5. Reed-Solomon Codes

90 /160

Generalized Reed-Solomon Codes

o Let a1, a2,...,an, n < g, be distinct nonzero elements of F,, and let
., Un, be nonzero elements of Fy (not necessarily distinct). A

V1, V2, ..
generalized Reed-Solomon (GRS) code is a linear [n, k, d] code Cars over Fg,
with PCM
1 1 . 1
a Qs a v 0
v
Hoee| & a3 L dl 2
' ; ; ; 0
a’il*k*l a;lfkfl o a:’i—k—l Un
o column locators (distinct), wv;: column multipliers (5 0)
Cars is an MDS code, namely, d =n — k + 1. Lo
- R R
Proof. Any subset of » = n — k distinct columns 22 g2 22
X= 1 2 T

of the left part of Hgrs has the form of a
Vandermonde matrix defined by distinct elements, TLI TLI o
which is nonsingular. Hence, d > n — k + 1. By T
Singleton's bound, d =n —k+ 1. O

91/160

About column multipliers

Let @ = (a1, @, ..., ap), v = (v1,09,...,0,), and define
1 1 1
U1
aq a9 (079
CM2 062 062 (%] 0
M, —i(a) = 1 I m |, D(v)=
0
Ch Ch ’ e v
af k=1 oy k=L qnkt "

® We have Hgrs = M,,—;(a)D(v). Consider the code Cirg with PCM
HéRS = A47L7k(a).

e Clearly, Horsc” =0 < Hips(D(v)cT)) = 0: the codewords of C;rs
are the same as the codewords of Cars, but with the value in coordinate
J multiplied by v;, 1 < j < n.

® Cirs has the same parameters [n, k,d] as Cars (d is preserved since all
v; are nonzero). Column multipliers seem to make no difference (777).

® However, column multipliers do make a big difference on the properties of
sub-field sub-codes of GRS codes. Also, certain choices of multipliers (and
locators) have advantages when implementing encoders/decoders.

92 /160

Generator matrices and dual codes

Let H = Mn_k(a)D(v) be a PCM of Cqrs. Then, Cars has a
generator matrix of the form G = M (o) D(v"), for some choice of v’
(and the same «). Hence, the dual code of Cqrs is also a GRS code.

Proof. Typical rows of such (G, and of H, have the form
G’i :[’Uia’L Uéaé7 DRI U:Laiz,]v 0 S 1 S k— 13
Hj =[vied, vacd, ..., vnad], 0<j<n—Fk—1.
We have n o
Gi-H =) ooy, 0<i<k-1,0<j<n—k-1,
(=1

with 0 < i+ j < n — 2. Therefore, GH* = 0 if and only if

ZWUEQZ:O, 0<t<n—-2.
=1

These equations can be written in matrix form as M,_(a)D(v)(v)T = 0.
Now, M,,_1(a)D(v) is the PCM of an [n,1,n] GRS code, which has nonzero
codewords. Taking v’ to be such a codeword, the equations are satisfied. This

codeword has weight n, hence all v} are nonzero. O
93 /160

Distinguished Classes of GRS Codes

® Primitive GRS codes: n = q—1 and {au1, az,...,an} = F*; usually
a; = a'"! for a primitive a € F.
Normalized GRS codes: v; =1 for all 1 < j < n.
® Narrow-sense GRS codes: v; = a; forall 1 < j < n.
Allowing one a; = 0 (column [10 ... 0]”, not in narrow sense GRS):
(singly) extended GRS code =— n <gq
Allowing one «; = oo (column [0 ... 01]7, not in narrow sense GRS):
(doubly) extended GRS code — n<qg+1
Example. Let vi,v2,...,v, be the column multipliers of a primitive GRS code.
We can verify that the dual GRS code has column multipliers o /v;
—> (normalized primitive GRS)" = (narrow-sense primitive GRS).

94 /160

GRS Encoding as Polynomial Evaluation

e Foru=(uguy ... ug—1), let
w(x) = ug + urx + uow? + - - - + up_12¥71. Then,

11 .1)

U1
aq Q2 ... On ’ 0

o2 a2 a2 V2
c=uGgrs = (UoU1 ... Uk—1) " 1 2 - G

S 0
- !
allc 1a12c—1 aﬁfl Un

=[viu(a1) vhu(az) ... viulam)]

e Minimum distance now follows from the fact that a polynomial of degree
< k — 1 cannot have more than k& — 1 roots in
F, = wt(c)>n—k+1

e Decoding as noisy interpolation: reconstruct u(z) from (k + 2t) noisy
evaluations u(aq) + e1, u(as) + ea, ..., u(@gror) + €xtor, possible if at
most t evaluations are corrupted.

