Solución del Primer Parcial - Matemática Discreta I

Jueves 4 de mayo de 2017

daeres i de majo de 2011						
	MO1	M02	MO3	M04	M05	M06
•	D	В	В	D	В	С

El problema de desarrollo correcto vale 10 puntos.

Cada respuesta correcta de múltiple opción suma 5 puntos. Respuestas incorrectas restan 1. La duración del parcial es de tres horas y media.

Problema de Desarrollo

- (a) Hallar explícitamente en n la sucesión que verifica $a_0 = 0$ y $a_n = a_{n-1} + n^2$. (b) Dar una fórmula para $\sum_{i=0}^{n} i^2$ usando la parte anterior.
- (c) Probar la identidad anterior mediante el principio de Inducción Completa.

Solución - Desarrollo

- (a) La solución homogénea engloba a todas las constantes, mientras que existe una solución particular que es un polinomio de grado 3. Al operar, el único polinomio de grado 3 que ajusta la recursión es $a_n = \frac{1}{6}n(n+1)(2n+1)$.
- (b) Por la definición de la sumatoria, se observa que $a_n = \sum_{i=0}^n i^2 = \frac{1}{6}n(n+1)(2n+1)$.
- (c) Basta con probar que $a_n = \frac{1}{6}n(n+1)(2n+1)$ para todo natural n. Claramente $a_0 = \frac{1}{6}0(0+1)(2\times 0+1) = 0$, por lo que el paso base es cierto. Si suponemos que $a_h = \frac{1}{6}h(h+1)(2h+1)$, tenemos que:

$$a_{h+1} = a_h + (h+1)^2 = \frac{1}{6}h(h+1)(2h+1) + (h+1)^2$$

$$= \frac{1}{6}(h+1)[h(2h+1) + 6(h+1)]$$

$$= \frac{1}{6}(h+1)(2h^2 + 7h + 6)$$

$$= \frac{1}{6}(h+1)(h+2)(2h+3)$$

$$= \frac{1}{6}(h+1)((h+1) + 1)(2(h+1) + 1).$$

Luego, el resultado es cierto para n=h+1, y por el Principio de Inducción Completa hemos probado que $a_n = \sum_{i=0}^n i^2 = \frac{1}{6}n(n+1)(2n+1)$ para todo natural n.

Múltiple Opción 1

¿Cuántos estudiantes deben realizar esta prueba para asegurarnos que al menos dos entreguen las mismas respuestas de múltiple opción? Tener en cuenta las posibles respuestas en blanco. A) 15623; B) 15624; C) 15625; D) 15626.

Solución - MO1

Cada MO tiene 4 opciones o respuesta en blanco, es decir, 5 posibilidades. Como hay 6 MO resultan 5^6 posibles respuestas. Por el Principio del Palomar, $5^6 + 1 = 15626$ es el mínimo número de estudiantes que garantizan todas las respuestas de MO idénticas. Luego, la opción correcta es la D.

Múltiple Opción 2

Hallar la cantidad de palabras de largo 5 que usan las letras $\{A, B, C\}$ sin tres A seguidas: A) 221; B) 222; C) 223; D) 224.

Solución - MO2

Si llamamos a_n a la cantidad de palabras de largo n que cumplen lo pedido, se deduce que $a_{n+3} = 2(a_{n+2} + a_{n+1} + a_n)$ con $a_1 = 3$, $a_2 = 9$ y $a_3 = 26$. Luego $a_4 = 76$ y $a_5 = 222$. La opción correcta es la B.

Múltiple Opción 3

Cinco amigos llevan tres carpas idénticas para acampar. Contar la cantidad de distribuciones posibles asumiendo que se usan las tres carpas: A) 24; B) 25; C) 144; D) 150.

Solución - MO3

Contamos funciones del conjunto de 5 elementos distintos (amigos) en 3 idénticos (carpas). Es el número de Stirling $S(5,3) = Sob(5,3)/3! = \frac{1}{3!}(3^5 - {3 \choose 1} \times 2^5 + {3 \choose 2}1^5) = 25.$ Luego la opción correcta es la B.

Múltiple Opción 4

La cantidad de palabras de largo 3 que se pueden formar a partir de la palabra CABALLO es: A) 60; B) 64; C) 80; D) 84.

Solución - MO4

Separamos en tres casos:

- Hay dos letras A y otra letra: 4 × 3!/2! = 12 casos.
 Hay dos L y otra letra: 4 × 3!/2! = 12 casos.
 No hay repetidas: (5/3) × 3! = 60 casos.

Por Regla de la suma tenemos 60 + 12 + 12 = 84 palabras. Luego la opción correcta es la D.

Múltiple Opción 5

Hallar la cantidad de permutaciones de 123456 que cumplen que ningún dígito par está en su ubicación original. A) 420; B) 426; C) 432; D) 438.

Solución - MO5

Se aplica el Princpio de I-E con universo las permutaciones de 123456 y las tres condiciones c_i: el elemento i está en su lugar, tomando $i \in \{2, 4, 6\}$.

El número pedido es $n(\overline{c_2}, \overline{c_6}, \overline{c_6}) = 6! - 3 \times 5! + 3 \times 4! - 3! = 426.$ Luego la opción correcta es la B.

Múltiple Opción 6

La función generatriz de la serie $\frac{1}{3}$, 0, 0, $\frac{-2}{3}$, 0, 0, $\frac{4}{3}$, 0, 0, $\frac{-8}{3}$, 0, 0, $\frac{16}{3}$, 0, 0, $\frac{-32}{3}$, ... es: A) $\frac{1}{(1+2x^2)}$; B) $\frac{1}{(1-2x^3)}$; C) $\frac{1}{(3+6x^3)}$; D) $\frac{1}{(3-6x^3)}$.

Sugerencia: observar que los únicos términos no nulos de la sucesión son múltiplos de 3. Identificar a la fución generatriz con una serie geométrica.

Solución - MO6

Se reconoce una serie geométrica: $\frac{1}{3} \times \sum_{i=0}^{\infty} (-1)^i 2^i x^{3i} = \frac{1}{3} \sum_{i=0}^{\infty} (-2x^3)^i = \frac{1}{3(1-(-2x^3))}$. Luego la opción correcta es la C.