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Variability of solar resource poses difficulties in grid management as solar penetration rates rise contin-
uously. Thus, the task of solar power forecasting becomes crucial to ensure grid stability and to enable an
optimal unit commitment and economical dispatch. Several forecast horizons can be identified, spanning
from a few seconds to days or weeks ahead, as well as spatial horizons, from single site to regional fore-
casts. New techniques and approaches arise worldwide each year to improve accuracy of models with the
ultimate goal of reducing uncertainty in the predictions. This paper appears with the aim of compiling a
large part of the knowledge about solar power forecasting, focusing on the latest advancements and
future trends. Firstly, the motivation to achieve an accurate forecast is presented with the analysis of
the economic implications it may have. It is followed by a summary of the main techniques used to issue
the predictions. Then, the benefits of point/regional forecasts and deterministic/probabilistic forecasts are
discussed. It has been observed that most recent papers highlight the importance of probabilistic predic-
tions and they incorporate an economic assessment of the impact of the accuracy of the forecasts on the
grid. Later on, a classification of authors according to forecast horizons and origin of inputs is presented,
which represents the most up-to-date compilation of solar power forecasting studies. Finally, all the dif-
ferent metrics used by the researchers have been collected and some remarks for enabling a fair compar-
ison among studies have been stated.
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Nomenclature

ANFIS Adaptive Neuro-Fuzzy
ANN Artificial Neural Network
AR Auto-Regressive
ARIMA Auto-Regressive Integrated Moving Average
ARMA Auto-Regressive Moving Average
ARX Auto-Regressive eXogenous
CC Cloud Cover
CDF Cumulative Density Function
CMV Cloud Motion Vectors
CRPS Continuous Ranked Probability Score
DTC Distribution Transformer Controllers
ECMWF European Center for Medium range Weather Forecasts
EIM Energy Imbalance Markets
ELM Extreme Learning Machines
GA Genetic Algorithm
GCT Gate Closure Time
GFS Global Forecasting System
GHI Global Horizontal Irradiance
GMDH Group Method of Data Handling
ICP Interval Coverage Probability
IEA International Energy Agency
Iex extraterrestrial irradiance
IPOA Irradiance on Plane Of Array
k-NN k-Nearest Neighbors
KSI Kolmogorov–Smirnov Integral
kt clearness index
kcs clear sky index
LM Linear Model
LS Least Square
MAE Mean Absolute Error
MAID Mean Absolute Interval Deviation
MAPE Mean Absolute Percent Error

MARE Mean Absolute Relative Error
MBE Mean Bias Error
MLP Multi-Layer Perceptron
MLR Multivariate Linear Regression
MOS Model Output Statistics
MRE Mean Relative Error
NARX Non-linear AR-eXogenous
nRMSE normalized Root Mean Square Error
NWP Numerical Weather Predictions
P PV power
PDF Probability Density Function
PFA Probabilistic Finite Automata
PHANN Physical Hybrid Artificial Neural Network
PSO Particle Swarm Optimization
PTU Program Time Unit
PV photovoltaic
QR Quantile Regression
QRF Quantile Regression Forests
RF Random Forests
RH Relative Humidity
RMSE Root Mean Square Error
SARIMA Seasonal Auto-Regressive Integrated Moving Average
SVM Support Vector Machine
SVR Support Vector Regression
SOM Self Organized Map
T air temperature
VAR Vector Auto-Regression
VARX Vector Auto-Regression eXogenous
W wind speed
WD Wavelet Decomposition
WT Wavelet Transform
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1. Introduction

Recently, the 2015 United Nations Climate Change Conference
(COP21), now known as the Paris Agreement, has become a mile-
stone in fighting global warming. The 196 countries that signed
the document agreed to make efforts to limit the global warming
to less than 2 �C with respect to pre-industrial levels, which
implies reducing the anthropogenic greenhouse emissions to zero
during the second half of the 21st century. Reaching those goals
involves an electrification of many current thermal systems,
among many other actions. This Agreement stresses the necessity
of generating energy via renewable sources and motivates the
research on how to manage and integrate into the grid these vari-
able generation systems.