95 /160

Refresher: shortening a linear code

Given an [n, k, d] code, we can obtain an [n — {,k — {,d] code, 1 < ¢ < k, by
@ selecting all the codewords that start with ¢ zeros,

@® deleting the first ¢ coordinates.

If the code is systematic, this can be visualized as follows
uG =u (Texk|Arx(n—r))

Iy Orxr—r Ai/x(n,m

:[0,07...,07114@72717...7’LL0] T
O(k—0)xk T—e A(k—@)x(n—k)

4

Generator matrix of
the shortened code

Shortening is equivalent to setting the first £ message symbols to zero and then
ignoring them.

In terms of the systematic generator matrix, it is equivalent to taking the
lower-right (k — ¢) x (n — £) corner of the original matrix.

96 /160

Conventional Reed-Solomon Codes

e Conventional Reed-Solomon (RS) code Cgs: GRS code with n|(g—1),
a € F* with O(«) = n, _
a; = Oljil 1< 7 <n,

7

v, = =1 1<j5j<n, beZ.

® Commonly, n = q — 1: primitive code.
¢ Code can be shortened to any length n’ < n.

® Two ways to get shorter codes: choose n|(¢ — 1), n < qg—1, or
shorten by setting message digits to zero (or do both).

e Canonical PCM of a RS code is given by

1 ab o2l L a(nfl)b

1 ab+1 a2(b+1) e a(n_l)(b+1)
Hgs = : : :

i abJr.'r‘fl a2(b+-r71) . : . a(nfl)(bJrrfl)

#rows =r =n—k =d—1

97 /160

Conventional Reed-Solomon Codes

1 ol o2b L a(nfl)b
]_ ab+1 a2(b+1) ce a(nfl)(b“"l)
HRS =
i abJr-'r*fl Oé2(bq.Lr71) . a(nfl)(bJrrfl)
#rows =r =n—k =d—1
® Associate ¢ = [cg,¢1, ..., Cp1] € F™ with c(z) = Y, 01 c;zt € Flz].

® cc(Cps = Hpc"=0.

® For a typical row h; of Hys, hic ijo (o b+7) cj = c(abTh).
Therefore, ¢ € Crs <= c(a’) =0, £=0b,b+1,...,b+r—1.
o ot abtt .. abt1 roots of CRS.

g(z) = (z—ab)(z—abtl) .- (z—alTr1):
generator polynomial of Cys.
deg(g) =r=n—k

98 /160

RS Codes as CyCIIC codes (another polynomial characterization)

¢ ccCrs <= cla’)=0, £=0b0b+1,...,b+r—1
® g(z) = (z—ab)(x —). (z — abt7 1) (deg(g) =)
Therefore, c € Crs < g(2)|c(z) and
Crs = {u(x)g(x) : deg(u) <k} C Fylz],
Every root of g(z) is also a root of 2" —1 = g(z)|2™ — 1.
® (Cps is the ideal generated by g(z) in the ring F,[z]/(z™ — 1).
® RS codes are cyclic: ¢(z) € Crs = wc(z) mod (2" —1) € Cyg, of
Cc = [coc1 Cn_1} € Crs — [cn_lcocl Cn_g] € Cgs
® Distinguished RS codes
® Primitive RS: n = ¢ — 1, « primitive element of F,

® Narrow-sense RS: b = 1 (common choice)
® Normalized RS: b =0

® Cyclic property is not preserved if we shorten the code, but the other
properties are.

99/160

Encoding RS codes

o We saw the polynomial evaluation interpretation of GRS encoding

1 1 .1)
U1
(651 (6%} Qin O
o? o2 o? V2
c= uGgrs =u- 1 2 n
: : 0
. /
_ — _ v,
Oék 1 al; 1 a”lz 1 n
= [viu(an) vhu(az) ... viu(an)] non-systematic

o In the polynomial ideal interpretation of RS codes: u(z) — u(x)g(x),
corresponds to a non-systematic generator matrix
go gr ... Gn—k

go g1 cee n—k 0
G = . . . (gnfk = 1)

0

go g1 coo On—k

How about a systematic encoding?

