Soluciones del segundo parcial de Matemática Discreta 1.

Miércoles 29 de junio de 2016.

Desarrollo I (14 puntos)

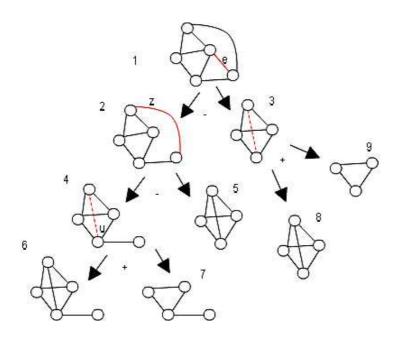
Dado el grafo W_4 ,

- 1. Hallar el polinomio cromático $P(W_4, \lambda)$.
- 2. Hallar el número cromático $\chi(W_4)$.
- 3. Hallar todas las distintas coloraciones posibles de W_4 con 2 y 3 colores.

Solución

Se aplican dos teoremas de descomposición del polinomio cromático, uno eliminando una arista y otro agregando una arista (ver figura). La línea roja punteada no forma parte del subgrafo respectivo, sino que indica que se va a agregar esa arista.

a)



$$P(9,\lambda) = \lambda(\lambda - 1)(\lambda - 2)$$

$$P(8,\lambda) = \lambda(\lambda-1)(\lambda-2)(\lambda-3)$$

$$P(7,\lambda) = \lambda(\lambda-1)^2(\lambda-2)$$

$$P(6,\lambda) = \lambda(\lambda-1)^2(\lambda-2)(\lambda-3)$$

$$P(5,\lambda) = P(K_4,\lambda) = \lambda(\lambda - 1)(\lambda - 2)(\lambda - 3)$$

$$P(4,\lambda) = P(6,\lambda) + P(7,\lambda) = \lambda(\lambda - 1)^{2}(\lambda - 2)^{2}$$

$$P(3,\lambda) = P(8,\lambda) + P(9,\lambda) = \lambda(\lambda - 1)(\lambda - 2)^{2}$$

$$P(2,\lambda) = P(4,\lambda) - P(5,\lambda) = \lambda(\lambda - 1)(\lambda - 2)(\lambda^{2} - 4\lambda + 5)$$

$$P(W_{4},\lambda) = P(2,\lambda) - P(3,\lambda) = \lambda(\lambda - 1)(\lambda - 2)(\lambda^{2} - 5\lambda + 7)$$

b) Evaluando en el polinomio cromático vemos que $\chi(W_4)=3$, ya que para $\lambda<3$ se anula el polinomio.

c)
$$P(W_4, 2) = 0$$
. $P(W_4, 3) = 3 \times 2 \times 1 \times 1 = 6$.

Desarrollo II (14 puntos)

Demuestre que todo subconjunto finito no vacío de un retículo tiene un supremo y un ínfimo. Sugerencia: Haga inducción en la cantidad de elementos del subconjunto.

Demostración

Por inducción, sea la propiedad P(n): todo subconjunto no vacío de n elementos de un retículo tiene un supremo y un ínfimo.

Paso base: la propiedad es cierta para n = 1, pues para todo conjunto unitario $\{x\}$, el supremo y el ínfimo es x.

Paso inductivo: supongamos que P(k) es cierta. Sea S un conjunto de k+1 elementos. Sean $x \in S$ y $S' = S - \{x\}$. Como S' tiene k elementos, por la hipótesis inductiva tiene supremo e ínfimo digamos y y a, respectivamente. Como estamos en un retículo, existen elementos $z = \sup(x,y)$ y $b = \inf(x,a)$. Habremos terminado la demostración si podemos demostrar que z es el supremo de S y b el ínfimo de S. Para demostrar que z es el supremo de S, observemos en primer lugar que si $w \in S$, entonces o bien w = x o bien $w \in S'$. Si w = x entonces $w \le z$ ya que z es el supremo de z es el

Los problemas del 1 al 4 son de múltiple opción (total 32 puntos). Correcta: 8 puntos, Incorrecta: -2 punto, sin responder: 0 punto.

1. En el grafo $K_{3,n}$, hay A ciclos de largo 4, B ciclos de largo 5 y C ciclos de largo 6. Determine A, B y C.

(A)
$$A = \binom{n}{2} \times \binom{3}{2}$$
, $B = 0$, $C = \binom{n}{3} \times 6$

(B)
$$A = \binom{n}{2} \times \binom{3}{2} \times 2$$
, $B = \binom{n}{2} \times \frac{5!}{10}$, $C = \binom{n}{3} \times 12$

(C)
$$A = \binom{n}{2} \times \binom{3}{2} \times 2$$
, $B = 0$, $C = \binom{n+3}{3} \times 12$

(D)
$$A = \binom{n}{2} \times \binom{3}{2}$$
, $B = 0$, $C = \binom{n+3}{3} \times 6$