Focusing on solar technology, photovoltaics have experienced
enormous growth over the last years, amounting to a total installed
capacity of around 177 GW worldwide by the end of 2014 (IEA,
2015) and growth is projected to continue at a similar rate in the
future. Moreover, photovoltaic (PV) prices have seen a strong
reduction, bottoming below $1.5/Wp for fixed-tilt systems, boost-
ing more installations (GTM). PV has already become a key agent in
some electricity markets, reaching an annual 8% of solar share in
Italy or close to 7% in Germany, and the number of countries where
that percentage is greater than 1% is about 20 (IEA, 2015). In this
context, the high penetration of PV in electric systems poses many
economic benefits, but may also threaten the stability of the power
grid without accurate forecasts.

PV production mainly depends on the amount of solar global
irradiation incident on the panels, but that irradiation is not uni-
form over time. Solar resource variability and the uncertainty asso-
ciated to forecasts are behind most of the problems that must be
handled to maintain the stability of the power grid. A part of the
fluctuations are deterministic and explained by the rotational
and translational movements of the Earth with respect to the
Sun, which are accurately described by physical equations. How-
ever, there also exists unexpected changes in the amount of solar
irradiance arriving at the Earth’s surface, mainly derived from the
presence of clouds, which stochastically block the Sun’s rays and
grant PV power forecasting a certain level of uncertainty.

The ability of precisely forecasting the energy produced by PV
systems is of great importance and has been identified as one of
the key challenges for massive PV integration (EPIA, 2012; PV
GRID, 2014). It is decisive for grid operators, since deviations
between forecasted and produced energy must be supplied by
the rest of technologies that form the energy portfolio. Some of
the units that build the electric system act as operating reserve
generators. Thus, a proper PV forecast would be able to lower the
number of units in hot standby and, consequently, reduce the
ity of conventional power generation systems. Values for Nuclear, Hard coal and C

Nuclear Hard coal

t-up time ‘warm’ (h) na 5–7
p rate (%/min) 0 0.6–4
imal possible load (%) 100 40–60
operation costs. Table 1 depicts the flexibility of conventional
power plants and the ability to respond to such deviations.

An accurate forecast is not only beneficial for system operators
(and, eventually, for all customers from the grid) since it reduces
costs and uncertainties, but also for PV plant managers, as they
avoid possible penalties that are incurred due to deviations
between forecasted and produced energy.

The importance of the issue has boosted the development of
many studies worldwide to obtain accurate forecasts. Two main
approaches can be found in the forecasting of PV plant production:
indirect and direct. Indirect forecasts firstly predict solar irradia-
tion and then, using a PV performance model of the plant, obtain
the power produced. On the other hand, direct forecasts directly
calculate the power output of the plant. Also, many other studies
only focus on the prediction of solar irradiation, since it is the most
difficult element to model and have other applications apart from
solar power forecasting. Both forecasts (power and irradiation) are
approached via similar techniques. This review paper was based on
those articles that have as the output the power produced by the
plants, to establish a boundary in the scope and since that variable
can be directly used by grid operators and plant managers. This
work is limited to the study of scientific articles; the analysis of
commercial forecasting tools is out of the scope of this review.

This paper presents a complete review of the state-of-the-art
techniques to produce power forecasts for photovoltaics. There
are some previous review articles with also a wide scope (forecast-
ing techniques, sources of inputs, performance metrics, temporal
and spatial coverage, . . .), such as the work developed by Inman
et al. (2013) and IEA (2013), but the rate at which new studies
are developed requires that a new review showing current trends
is conducted. Some of these new trends are the focus on the eco-
nomic impact of forecasting, the importance of probabilistic fore-
casting and the necessity of agreement for a common suite of
performance metrics. Other more recent reviews are only focused
on a specific aspect of forecasting, such as ensemble forecasting
(Ren et al., 2015) or different forecasting techniques (Wan et al.,
2015).

The article is structured in such a way that it tackles some of the
issues that arise when planning a forecast, such as the necessity to
issue and improve solar power forecasts, the different techniques
that can be used, spatial and temporal coverage, information that
should be provided, measurement of accuracy and previous work
developed by other researchers.

Thus, the paper is structured as follows: Section 2 explains
some basic concepts that are used throughout the paper. Section 3
sets the foundations and main motivations of the study as it talks
about the importance of forecasting, showing possible economic
consequences of improved forecasts. Then, Section 4 shows the
ombined cycle gas are for inflexible plants. Source: IEA (2014).

