Universidad de la República Facultad de Ingeniería - IMERL

Matemática Discreta 1 Agosto 2020

Examen – Miércoles 12 de agosto de 2020

Nro de Examen	Cédula	Apellido y nombre

Escribir nombre y cédula en todas las hojas que se entrequen.

Ejercicio 1.(10 pts.) La cantidad de soluciones enteras de la ecuación $x_1 + x_2 + x_3 = 21$ con las restricciones $-3 \le x_i \le 10$ para i = 1, 2, 3 es: (A) 28; (B) 55; (C) 253; (D) 496;

Ejercicio 2.(10 pts.) Para n natural sea a_n la cantidad de formas de pagar n pesos con monedas de

\$ 1 y \$ 2. Consideramos la función generatriz
$$f(x) := \sum_{n=0}^{+\infty} a_n x^n$$
, entonces $f(x)$ es:
(A) $\frac{1/2}{(1-x)^2} + \frac{1/4}{1-x} + \frac{1/4}{1+x}$; (B) $\frac{1}{1-x^2} + \frac{1}{1-x}$; (C) $\frac{1}{(1-x)^2} \times \frac{1}{1-x} = \frac{1}{(1-x)^3}$;

(D)
$$\frac{1/2}{1+x} + \frac{(1/2)x}{1+x^2} - \frac{1/2}{1+x^2}$$
; (E) $\frac{1}{1+x^2} + \frac{1}{1+x}$.

Ejercicio 3.(10 pts.) Sea (a_n) una sucesión de reales positivos que verifica $a_n = \sqrt{a_{n-1}^2 + 3n}, \forall n \ge 2$ con condición inicial $a_1 = \sqrt{273}$. Entonces a_{20} vale: (A) 30; (B) 35; (C) 40; (D) 45; (E) 50.

Ejercicio 4.(10 pts.) Sea $A = \{1, 2, 3, \dots, 12\}$. Sea N la cantidad de relaciones de órdenes parciales \mathcal{R} sobre A cuyo diagrama de Hasse consiste en una unión de 4 cadenas disjuntas de tamaño 3 y que verifican simultáneamente las siguientes tres condiciones: i) 1,2,3 y 4 son elementos minimales; ii) 9, 10, 11, 12 son elementos maximales; iii) 1 no es menor que 12. Entonces N es igual a: (A) 432; (B) 576; (C) 2592; (D) 3456; (E) 10368.

Ejercicio 5.(10 pts.) $K_{n,m,p}$ es el grafo tripartito completo con n+m+p vértices, es decir los vértices de $K_{n,m,p}$ se pueden separar en tres conjuntos disjuntos (uno de tamaño n, otro de tamaño m y otro de tamaño p) tal que cada vértice no sea adyacente a ningún vértice del conjunto al que pertenece y sea adyacente a todos los vértices de los otros dos conjuntos. Decimos que un grafo es hamiltoniano si admite un ciclo hamiltoniano. Marque la opción correcta:

- (A) $K_{n,2n,3n}$ y $K_{n,2n,3n+1}$ son hamiltonianos para todo $n \ge 1$.
- (B) $K_{n,2n,3n}$ es hamiltoniano para todo $n \geq 1$ y $K_{n,2n,3n+1}$ no es hamiltoniano para ningún $n \geq 1$.
- (C) $K_{n,2n,3n}$ es hamiltoniano para algunos valores de $n \geq 1$ pero no para todos y $K_{n,2n,3n+1}$ no es hamiltoniano para ningún $n \geq 1$.
- (D) $K_{n,2n,3n+1}$ es hamiltoniano para todo $n \ge 1$ y $K_{n,2n,3n}$ no es hamiltoniano para ningún $n \ge 1$.
- (E) $K_{n,2n,3n}$ y $K_{n,2n,3n+1}$ no son hamiltonianos para ningún $n \ge 1$.

Ejercicios de desarrollo (50 puntos) Se deben justificar todas las respuestas

Ejercicio 6.(20 puntos en total). Sea \mathbb{N} el conjunto de los naturales incluyendo el 0.

- (a) (5 pts.) Defina relación de equivalencia en un conjunto A.
- (b)(5 pts.) Defina conjunto cociente A/\sim , donde \sim es una relación de equivalencia sobre A.
- (c) Considere $A = \{(x_1, x_2, x_3) \in \mathbb{N}^3 : x_1 + x_2 + x_3 = 5\}$ y la relación de equivalencia $(x_1, x_2, x_3) \sim (y_1, y_2, y_3)$ si una se obtiene de la otra por una reordenación (por ejemplo $(1, 3, 1) \sim (3, 1, 1)$).
 - i) (2 pts.) Hallar [(0,1,4)] (la clase de equivalencia del elemento (0,1,4));
 - ii) (2 pts.) Hallar [(2,1,2)] (la clase de equivalencia del elemento (2,1,2));
 - iii) (2 pts.) Hallar el conjunto cociente A/R.
- (d)(4 pts.) Determine cuántas formas hay de repartir 5 pelotitas idénticas en 3 recipientes idénticos (pueden quedar recipientes vacios).

Ejercicio 7.(30 puntos en total). Para las partes (c) y (d) G es un grafo plano, simple (i.e. sin lazos ni aristas múltiples) y conexo con v vértices, $e \ge 3$ aristas y sin ciclos de largo $\ell \le 5$.

- (a)(4 pts.) Enuncie la fórmula de Euler para grafos planos conexos.
- (b)(5 pts.) Encuentre un grafo plano simple y dos inmersiones planas del mismo, donde los grados de las regiones sean diferentes (hay un ejemplo con 5 vértices).
- (c)(7 pts.) Pruebe que si una inmersión plana de G determina r regiones (contando la región no acotada) entonces $r \le e/3$.
- (d)(7 pts.) Pruebe que $3v \ge 2e + 6$.
- (e)(7 pts.) Pruebe que un grafo plano, simple y conexo que sea 3-regular posee un ciclo de largo $\ell \leq 5$.