Matemática Discreta I - 2019 - 2^{do} semestre

Práctico 2: Combinatoria.

Ref. Grimaldi Secciones 1.1, 1.2, 1.3 y 1.4

Ejercicio 1

- a. ¿De cuántas formas se puede colorear una bandera de cuatro franjas con cinco colores?
- b. ¿Y si los colores de franjas contiguas deben ser distintos?
- c. Idem a la parte b. con la restricción de que el color de la primer y última franja sean distintos.

Ejercicio 2 ¿Cuántos números naturales pares de tres dígitos distintos (en base diez), existen?

Ejercicio 3 ¿Cuántas palabras distintas pueden construirse (con o sin sentido), usando todas las letras de la palabra ASALAS?

Ejercicio 4 ¿De cuántas maneras diferentes puede una torre de ajedrez, desplazarse desde la esquina inferior izquierda hasta la esquina superior derecha, admitiendo únicamente movimientos hacia arriba o hacia la derecha?

Ejercicio 5 (Ej. 1 del examen de diciembre de 2016) ¿Cuántas palabras se pueden formar con las letras de SKYWALKER que empiecen en vocal y no contengan la secuencia RK?

Ejercicio 6 Un comité de 10 personas será elegido entre 8 hombres y 8 mujeres. De cuántas formas se puede hacer una selección si

a. No hay restricciones.

- d. Deben haber más mujeres que hombres.
- **b**. Debe haber 5 hombres y 5 mujeres.
- e. Deben haber al menos 6 hombres.
- c. Debe haber un número par de mujeres.

Ejercicio 7 ¿De cuántas formas puede un jugador extraer 5 cartas de una baraja común (de 48 cartas) y obtener:

a. cinco cartas del mismo palo,

d. tres ases y dos sotas,

b. cuatro ases,

e. tres ases y un par?

c. cuatro cartas del mismo valor,

Ejercicio 8 ¿De cuántas formas es posible hacer una partición de un conjunto de 2n elementos, en n conjuntos de 2 elementos?

Ejercicio 9 Demuestre la fórmula de Stifel y escriba las primeras 6 líneas del triángulo de Pascal.

Ejercicio 10 Considere la suma

$$\sum_{i=0}^{n} C_m^i.$$

Calcúlela para algunos casos usando triángulo de Pascal, conjeture cuánto suma en general y demuéstrelo por inducción. Aclaración: Si i < m entonces $C_m^i = 0$.

Ejercicio 11 ¿De cuántas formas diferentes pueden distribuirse r pelotas del mismo color en n cajas diferentes?

Ejercicio 12 ¿De cuántas formas puede distribuir un maestro 8 bizcochos de chocolate y 7 de crema entre 3 estudiantes, si cada uno desea al menos un bizcocho de cada tipo?

Ejercicio 13 ¿Cuántas formas hay de sentar 5 niños en 12 sillas puestas en línea? ¿y si los niños no deben quedar sentados uno junto al otro?

Ejercicio 14 ¿Cuántos resultados diferentes se pueden obtener al arrojar 3 dados?

Ejercicio 15 ¿Cuántas fichas diferentes hay en el juego del domino?

Ejercicio 16 Hallar la cantidad de soluciones distintas (enteros no negativos) de la ecuación:

$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 = 4$$
.

¿Cuántas soluciones hay si se reemplaza el = por un <?

Ejercicio 17 ¿Cuántos números en $\{1, 2, 3, \ldots, 100\,000\}$ cumplen que la suma de sus dígitos sea 7?

Ejercicio 18

a. Para n y k positivos, probar que el coeficiente de $x_1^{n_1}$ $x_2^{n_2}$... $x_k^{n_k}$ en $(x_1 + x_2 + \cdots + x_k)^n$ es

$$\frac{n!}{n_1! \, n_2! \, \dots \, n_k!}, \quad \text{con } n_1 + n_2 + \dots + n_k = n.$$

b. Determinar el coeficiente de x^4 en el desarrollo de $(x^3 - x^2 + x - 1)^6$. (Ej. 3 del 1^{er} par. 2001)

c. Hallar el coeficiente de x^6 en $(2+2x+2x^2+2x^3+2x^4+x^5)^5$. (Ej. Des. 1b del 1er par. mayo 2018)

Ejercicio 19 Hallar la cantidad de subconjuntos de un conjunto con n elementos razonando con la fórmula del binomio.

2

EJERCICIOS COMPLEMENTARIOS

Ejercicio 20

a. Probar que:
$$\sum_{j=0}^{n} (-1)^{j} C_{j}^{n} = 0$$
.

b. (Ej. 4 del 1^{er} parcial del 2000) Hallar el valor de la siguiente suma:
$$\sum_{k=0}^{203} C_k^{203} (-4)^k$$
.

Ejercicio 21 (Ej. 1 parte a. del 1^{er} parcial del 2000)

Halle la cantidad de palabras distintas que pueden obtenerse permuntando las letras de la palabra MOMENT'ANEAMENTE si la primer letra debe ser O.

Ejercicio 22 ¿De cuántas formas se pueden distribuir las 32 piezas del ajedrez en el tablero sin que los reyes están amenazándose?

Ejercicio 23 ¿De cuántas maneras se puede particionar un conjunto de 6 elementos en subconjuntos de cardinal 3, 2 y 1 respectivamente? ¿Y si todos los subconjuntos tienen cardinal 2?

Ejercicio 24 En una playa se juntan 13 chicos y deciden hacer 4 equipos para jugar al voleibol, para ello hacer tres equipos de 3 jugadores y uno de 4. Entre los chicos se encuentra uno sumamente habilidoso y otro que es de madera, los restantes 11 jugadores son intermedios. Para equiparar, al habilidoso lo colocan en uno de los equipos de 3 jugadores y al de madera en el equipo de 4 jugadores. Probar que con esa condición existen 46200 posibles formas de armar los equipos.

Ejercicio 25 Para una selección de fútbol, fueron convocados 2 goleros, 6 zagueros, 7 mediocampistas y 4 atacantes. ¿De cuántos modos es posible formar una selección con un golero, 4 zagueros, 4 mediocampistas y 2 atacantes?

Ejercicio 26 En una prueba que consta de 10 preguntas, un estudiante decide responder solo 6 con al menos 3 de esas preguntas elegidas de entre las 5 primeras. ¿De cuántas formas distintas podría hacerlo?

Ejercicio 27 (Ej. de desarrollo del 1^{er} parcial del 2000)

Demuestre la siguiente igualdad: $\sum_{i=0}^{k} {k \choose i} {N-k \choose n-i} = {N \choose n}$, siendo $k \leq n \leq N$ números naturales.

Ejercicio 28 (Ej. 2 del 1^{er} examen del curso 2001)

Si p es un número primo, hallar la cantidad n de 4-uplas (a,b,c,d) de enteros mayores que 1 cuyo producto es p^{20} . Es decir: $n=|\{(a,b,c,d)\in(\mathbb{N}\setminus\{1\})^4:\ a\cdot b\cdot c\cdot d=p^{20}\}|$.

3

Ejercicio 29 Hallar el coeficiente de

- **a**. x^5 en el desarrollo de $(x^5 + x 1)^{10}$. (Ej. 3 del 1^{er} parcial del curso 2000)
- **b**. de xy^3z^5 del polinomio $(2x+4y+2z+5)^{14}$. (Ej. 5 del 2^{do} examen del curso 2001)