Lignite Combined cycle gas Pumped storage

2–8 2–4 <0.1
0.6–6 0.8–6 15–25
40–60 40–50 5–6



J. Antonanzas et al. / Solar Energy 136 (2016) 78–111 81
main approaches to forecasting power output: physical, statistical
or hybrid. Section 5 discusses the benefits and characteristics of
forecasting for either a single PV plant or for an ensemble of them.
Section 6 talks about the different options to present the forecast: a
single value or a probabilistic term. It also discusses about the
implications it may have for grid operation. Section 7 discusses
about the different time horizons that are necessary to be taken
into account for a proper grid operation. In contrast to most of
review papers about solar forecasting, we have classified the stud-
ies according to the forecast horizon instead of the techniques
used. Here are collated and summarized all the articles found
about solar power forecasting. Finally, a review of the metrics that
are used to evaluate forecasts and the convenience of each of them
is given in Section 8, along with some recommendations for a bet-
ter comparability of studies. Moreover, at the end of certain sec-
tions and subsections a short summary is presented, which
depicts the main findings and conclusions about each topic.
2. Basic considerations

In this section some basic concepts about solar irradiation and
solar power generation are explained, which will ease the compre-
hension of the remaining parts of the text.

2.1. Clear sky models

As mentioned above, solar irradiance is mainly influenced by
the presence of clouds, whose presence difficulties irradiance pre-
dictions. However, it is possible to approximate the irradiance
under clear sky conditions, that is, in the absence of clouds. Such
value can be used to calculate solar indices, normalize metrics
and obtain the production of a solar plant under stationary condi-
tions. Usually, clear sky models are fed with meteorological vari-
ables and solar geometry, using Radiative Transfer Models to
establish the connections between the inputs. There exists a large
number of clear sky models, which differ from each other mainly in
the inputs needed by each model. Some of the most widely used
clear sky models are the Solis model (Mueller et al., 2004), the
European Solar Radiation Atlas (ESRA) model (Rigollier et al.,
2000), the Ineichen model (Ineichen and Perez, 2002) and the Ref-
erence Evaluation on Solar Transmittance 2 (REST2) model
(Gueymard, 2008). For an in-depth description of these and other
clear sky models, readers are referred to the aforemetioned refer-
ences and to Inman et al. (2013) and Badescu et al. (2013). Some
models only require one input (ESRA, Ineichen) whereas others
require a large number of them (Solis). As detailed in Ineichen
(2006), the choice of a clear sky model for a determined location
is driven by the availability and quality of input data, which is
the main limiting factor. The selection of a specific model is of sec-
ondary importance. Antonanzas-Torres et al. (2016) made an
assessment of the impact of atmospheric components in clear
sky models at different elevations, determining their accuracy
according to the spatial resolution of the inputs.

2.2. Clear sky and clearness indices

There are two parameters, the clear sky index (kcs) and the
clearness index (kt), which are widely used to classify weather con-
ditions and to calculate smart persistence models. They are
obtained in a similar way, but differ in the normalization variable.
The clear sky index is the ratio of measured irradiance to the mod-
eled clear sky irradiance Ics.

kcs ¼ I
Ics

ð1Þ
The clearness index is normalized with respect to the extrater-
restrial irradiance Iex. Thus, it avoids the difficulty of modeling the
interactions of irradiance with the atmosphere.

kt ¼ I
Iex

ð2Þ

where Iex ¼ I0 � �0 � cosh. I0, the solar constant, takes a value of
1360W/m2, �0 is the eccentricity of the ellipse described by the Earth
in its movement around the Sun and h is the solar zenith angle.
2.3. Time definitions of forecasts

Regarding the temporal aspect of forecasts, it is important to
introduce three concepts: forecast horizon f h, forecast resolution
f r and forecast interval f i. The forecast horizon is the amount of
time between present time t and the effective time of predictions.
The forecast resolution describes the frequency at which the fore-
casts are issued and the forecast interval denotes the time range of
predictions.
2.4. Origin of inputs

Studies can also be classified according to the origin of inputs.
To this extent, two main approaches can be found: models that
use endogenous data, formed by current and/or lagged time-
series of records of the production of a PV plant, and models that
use exogenous data, which may come from local measurements
(temperature, relative humidity, wind speed and direction, . . .),
information from total sky imagers, satellite images, Numerical
Weather Predictions (NWP) (temperature, relative humidity, irran-
diance, cloud cover, wind speed and direction, pressure, etc.), val-
ues from other meteorological databases and values from
neighboring PV plants.
2.5. Persistence models

Persistence models are commonly used as benchmark for more
developed models since they are the simplest. They assume that
conditions (irradiance, power output, clear sky index, etc.) remain
the same between t and t þ f h. Thus, many studies present their
results using the skill score (ss), which shows improvement (or
worsening) with respect to the said persistence/baseline models.
However, comparisons with respect to skill score between differ-
ent investigations must be performed carefully due to the abun-
dance of reference models. They can only be carried out when
persistence models have the same ‘‘persistence” variable. Hereafter
there is a list of the most common persistence models.

