Ejercicio resuelto en clase en semana 2

Ejercicio 1 (Algoritmo GS con función de comparación de propuestas). Considere el algoritmo de Gale-Shapley para formar un emparejamiento estable entre dos conjuntos, $M = \{m_1, m_2, \ldots, m_n\}$ y $W = \{w_1, w_2, \ldots, w_n\}$. En la versión presentada en la figura 1.1, las preferencias de los elementos de M están determinadas por listas de preferencias que constituyen parte de la entrada del algoritmo (igual que en el libro de referencia), pero las preferencias de los elementos de W se resuelven en tiempo de ejecución mediante invocaciones a una función de booleana, pref. Para $w \in W$, $m \in M$ y $m' \in m$, el resultado de pref(w, m, m') es **true** si w prefiere a m antes que a m' y **false** en caso contrario.

```
1 Algorithm Gale-Shapley
      Inicialmente p está libre para todo p \in M \cup W
      while existe m \in M libre que no se ha propuesto a todo w \in W
3
       do
          Sea w el elemento de W de mayor preferencia para m al cual
 4
           m no se ha propuesto
          if w está libre then
 5
             Emparejar m \operatorname{con} w
 6
          else
 7
             Sea m' la actual pareja de w
 8
             if pref(w, m, m') then
 9
                 Separar a w de m' y emparejar m con w
10
             else
11
                 w rechaza a m
12
```

Figura 1.1: Algoritmo para formar un emparejamiento estable.

- (a) Supongamos que para toda instancia del problema se cumple que pref(w, m, m') requiere tiempo O(n) para $w = w_1$ y requiere tiempo O(1) para $w \in W \setminus \{w_1\}$. Muestre que este algoritmo admite una implementación cuyo tiempo de ejecución es $O(n^2)$.
- (b) Generalizando el escenario anterior, supongamos ahora que para toda instancia del problema existe un subconjunto $\bar{W}\subseteq W$ tal que

pref(w,m,m') requiere tiempo O(n) para $w \in \bar{W}$ y requiere tiempo O(1) para $w \in W \setminus \bar{W}$, donde $|\bar{W}| \leq \epsilon |W|$ para cierta constante positiva ϵ . ¿Podemos afirmar que este algoritmo admite una implementación cuyo tiempo de ejecución es $O(n^2)$?

(c) En las mismas condiciones que la parte anterior, ¿podemos afirmar que $n^2 = o(T(n))$, donde T(n) denota el tiempo de ejecución de este algoritmo?

Recordar: f(n) = o(g(n)) si y solo si $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$.