(E)
$$A = \binom{n}{2} \times \binom{3}{2} \times 4$$
, $B = 0$, $C = \binom{n}{3} \times 12$

Solución

Claramente se ve que no existen ciclos de largo 5, por lo que B=0. Para largo 4, tenemos que elegir dos vértices en cada subconjunto de vértices del bipartito $K_{3,n}$, y eso lo hacemos de $\binom{n}{2} \times \binom{3}{2}$ luego permutamos los 2 vértices en cada conjunto, y dividimos entre $4=2\times 2$ para quitar rotaciones y reversos, por lo tanto solo hay $\binom{n}{2} \times \binom{3}{2}$ ciclos de largo 4. Observamos que no hay "n" rotaciones, sino $\frac{n}{2}$ ya que estamos en un grafo bipartito. Análogamente elegimos 6 vértices, para los ciclos de largo 6 y consideramos todos los ciclos permutando los dos conjuntos de vértices, y dividiendo entre 2 (quitar reversos) y entre $\frac{6}{2}=3$ (quitar rotaciones): $\binom{n}{3} \times \frac{3!\times 3!}{3\times 2}=\binom{n}{3}\times 6$. Por lo que la respuesta correcta es la A.

- **2.** Sea $A = \mathbb{N} \{1\}$ y R la relación sobre A dada por $(x, y) \in R$ si, y solo si, $mcd(x, y) \ge 2$. Sea $B = \mathbb{R}$ y S la relación sobre B dada por $(x, y) \in S$ si, y solo si, existe $n \in \mathbb{Z}$ tal que $x = 2^n y$. Señale la respuesta correcta.
 - (A) R y S son relaciones de equivalencia.
 - (B) R es de equivalencia pero S no lo es.
 - (C) R no es de equivalencia pero S si lo es.
 - (D) R y S no son relaciones de equivalencia.
 - (E) Ninguna de las anteriores.

Solución

R no es de equivalencia pues no es transitiva. $(2,6) \in R$ pues $mcd(2,6) = 2 \ge 2$, $(6,3) \in R$ pues $mcd(6,3) = 3 \ge 2$, pero $(2,3) \notin R$ pues mcd(2,3) = 1 < 2.

S es de equivalencia. Es reflexiva, pues si $x \in \mathbb{R}$, entonces $x = 2^0x$. Luego, $(x, x) \in S$. Es simétrica porque $x = 2^ny$ para $n \in \mathbb{Z}$ si, y solo si, $y = 2^{-n}x$. Es transitiva porque $x = 2^ny$ y $y = 2^mz$ para $n, m \in \mathbb{Z}$ implica $x = 2^{n+m}z$. La respuesta correcta es la C.

- 3. Dado el grafo G de la figura, señale la respuesta correcta.
- (A) G es plano y tiene 7 regiones.

- (B) G es plano y tiene 8 regiones.
- (C) G tiene solo un subgrafo homeomorfo a $K_{3,3}$.
- (D) G tiene solo un subgrafo homeomorfo a K_5 .
- (E) G tiene un subgrafo homeomorfo a $K_{3,3}$ y un subgrafo homeomorfo a K_5 .

Solución

El grafo de la figura es una inmersión plana de G,

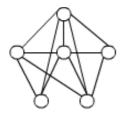
Observemos que tiene 7 regiones finitas y 1 infinita, por lo tanto la respuesta correcta es la B.

4. Sean G_1 , G_2 y G_3 grafos con matrices de advacencia

$$A(G_1) = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} A(G_2) = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix} A(G_3) = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$
respectivamente. Señale la

respuesta correcta.

- (A) G_1 y G_2 son isomorfos.
- (B) $G_2 ext{ y } G_3 ext{ son isomorfos.}$
- (C) $G_1 ext{ y } G_3 ext{ son isomorfos.}$
- (D) G_1 , G_2 y G_3 son isomorfos.
- (E) Ninguna de las anteriores.



Solución

Es fácil ver que el grado de un vértice se obtiene sumando los elementos de la fila respectiva en la matriz de adyacencia. Entonces:

- Matriz $A(G_1)$: $gr(u_1) = 2$; $gr(u_2) = 2$; $gr(u_3) = 1$; $gr(u_4) = 1$
- Matriz $A(G_2)$: $gr(v_1) = 3$; $gr(v_2) = 2$; $gr(v_3) = 3$; $gr(v_4) = 2$
- Matriz $A(G_3)$: $gr(w_1) = 2$; $gr(w_2) = 3$; $gr(w_3) = 3$; $gr(w_4) = 2$

No se puede establecer un isomorfismo entre G_1 y G_2 , ni entre G_1 y G_3 , ya que no se pueden hacer corresponder los grados de los vértices. Por otro lado se puede establecer un isomorfismo entre G_2 y G_3 mediante la función f que cumple que $f(v_1) = w_2$, $f(v_2) = w_1$, $f(v_3) = w_3$, $f(v_4) = w_4$.

Por lo tanto la respuesta correcta es la B.