The ‘‘naive persistence” assumes that the forecasted power for
the time horizon will be the same as the last value measured. For
instance, for a 1 h ahead horizon, the power at 14.00 will be the
same as the power at 13.00. A variation of this model would be
to consider the same value as that of the previous day (or the clos-
est day with available measurements) at the same time
(Fernandez-Jimenez et al., 2012; Monteiro et al., 2013b; Lorenz
et al., 2011a). These models are recommended when time series
are considered stationary.

Ppðt þ f hÞ ¼ PðtÞ ð3Þ
Since solar irradiance time-series are not stationary, naive per-

sistence is normally limited to intra-hour applications. To over-
come this problem, other approach has been proposed, which
can be applied not only at longer time horizons but also in intra-
hour applications. It consists of decomposing solar power produc-
tion in a stationary and in a stochastic component. The stationary
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term is normally associated to the clear sky production and the
stochastic term, to the cloud-induced changes (Coimbra and
Pedro, 2013).

PðtÞ ¼ PcsðtÞ þ PstðtÞ ð4Þ
where PcsðtÞ is the expected power output under clear sky condi-
tions and PstðtÞ represents the stochastic term.

These approaches derive in the so called ‘‘smart persistence”,
since a more stationary variable is selected, such as the clear sky
index, the persistence of cloudiness or the ramp persistence.

Pedro and Coimbra (2012) detailed the following method.

Ppðt þ f hÞ ¼
Pcsðt þ f hÞ if PcsðtÞ ¼ 0
Pcsðt þ f hÞ P

PcsðtÞ otherwise

(
ð5Þ

In low variability periods and short time horizons, Pcs is very
accurate.

Coimbra and Pedro (2013) also showed another smart persis-
tence model based on the above-mentioned decomposition of solar
power production, keeping the stochastic part of the time series
unvaried.

Ppðt þ f hÞ ¼ Pcsðt þ f hÞ þ PstðtÞ ð6Þ
Zhang et al. (2015a) preferred a persistence of cloudiness approach
for their forecasts.

Ppðt þ f hÞ ¼ PðtÞ þ SPIt Pcsðt þ f hÞ � PcsðtÞf g ð7Þ
where SPIt is the solar power index (the ratio of actual power to
clear sky power).

For short time horizons, the ramp persistence was used
(Lipperheide et al., 2015). It extends the variation in power output
over the last second to persist over the forecast horizon.

Ppðt þ f hÞ ¼ PðtÞ þ f h PðtÞ � Pðt � 1sÞf g ð8Þ
3. The economics of forecasting

The main purpose of improving the accuracy of solar power
forecasts is to reduce the uncertainties related to this type of vari-
able energy source, which would directly result in a safer and
easier grid management. Moreover, curtailment applied to photo-
voltaics could be reduced (Bird et al., 2014). Plant managers also
find motivation in issuing better predictions as they can better plan
maintenance stops and generate more precise bids. As solar pene-
tration increases in the energy portfolio, the impact of incorrect
forecasts in the grid can be larger. Thus, in some electricity mar-
kets, solar producers can face penalties when deviations between
forecasted and produced energy exceed a tolerance band. Devia-
tion penalties promote issuing accurate forecasts to maximize
the revenue. As pointed out in Mathiesen et al. (2013), under cer-
tain market situations (i.e. when the locational marginal prices of
the real time market are five times higher than the day ahead
market prices), an overprediction of just 10% would offset the
economical benefit due to the aforementioned deviation costs. To
deepen in the understanding of such penalties, readers are referred
to Jacobs (2012), Botterud et al. (2012) and Mathiesen et al. (2013).

