starting from the graph in Figure 3.7, nodes are deleted one by one so as
to be added to a topological ordering. The shaded nodes are those with no incoming
edges; note that there is always at least one such edge at every stage of the algorithm’s
execution.



Topological sorting algorithm: running time

Theorem. Algorithm finds a topological order in O(m + n) time.

Pf.
* Maintain the following information:

- count(w) = remaining number of incoming edges

- S=set of remaining nodes with no incoming edges
* |nitialization: O(m + n) via single scan through graph.
* Update: to delete v

- remove v from S
- decrement count(w) for all edges from v to w;

and add w to S if count(w) hits 0
- thisis O(1) peredge =



Solved Exercise 1

Figure 3.9 How many topo-
logical orderings does this
graph have?



Solved Exercise 1

)—(

Figure 3.10 How many topo-
logical orderings does this
graph have?
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