100/ 160

Systematic Encoding of RS Codes

® For u(z) € Fy[z]k, let r,(z) be the unique polynomial in Fy[z],—k
such that

n—k

ry(x) = 2" "u(z) mod g(x)

® Let c(x) = 2" Fu(x) — ry ().
Clearly, g(x) | c(z), and deg(c(x)) < n—1, so

c(z) € Crs

® The mapping rs : u(z) +— c(x) = 2" Fu(x) — r,(z) is a linear,
systematic encoding for Cys

[Uk—1 Uk—2 ... Uug 0 0 e 0 }
—[0 0 ce 0 'm—k—1 Tn—k—2 ... T0]
[Cp—1 Cn—2 ... Cp—fk Cp—fk-1 Cp—fk-2 ... Cp }

k n—k ——»

101/ 160

Circuit elements for a systematic encoder

o 6 Y

1 clock cycle multiply
delay unit by g:

102 /160

Systematic Encoding Circuit

OO

00...0uouy...uxp—1 —

Switches: Register contents:
r—1
Re(z) =Y Resa', 1<0<k,

i=0

® at A for k cycles
® at B for r=n—k
cycles with initial condition

Ro(l‘) =0

103 /160

Systematic Encoding Circuit

B
f=—(Rer- 1+ Uk 1) B COCl...Cn—1 —
OO A
O
(S r—1)
00...Ououy ... up—1 —

g(@) =2 + g2+ gror" P4 gz + g0 22" + gla)
Notice: g(z) = —2" mod g(x).
One step while switches are at A:
Reyi(z) = zRe(z) — Reprz” +g(a)f
=aRe(x) =R 12" — g(z)Rer—1 —g(x)up—e1

—Rygr—19(x) T Up g1

= (:cRe(:v) + " Up—r—1) mod g(z)

104 /160

Systematic Encoding Circuit

=

—(Re,s +up— e 1)

O OO @ 4
r=n-—=k
Tl (Dl (D (D)l
(s=r—1)
UoUL « .« - Uk—1 —>
Switches: Register contents: Ro(xz) =0

® at A for k cycles Repa(z) = xfg(w) + mTuk:[—l
® at B for r=n—k = 7 Izzl(m) + " (Tuk—¢ + Up—r-1)
cycles = x’"Zuk,ile_i mod g(z)
T so k1.
Ry (x) =a’ E _ up—iz" " mod g(z) = 2"u(z) mod g(x).

105 /160

Shortened RS codes: Encoding Circuit

B
A B coc1 ... Cp_190—6—
OO OENS 4

OO O

UUT . . . U — 1906 —

The “conceptual” zeros are never stored or manipulated. They do not
participate in any computation.

106 / 160

Constant multipliers

Assume ¢ = 2™. Multiplying by a constant @
gi € GF(2™) is a linear transformation over GF(2).

e If elements are represented as m-vectors over GF(2), the transformation can be
implemented via multiplication by an m x m matrix with entries in GF(2), i.e.,
computing m XOR sums, each over a subset of the m input bits.

Example: Multiply generic 5 : [Bo 51 B2 B3] by o® in GF(2%).

1 0 1 0 Bo Bo + B
s 01 1 1 B | _ | Bi+B2+0s
OB 0 1 1 || B | T Bt Bat B
0 1 0 1 B3 Bi+ Bs

e We have r such multipliers in the encoder, all sharing the same input. If we
have g; = g; for some i # j, the output from the g; multiplier can be re-used,
and fed to the adder in the j-th stage of the register (eliminating the g;
multiplier). This would save hardware resources.

107 /160

Palindromic generator polynomial

g(z) ="+ gr_1z"!

with go # 0. Reversed:

G(@) =gor" + gz g+ 1

+ -+ g17 + go,

We have G (z) = " g(z~"), so, 3 is a root of g(x) iff 57" is a root of 7 ().
Can we make g(z) = g (x) (palindromic)? This would make go = 1,

g1 = gr—-1, 92 = gr—2, ...

Yes, if the set of roots is closed
under inversion. Assume g = 2™.

. q T
If , ch b=-——.
r is even, choose 5 3

r—1
2

If is odd, choose b = —

-1
(equivalently, b=¢q — 1 — r 3).

108 /160

