Examen 26/2/2021 (virtual)

1.	Sea N is candidad de funciones injectivas $f:\{1,2,\ldots,11\} \to \{1,2,\ldots,13\}$ tales que $f(x)+x$ es impar para todo $x \in \{1,2,\ldots,11\}$ y sea $F=6t/2t$. Entonces $\frac{N}{N^2} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$. Pista: No catclude el valor de F^2 , encuentre mejor una expresión producto para Ny Juego simplifique términos en la expresión $\frac{N}{N^2}$ (observe que F en el denominador aparece elevado al cuadrado).			
2.	Sean $(b_n)y(c_n)$ dos sucesiones que verifican $c_n=\sum_{n=0}^\infty 2^kb_{n-k}$ para todo $n\geq 0$. Se sabe que la función generatriz $C(x)=\sum_{n=0}^\infty c_n x^n$ viene dada por $C(x)=\frac{1}{(1-2x)(1-x)^3}$. Entonces $b_{100}=$			
3.	Una relación R en el conjunto A-c(1,2,3,4) se dice que es <i>admisibile</i> si la matriz booleana (matriz cero-uno) asociada a la relación es de la forma: $ \mathcal{M}(R) = \begin{pmatrix} M & N \\ N & M \end{pmatrix} \text{donde } M \text{ y } N \text{ son matrices cuadradas } 2 \times 2 $ Existen exactamente relaciones admisibiles, de las cuales:			
l.	Decimos que una relación de orden en $A=\{1,2,\dots,7\}$ es regular si verifica (todas) las siguientes condiciones: • 7 es un elemento máximo de λ ; • 1, 2 y 3 son los únicos elementos mínimales; • No existe una cadena con 4 elementos; • Existen exactamente 3 cadenas de largo 3 que pasan por el elemento 6. Entonces existen exactamente ordenes regulares en A , de los cuales son reticulos.			
	Sean $I=\{1,2,\ldots,11\}$ y $J=\{1,2,\ldots,5\}$. Denotamos por $A=\{X:X\subseteq I\}$ al conjunto potencia de I (i.e. el conjunto de todos los subconjuntos de I). Consideramos en A la relación de equivalencia $X\sim Y$ si $X\cap J=Y\cap J$. Entonces el cardinal del conjunto cociente A/\sim es la clase de equivalencia de $X=\{1,3,8\}$ tiene elementos.			
i. [Se define el grafo cuadrícula $Q_{m,n}$ con m,n enteros positivos de la siguiente forma: Considere una cuadrícula m x n. Los vértices de $Q_{m,n}$ serán los centros de los cuadraditos que componen la cuadrícula y conectamos 2 de esos centros por una arista si los cuadraditos correspondientes tienen un lado en común. Complete las siguientes afirmaciones: El mínimo número de aristas que debemos quitarte a $Q_{3,3}$ de forma que el grafo resultante posea un circuito euleriano es \blacksquare El mínimo número de aristas que debemos quitarte a $Q_{16,14}$ de forma que el grafo resultante posea un circuito euleriano es \blacksquare Existen \blacksquare valores de $n:1 \le n \le 17$ para los cuales el grafo $Q_{3,n}$ posee ciclo hamiltoniano. \blacksquare Aclaraciones: \blacksquare 1. Circuito euleriano es un circuito euleriano es un circuito euleriano es un circuito euleriano es \blacksquare 1. Circuito euleriano es un circuito euleriano es \blacksquare 1. Circuito euleriano es un circuito euleriano es \blacksquare 1. Circuito euleriano es un circuito euleriano es un circuito euleriano es \blacksquare 1. Circuito euleriano es un circuito euleriano es un circuito euleriano es \blacksquare 2. Circuito euleriano es un circuito euleriano es \blacksquare 2. Circuito euleriano es un circuito euleriano es \blacksquare 2. Circuito euleriano es un circuito euleriano es \blacksquare 2. Circuito euleriano es un circuito euleriano es \blacksquare 2. Circuito euleriano es un circuito euleriano es \blacksquare 3. Circuito euleriano es un circuito euleriano es \blacksquare 3. Circuito euleriano es \blacksquare 4. Circuito euleriano es \blacksquare 4. Circuito euleriano es \blacksquare 5.			
	2. Una cuadrícula m x n es un arreglo rectangular de cuadraditos unitarios, con m filas de cuadraditos y n columnas de cuadraditos.			

Sea G un grafo plano simple conexo con 3 Se sabe que una representación plana tod	5 vértices de los cuales 6 son de grado 3, 25 son d as las regiones tienen grado 3 o 4.	grado 4 y 4 son de grado 6.	
Entonces el número de regiones es	de las cuales		
son de grado 3			
son de grado 4.			
Se incluyen las 10 preguntas que se uti	and the second second	ciones menores) y la indicación era seleccionar cuáles eran	
verdaderas.	r pregaritus de las de abajo (o con modifica	notes metores, y la maleación era selecciónar edales eran	
Seleccionar todas las opciones verdaderas.			
1. Existe un grafo con 1000 vértices que posee un ciclo hamiltoniano pero no un circuito euleriano.			
\odot 2. SI un grafo G posee un subgrafo homeomorfo a $K_{4,4}$ entonces no es plano.			
○ 3. Sea H un subgrafo recubridor conexo de un grafo G. SI G no es plano entonces H tampoco lo será.			
O 4. Si un grafo conexo G posee exactamente 2 vértices de grado impar entonces existe una arista e tal que G-e posee un circuito euleriano.			
○ 5. Si un grafo piano verifica la fórmula de Euler v-e+r=2 entonces es conexo.			
○ 6. SI G no es plano entonces su complemento sI lo es.			
7. Si dos grafos son homeomorfos y tienen la misma cantidad de vértices y la misma cantidad de aristas entonces son el mismo o isomorfos.			
○ 8. SI un grafo G posee un recorrido euleriano entonces G es conexo o posee vértices aislados.			
9.5I un grafo G plano conexo tiene la misma cantidad de vértices que de aristas entonces posee un ciclo.			
0 10. Sea H un subgrafo recubridor conexo de un grafo G. SI H es conexo entonces G también lo será.			

7.