Matemática Discreta I - 2018. Práctico 9

Grafos: caminos, recorridos, circuitos, conexión, subgrafos.

Grimaldi 11.1, 11.2

ALGUNAS DEFINICIONES

Todos los grafos se supondrán simples, es decir, sin artistas múltiples ni lazos. El grafo completo K_n tiene n vértices todos unidos entre sí. El bipartito completo $K_{n,m}$ tiene n+m vértices n de los cuales están unidos a los otros m, y esas son las únicas adyacencias. El camino simple P_n tiene n vértices y todo él es un camino simple. El n-ciclo C_n tiene n vértices y todo él es un ciclo. El grafo de Petersen es el de la Figura 1. Un grafo es un árbol si es conexo y no tiene ciclos.

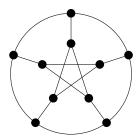


Figura 1: Grafo de Petersen

La distancia entre dos vértices a y b de un grafo conexo es la menor de las longitudes de los caminos que los unen. Por ejemplo, la distancia entre el vértice "c" y el vértice "m" del grafo de la Figura 2 (ii) es 2. El diámetro de un grafo conexo es la mayor de las distancias entre dos vértices cualesquiera. Por ejemplo, el diámetro de P_4 es 3 y el de C_5 es 2.

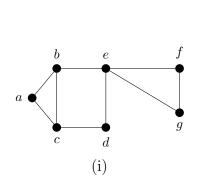
Ejercicio 1 Para el grafo de la Figura 2 (i), determine:

- **a**. Un camino $b-\cdots-d$ que no sea un recorrido. circuito.
- **b**. Un recorrido $b \cdots d$ que no sea simple. **e**. Un circuito $b \cdots b$ que no sea simple.
- c. Un camino simple $b \cdots d$.

 f. Todos los circuitos simples $b \cdots b$.
- **d**. Un camino cerrado $b \cdots b$ que no sea un **g**. Todos los recorridos simples $b \cdots f$.

Ejercicio 2

a. ¿Cuál es la distancia entre d y los demás vértices del grafo de la Figura 2 (ii)?



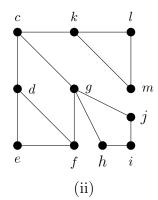


Figura 2:

b. Halle el diámetro de K_n , $K_{n,m}$, P_n , C_n y el grafo de Petersen (Figura 1).

Ejercicio 3 Determine si se cumple o no que:

- **a**. K_4 contiene un camino que no es un recorrido.
- **b**. K_4 contiene un recorrido que no es ni un circuito ni es simple.
- **c**. K_4 contiene un circuito que no es simple.

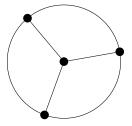
Ejercicio 4 ¿Cuántos caminos simples tiene P_4 ? ¿Y $K_{1,4}$? ¿Y P_n ? ¿Y $K_{1,n}$?

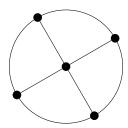
Ejercicio 5 (Primer parcial de junio de 2017 Ej1 MO) Sean x e y dos vértices adyacentes de C_{20} . ¿Cuántos caminos de largo 11 empiezan en x y terminan en y? A) $\binom{11}{2}$; B) $\binom{11}{4}$; C) $\binom{11}{6}$; D) $\binom{11}{8}$.

Ejercicio 6 (Primer parcial-examen 2002)

Sea K_{12} el grafo completo con exactamente 12 vértices. ¿Cuántos caminos simples de longitud 2 tiene K_{12} ?

Ejercicio 7 ¿Cuántos caminos de largo n hay entre dos vértices opuestos de C_4 ?





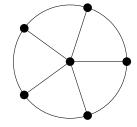


Figura 3:

- a. ¿Cuántas aristas tiene W_n ?
- **b.** ¿Cuántos ciclos de longitud 3 tiene W_3 ? ¿y W_4 ?
- c. ¿Cuántos ciclos de longitud 4 tienen W_3 , W_4 v W_5 ?
- d. Ídem para ciclos de longitud 5.
- e. Ídem para ciclos de longitud 6.
- f. Determine cuántos ciclos de longitud k tiene W_n .

Ejercicio 9 Pruebe que si P y Q son dos recorridos simples de longitud la mayor posible, en un grafo conexo, entonces tienen un vértice en común.

Ejercicio 10 Sea G el grafo con conjunto de vértices $\{1, 2, ..., 15\}$ donde el vértice i es adyacente al j si y solo si su máximo común divisor es mayor que 1. ¿Cuántas componentes conexas tiene G?

