Ejercicio 3 (25 puntos)

a) Consideremos $f: D(z_0, R) \to \mathbb{C}$ holomorfa. Si $\sum_{0}^{\infty} a_n(z - z_0)^n$ es la representación por serie de potencias de f centrada en z_0 , probar que el radio de convergencia es mayor o igual a R.

Sugerencia: expresar a_n en función de $f^{(n)}(z_0)$ y utilizar la estimativa de Cauchy para acotar la serie en cualquier disco $D(z_0, R')$, siendo R' < R.

Ejercicio 3 (25 puntos)

a) Si R' < R, f es holomorfa en $D(z_0, R')$, y $a_n = \frac{f^{(n)}(z_0)}{n!}$. Utilizando la estimativa de Cauchy, resulta que:

$$|f(z)| = |\sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n| \le \sum_{n=0}^{\infty} |\frac{f^{(n)}(z_0)}{n!}| |(z - z_0)|^n$$

$$\le \sum_{n=0}^{\infty} \frac{M}{R'^n} |z - z_0|^n,$$

siendo $M = \max_{z \in \overline{D}(z_0, R')} |f(z)|$. Es claro que la serie converge si $|z - z_0| < R'$, por lo que el radio de convergencia es mayor que o igual a R.