Matemática Discreta I - 2018

Práctico 7

Relaciones - Primera Parte.

Grimaldi 5.1, 7.1 y 7.2

Aclaración: En todos los ejercicios R^{-1} denota la relación inversa, i.e. $R^{-1} = \{(x,y) : (y,x) \in R\}$, y \overline{R} la relación complementaria, i.e., $\overline{R} = \{(x,y) : (x,y) \notin R\}$

Ejercicio 1 Determine si las siguientes relaciones son reflexivas, irreflexivas $(\forall x, (x, x) \notin R)$, simétricas, antisimétricas, asimétricas $((x, y) \in R \Rightarrow (y, x) \notin R)$ o transitivas en $A = \{1, 2, 3, 4\}$:

a.
$$R = \{(1,1); (1,2); (2,1); (2,2); (3,3); (3,4); (4,3); (4,4)\}.$$

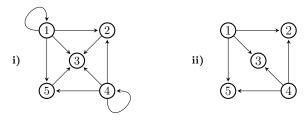
b.
$$R = \{(1,2); (1,3); (1,4); (2,3); (2,4); (3,4)\}.$$

c.
$$R = \{(1,3); (1,1); (3,1); (1,2); (3,3); (4,4)\}.$$

$$\mathbf{d}$$
. $R = \emptyset$.

$$e. R = A \times A.$$

- **f.** Las relaciones cuyas matrices son i) $\begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix}, \text{ ii) } \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$
- ${\bf g}.$ Para $A=\{1,2,3,4,5\}$ y las relaciones dadas por los grafos dirigidos siguientes



Ejercicio 2 (Parcial 2000)

Halle el número de relaciones R en el conjunto $A = \{a, b, c, d\}$ que verifican simultáneamente las 3 condiciones siguientes: R es simétrica; $(a, b) \in R$; $(c, c) \in R$. Construya la matriz y el diagrama de flechas (o digrafo) de una de estas relaciones.

Ejercicio 3 ¿Cuántas relaciones binarias

a. reflexivas,

b. simétricas,

c. asimétricas,

d. antisimétricas

son definibles sobre un conjunto con n elementos?

Ejercicio 4 Sean R y S relaciones en un conjunto $A = \{a_1, a_2, ..., a_n\}$.

a. Elabore un criterio para decidir si R es o no simétrica basándose en la matriz de R.

1

- b. Si R y S son simétricas: ¿lo serán también \overline{R} , R^{-1} , $R \circ S$, $R \cup S$, $R \cap S$?
- c. Ídem a los casos anteriores sustituvendo simétrica por reflexivas, irreflexivas, antisimétricas, asimétricas y transitivas.

Ejercicio 5 Demuestre o halle un contraejemplo a las siguientes afirmaciones:

- a. La composición de dos relaciones puede ser una función sin que ninguna de ellas lo sea.
- b. La inversa de una relación puede ser una función sin que ella misma lo sea.
- c. La composición de dos relaciones puede dar la relación vacía sin que ninguna de ellas lo sea

Ejercicio 6 (Parcial 2001)

Sea R una relación compatible sobre un conjunto no vacío A, es decir, R es reflexiva y transitiva. Considere las relaciones R^{-1} y $S = (R \circ R^{-1}) \cup (R^{-1} \circ R)$. Indique la opción correcta:

- a. R^{-1} es compatible, S es simétrica y $R \subseteq S$. d. R^{-1} es compatible y S no es simétrica y
- **b**. R^{-1} no es compatible. S no es simétrica v $R \not\subseteq S$.
- c. R^{-1} es un orden parcial y S es irreflexiva.
- $R \not\subseteq S$.
- e. R^{-1} no es compatible y S es simétrica y $R \subseteq S$.

Ejercicio 7 Clasificar la siguiente relación cuya matriz asociada es $A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix}$.

Ejercicio 8 Para cada proposición sobre la relación R definida sobre un conjunto finito A, indique si es verdadera o falsa. Justifique

- **a.** Si R es reflexiva sobre A, entonces $|R| \ge n$.
- **b.** Si $|R| > n^2 k$, con k < n entonces $\exists a \in A$ tal que $(a, a) \in R$.

Ejercicio 9 Sea R relación reflexiva y simétrica; T relación desconocida, y S relación antisimétrica. Indique verdadero o falso, justifique:

a. $R \circ R$ es reflexiva

d. $T \cap T^{-1}$ es reflexiva \leftrightarrow T es reflexiva

- **b**. $R \circ R$ es simétrica
- c. Si $S \circ R$ es simétrica entonces S es reflexiva e. T^2 es simétrica \leftrightarrow T es simétrica

Ejercicio 10 (Examen febrero de 2016 Ej2)

Sean R y S relaciones sobre un conjunto A, con S reflexiva y antisimetrica. Decir cual de las siguientes afirmaciones son verdaderas:

- 1. $R \cap R^{-1}$ es relacion simetrica, y es reflexiva si y solo si R lo es.
- 2. $R \circ S$ es reflexiva entonces R lo es.