Primer Parcial - Matemática Discreta I

Viernes 8 de mayo de 2015

Violitos o de mayo de 2010								
Número de lista	APELLIDO, Nombre							Cédula de identidad
	MO1	M02	MO3	M04	M05	M06		

Cada problema de desarrollo correcto vale 8 puntos.

Cada respuesta correcta de múltiple opción suma 4 puntos. Respuestas incorrectas restan 1. La duración del parcial es de tres horas y media.

Múltiple Opción 1

Contar los subconjuntos de 4 elementos de $S = \{1, 2, ..., 100\}$ tales que la distancia entre toda pareja de elementos sea de 3 o más. Opciones: A) $\binom{94}{3}$; B) $\binom{94}{4}$; C) $\binom{94}{5}$; D) $\binom{94}{6}$.

Múltiple Opción 2

Hallar la cantidad de palabras usando todas las letras de la palabra CARACOL, que no tenga letras iguales consecutivas. Opciones: A) 650; B) 660; C) 670; D) 680.

Múltiple Opción 3

Hallar el menor número natural n para el cual no es posible entregar 100 caramelos a n niños de modo que todos reciban distintas cantidades. Se asume que no es posible partir caramelos, y que todo niño recibe al menos un caramelo. Opciones: A) 12; B) 13; C) 14; D) 15.

Múltiple Opción 4

Sea $\{F_n\}_{n\in\mathbb{N}}$ sucesión tal que $F_0=F_1=1$, y $F_{n+2}=F_{n+1}+F_n$.

Contar la cantidad c_{100} de palabras binarias de largo 100 que no tienen una racha de la forma 011. Opciones: A) $c_{100} = F_{100} + 1$; B) $c_{100} = F_{100} - 1$; C) $c_{100} = F_{100} + F_{101}$; D) $c_{100} = F_{100} + F_{101} - 1$.

Múltiple Opción 5

Hallar la cantidad de distribuciones de 6 pelotitas diferentes en 3 recipientes diferentes, de modo que cada recipiente tenga al menos una pelotita. Opciones: A) 500; B) 520; C) 540; D) 560.

Múltiple Opción 6

Sea $\{c_n\}_{n\in\mathbb{N}}$ la convolución entre las sucesiones $\{a_n\}_{n\in\mathbb{N}}$ y $\{b_n\}_{n\in\mathbb{N}}$ dadas por $a_n=n$ y $b_n=2^n$. Si c(x) es la función generatriz de $\{c_n\}_{n\in\mathbb{N}}$ entonces:

A)
$$c(x) = \frac{x}{(1-2x)(1-x)^2}$$
; B) $c(x) = \frac{x}{(1+2x)(1-x)^2}$; C) $c(x) = \frac{x(x+1)}{(1-2x)(1-x)^2}$; D) $c(x) = \frac{x+1}{(1-2x)(1-x)^2}$.

Probar que $\sum_{i=0}^n i^3 = \frac{n^2(n+1)^2}{4}$ para todo natural n, mediante el Principio de Inducción Completa sobre los números naturales.

Problema 2

Hallar la sucesión $\{a_n\}_{n\in\mathbb{N}}$ que verifica $a_0=a_1=1$ y $a_{n+2}-a_{n+1}=\sum_{i=0}^n a_i$.