Matemática Discreta I - 2019 - 1^{er} semestre

Práctico 10: Grafos (árboles, isomorfismos, grado, circuitos eulerianos y ciclos hamiltonianos).

Ref. Grimaldi 12.1, 11.2, 11.3 y 11.5

DEFINICIONES Y SUPOSICIONES:

- Todos los grafos de este práctico se suponen simples, es decir, sin aristas múltiples.
- Un vértice es aislado si no es adyacente a ningún otro.
- El grafo complemento \overline{G} de un grafo G = (V, E) se define como $\overline{G} = (V, V^{(2)} \setminus E)$ donde $V^{(2)} = \{\{u, v\} : u, v \in V, u \neq v\}$. Un grafo G se dice autocomplementario si es isomorfo a \overline{G} .
- Si $G_1 = (V_1, E_1)$ y $G_2 = (V_2, E_2)$ son dos grafos vértices disjuntos $(V_1 \cap V_2 = \emptyset)$, entonces su grafo unión $G_1 \cup G_2$ se define como $G_1 \cup G_2 = (V_1 \cup V_2, E_1 \cup E_2)$.
- Denotaremos $\kappa(G)$ a la cantidad de componentes conexas de G.
- Un grafo se dice k-regular si todos sus vértices tiene grado k. Un vértice colgante es un vértice de grado 1.

ÁRBOLES

Ejercicio 1 ¿Cuántas aristas tiene un árbol con n vértices?

Ejercicio 2 Demuestre que la cantidad de componentes conexas de un grafo con n vértices y m aristas es mayor o igual a n-m. Sugerencias: 1) Proceda por inducción en m o si quiere en n. 2) Otra forma es considerar un árbol recubridor para cada componente conexa del grafo. 3) agregue un vértice y únalo a cada componente por medio de una arista.

Ejercicio 3 De un ejemplo de un grafo G que no sea un árbol y que tenga un vértice más que el número de aristas.

ISOMORFISMO

Ejercicio 4 Encuentre todos los árboles con 6 vértices, a menos de isomorfismos.

Ejercicio 5

- a. Demuestre que dos grafos son isomorfos si y solo si sus grafos complemento lo son.
- b. ¿Cuáles de los grafos de la Figura 1 son isomorfos?
- c. Determine el número de aristas de \overline{G} en función del número de aristas de G.

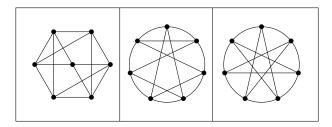


Figura 1

- \mathbf{d} . Determine el número de aristas de un grafo autocomplementario de orden n.
- e. Construya un grafo autocomplementario de orden 4 y otro de orden 5.
- f. Determine para qué valores de n existe un grafo autocomplementario de orden n. Sugerencia: Demuestre que n debe ser de la forma 4k o 4k + 1. Para n = 4k, generalice la estructura del grafo autocomplementario de orden 4 agrupando los vértices en cuatro grupos. Para n = 4k + 1 agregue un vértice al grafo anterior y únalo en forma adecuada.

Ejercicio 6 Para cada par de grafos de la Figura 2 determine si los grafos son o no isomorfos.

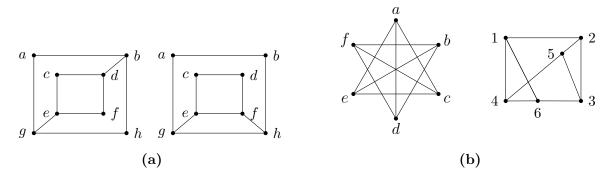


Figura 2

Ejercicio 7 Pruebe que K_n posee tres subgrafos dos a dos isomorfos cuyos conjuntos de aristas son una partición del conjunto de aristas de K_n si y sólo si n es de la forma 3k o 3k + 1.

GRADO

Ejercicio 8

- a. Determine el orden de un grafo 3-regular con 9 aristas.
- b. Ídem con 10 aristas, dos vértices de grado 4 y los demás de grado 3.
- c. ¿Existen tales grafos? En caso afirmativo construirlos.

Ejercicio 9 En una clase con 9 alumnos, cada alumno le manda 3 tarjetas de navidad a otros 3. ¿Es posible que cada alumno reciba tarjetas de los mismos 3 compañeros a los cuales él le mando una?

Ejercicio 10 Sea G un grafo con n vértices. ¿Cuántos vértices de \overline{G} tienen grado par si G tiene un sólo vértice de grado par?

