
Matemática Discreta I - 2017 Práctico 11

Grafos: Coloración (Grimaldi, 11.4)

Ejercicio 1 Encuentre el número cromático de los siguientes grafos.

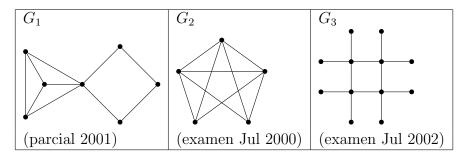
- a) El grafo bipartito completo $K_{m,n}$.
- b) El ciclo C_n , para $n \geq 3$.
- c) Los grafos de la Figura.

Ejercicio 2 Demuestra que $\chi(G) = 2$ si y solo si G no tiene ciclos impares.

Ejercicio 3 Sea G = (V, E) un grafo, donde $\Delta = \max_{v \in V} \operatorname{grad}(v)$.

- a) Demuestre que $\chi(G) \leq \Delta + 1$.
- b) Encuentre dos tipos de grafos G tales que $\chi(G) = \Delta + 1$.

Ejercicio 4 En los laboratorios químicos JJ, Juanita recibe tres embarques que contienen un total de siete sustancias químicas diferentes. La naturaleza de estas sustancias es tal que para todo $1 \ge i \ge 5$, la sustancia i no puede almacenarse en el mismo compartimiento que la sustancia i+1 o la i+2. Determine el menor número de compartimientos separados que Juanita necesitará para almacenar en forma segura estas siete sustancias.


Ejercicio 5 a) Determine $P(K_{1,3}, \lambda)$.

- b) ¿Cuál es el polinomio cromático de $K_{1,n}$? ¿Cuál es su número cromático?
- c) ¿Cuáles son los polinomios cromáticos de P_n ?
- d) ¿Cuál es el polinomio cromático de un árbol con n nodos?
- e) A partir de la parte anterior encuentre el número cromático de un árbol con n nodos.

Ejercicio 6 Hallar el polinomio cromático de $K_{2,n}$.

Ejercicio 7 a) Determine los polinomios cromáticos para los grafos de la Figura.

- b) Encuentre $\chi(G)$ para cada grafo.
- c) Si se dispone de cinco colores, ¿cuántas coloraciones propias de los vértices de cada grafo existen?

EJERCICIOS COMPLEMENTARIOS.

Ejercicio 8 (Examen Febrero 2002) Sea G un grafo con 5 vértices cuyo polinomio cromático evaluado en 4 vale 0, esto es

$$P(G;4) = 0.$$

Indique la opción correcta

- a. G posee dos aristas e y f incidentes, tales que si H = G e f, entonces P(H; 4) = 48.
- **b**. G no posee aristas incidentes.
- c. G posee dos aristas e y f incidentes, tales que si H = G e f, entonces P(H; 4) = 47.
- **d**. G posee dos aristas e y f incidentes, tales que si H = G e f, entonces P(H; 4) = 46.
- e. Ninguna de las anteriores.

Ejercicio 9 (Examen Feb 2002) Sea G un grafo con 4 vértices. Si se sabe que existe una arista e de G tal que P(G - e; 2) = P(G; 2) = 2, hallar P(G; 3) = 15.

Ejercicio 10 Dé un ejemplo de un grafo G = (V, E) tal que $\chi(G) = 3$ pero que ningún subgrafo de G sea isomorfo a K_3 .