Ejercicio 11 (Segundo examen 2003)

Halle el mínimo número de aristas que hay que quitarle a K_6 para que quede desconectado en 2 componentes conexas, ninguna de las cuales sea un vértice aislado.

Ejercicio 12 Encuentre un grafo G que tenga dos vértices u y v tales que

$$\kappa(G - u) = \kappa(G)$$
 $\kappa(G - v) > \kappa(G)$

Ejercicio 13 Un hombre debe cruzar un perro, una oveja y una bolsa de repollos, que están en la otra margen del río, por medio de una canoa. El tamaño de la canoa no permite llevar más de un objeto a la vez y se entiende que luego de cruzar uno de estos no vuelve hacia atrás inmediatamente después con el mismo objeto. Además, no se puede dejar al perro sólo con la oveja ni a la oveja sola con la bolsa de repollos.

- a. ¿Cómo se podrá hacer?
- b. ¿Puede el hombre realizar el proceso si ha de hacer exactamente 20 viajes? (Un viaje es ir de una margen del río a la otra).

Sugerencia: asociar a cada disposición factible un vértice y unir dos vértices si se puede pasar de dicha disposición a la otra en un solo viaje.

Ejercicio 14 Sea G el grafo de la Figura 4 (a).

- a. ¿Cuántos subgrafos conexos de G tienen 4 vértices e incluyen un ciclo?
- **b**. Describa el subgrafo G_1 de G (Figura 4 (b)) como un subgrafo inducido y en términos de la eliminación de vértices de G.
- **c**. Ídem para el subgrafo G_2 (Figura 4 (c)).
- **d**. Trace el subgrafo de G inducido por el conjunto de vértices $U = \{b, c, d, f, i, j\}$.
- e. Sean e_1 y e_2 las artistas $\{a, c\}$ y $\{a, d\}$ respectivamente del grafo G. Trace los siguientes subgrafos de G: (i) $(G e_1) e_2$; (ii) $(G e_2) e_1$; (iii) $G \{e_1, e_2\}$.

- \mathbf{f} . Encuentre un subgrafo de G que no sea inducido.
- g. ¿Qué condición o condiciones debe cumplir un subgrafo para no ser inducido?
- h. ¿Cuántos subgrafos recubridores tiene G?
- i. ¿Cuántos de los subgrafos anteriores son conexos?
- j. ¿cuántos subgrafos de la parte h) tienen el vértice a como vértice aislado?

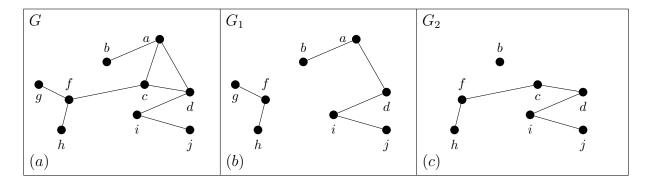


Figura 4:

Ejercicio 15 (Examen marzo 2001)

El hipercubo H_n de dimensión n, es el grafo cuyos vértices son las n-uplas de ceros y unos, tales que dos n-uplas son adyacentes si coinciden en todas sus coordenadas salvo exactamente en una de ellas.

- a. Halle los conjuntos de vértices de H_1 , H_2 , H_3 y dibuje dichos grafos.
- **b.** ¿Cuántos vértices y aristas tiene H_n ?
- **c.** Halle 2 caminos simples en H_5 de (0,0,1,1,0) a (0,0,0,1,0).
- **d**. Demuestre que H_n no tiene 3-ciclos.
- e. ¿Cuántos 4-ciclos tiene H_n ? (Sugerencia: considere un vértice fijo y cuente cuántos 4-ciclos pasan por él.)

Ejercicio 16 Sea G_n el grafo con vértices las n-uplas de 0s y 1s:

$$V(G_n) = \{(x_1, x_2, \dots, x_n) | x_i \in \{0, 1\}\}\$$

Dos *n*-uplas serán adyacentes si difieren en los valores de exactamente dos de sus posiciones, coincidiendo en el resto. Por ejemplo, en G_n , (0,0,1) es adyacente a (1,1,1) y a (1,0,0), pero no a (1,1,0).

- **a**. Dibuje G_2 , G_3 y G_1 .
- **b**. ¿Para qué valores de n es G_n conexo?
- c. ¿Cuántas componentes conexas tiene G_n ?

Sugerencia: sume los 1s de cada vértice.