Ejercicio 11 ¿Cuál es el máximo orden posible para un grafo con 17 aristas si todos sus vértices tienen grado mayor o igual a 3?

¿Existe algún grafo con dicha cantidad de vértices? En caso afirmativo construirlo.

Ejercicio 12 Para todo natural par $n \ge 4$ construya un grafo conexo 3-regular con n vértices.

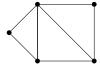
Ejercicio 13 (Examen diciembre 2016 Ej6)

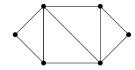
Demuestre que todo grafo conexo con 2 o más vértices tiene dos vértices con el mismo grado.

Ejercicio 14 ¿Cuántas hojas (vértices colgantes) tiene un árbol con cuatro vértices de grado 2, uno de grado 3, dos de grado 4 y uno de grado 5?

CIRCUITOS Y RECORRIDOS EULERIANOS, CICLOS Y CAMINOS HAMILTONIANOS

Ejercicio 15 Halle un recorrido o un circuito euleriano para cada grafo de la Figura 3 o demuestre que no existe.





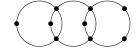


Figura 3

Ejercicio 16 Encuentre un recorrido euleriano para G = (V, E) con $V = \{a, b, c, d, e, f, g, h, i, j\}$ y $E = \{ab, ac, ai, aj, bc, cd, ci, de, df, dg, dh, ef, fg, fh, gh, hi, ij\}.$

Ejercicio 17

- a. Determine los valores de n para los cuales el grafo completo K_n tendrá un circuito euleriano.
- **b.** ¿Para cuáles n tiene K_n un recorrido euleriano?

Ejercicio 18 Encuentre la longitud máxima de un recorrido en a) K_6 ; b) K_8 ; c) K_{10} ; d) K_{2n} , $n \in \mathbb{N}$.

Ejercicio 19 Sea \mathcal{E} y \mathcal{H} los conjuntos de grafos Eulerianos y Hamiltonianos respectivamente. Dé un ejemplo de un grafo en $\mathcal{E} \setminus \mathcal{H}$, otro en $\mathcal{H} \setminus \mathcal{E}$ y otro en $\mathcal{E} \cap \mathcal{H}$.

Ejercicio 20 Encuentre un ciclo Hamiltoniano, si existe, para cada grafo de la Figura 4.

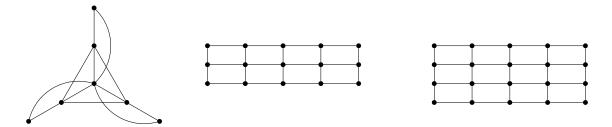


Figura 4

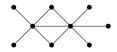
EJERCICIOS COMPLEMENTARIOS

Ejercicio 21 (Examen febrero 2009) ¿Cuántos vértices tiene un árbol con 16 vértices de grado 1, 20 vértices de grado 2 y el resto de grado 4?

Ejercicio 22 (Examen 2003) Halle el máximo número de aristas que se le puede quitar a K_6 sin que el grafo deje de ser conexo.

Ejercicio 23 (Parcial 2001) Sea G un grafo acíclico, con n vértices y k componentes conexas. Hallar cuantas aristas tienen G.

Ejercicio 24 (2^{do} parcial 2001) Halle el número de subgrafos conexos recubridores del grafo de la figura, a menos de isomorfismos.



Ejercicio 25 (Examen febrero 2010) Dados $k \geq 2$, $v \geq 3$ y un grafo G, k-regular con v vértices diga cuáles de las siguientes es condición suficiente para que G tenga un ciclo Hamiltoniano.

a)
$$2k \ge v$$
; b) $k \le v$; c) $2k < v$; d) $2k \ne v$

Ejercicio 26 (2^{do} parcial 2009)

- a. Sea G = (V, E) un grafo sin lazos, con $V = \{v_1, v_2, ..., v_n\}$. Llamamos $H = (V_H, E_H)$ al grafo inducido por $\{v_3, ..., v_n\}$. Probar que si $gr(v_1) + gr(v_2) < n$ entonces $|E_H| + gr(v_1) + gr(v_2) < C_2^{n-1} + 2$.
- **b**. Sea G = (V, E) un grafo sin lazos con |V| = n > 2 y $|E| \ge {n-1 \choose 2} + 2$. Probar que G tiene un ciclo hamiltoniano.