In spite of the important consequences forecast accuracy may
pose, only a few studies have addressed the influence of the said
accuracy on grid operation. Also, not all electricity grids react in
the same manner to improved forecasts. Behind the scarcity of
studies the following reasons can be found: complex power system
modeling, difficulty of allocating costs or benefits, relatively low
solar penetration into energy portfolio, poor understanding on
how system operators can use the information provided and vari-
ety of trading systems (Brancucci Martínez-Anido et al., 2014;
Zhang et al., 2015b). Nevertheless, penetration of solar energy into
the grid has begun to grow and is expected to become an impor-
tant agent in the energy portfolio. Thus, it is important to under-
stand the implications forecasts have. Utility companies, as well
as distribution system operators, independent system operators,
etc. can profit from solar forecasts. Another interesting aspect
about solar integration is the variety of solar power producers,
from utility-scale to distributed plants. As discussed in Section 5,
aggregated distributed PV shows less variability than single plants.
Nevertheless, most of distributed PV plants are ‘‘behind the meter”,
so that grid operators only perceive their impact as a reduction in
demand. This can cause errors in load forecasting because grid
managers ignore the exact amount of distributed PV (Mills et al.,
2013). Thus, in the future, the task of load forecasting and solar
power forecasting will fuse into net demand forecasting (Hong
et al., in press).

The variability of solar energy and the uncertainty of the fore-
casts indirectly lead to the existence of operating reserves in elec-
tric systems in order to resolve differences between demand and
production. Variability of the solar resource causes ramp events,
which can not be followed by large plants or considered by trading
blocks (with a time unit of 15 min). Moreover, the cloud induced
changes may result in additional power needs since they can alter
the supply–demand profile. However, this is not automatic: a well
forecasted cloud induced power variation would not imply addi-
tional power reserve unless the time gradient was high. Also, vari-
ability of solar resource is behind some challenges that arise on
grid operation with increasing levels of solar penetration. During
sunrise, traditional generation plants must apply downward ramps
to allow solar penetration, whereas during sunset, those ramps are
positive to supply the energy that was previously coming from the
Sun. Additionally, during midday, when solar production is at its
maximum, conventional plants must be able to largely reduce their
generation capacity. If any of these cases is not met, solar produc-
tion would need to be curtailed to levels where the stability of the
power system is not at risk (Brancucci Martinez-Anido et al., 2016).

What follows next is a brief summary of the different actions
taken during operation and a classification of the reserves. Starting
from the longest time horizon, the first actions addressed are unit
commitment and scheduling, which are undertaken to cover the
general load pattern of the day. With a lower time horizon, in
the range of tens of minutes to hours, load following is done to off-
set deviations from the scheduled load pattern. It is normally
addressed by economic dispatch and it may derive in starting
and stopping quick-start generation systems. At shorter time hori-
zons, we find regulation, which consists of balancing the variations
in the supply/demand curve in the range of seconds to a few min-
utes. Allocated to each action, we can find different types of
reserves: regulating, following and contingency reserves (primary,
secondary and tertiary) and ramping reserves (secondary and ter-
tiary) (Ela et al., 2011).

One of the first studies that focused on the economic implica-
tions of solar forecasting was the worked developed by Mills
et al. (2013). There, they analyzed a single power system (the
Arizona Public Service Company) and studied the required reserves
to maintain stability and optimal commitment and economic dis-
patch introducing renewable energies. Day ahead and hour ahead
markets were detailed, as well as a high PV and a low PV scenario.
Due to the existence of base load nuclear plants, in the case with
high PV production and low demand, the system posed severe
operational challenges. The system modeled was stand-alone and
no trading with neighboring utilities was considered. They neither
considered probabilistic forecasts. They created a scenario where
nuclear plants were flexible to see how the system could be
improved. With no flexibility, the curtailment peaked at 17.8%,
while introducing flexibility made it drop to 3.4%. A sensitivity
analysis showed that integration costs ranged from $1 to $4.4
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per MWh-PV for the cases considered. The major part of the costs
were due to the maintenance of balancing reserves in the hour
ahead market. To stress the need of flexibility in power systems,
they ran a worst case scenario with constant nuclear power, low
ramp rates and penalties on renewable curtailment, obtaining inte-
gration costs of $9.6 per MWh-PV. They concluded that for a prac-
tical PV integration, trading with other buyers is essential, as well
as flexibility in thermal plants.

A different approach was introduced by Cormode et al. (2014),
who also focused their study in the state of Arizona. They proposed
the economic evaluation of forecasts, from the plant manager per-
spective, based on solar power curtailment, in order to avoid
penalties derived from violations of Ramp Rate Rules (RRR). RRR
were defined as a variation of 10%=min of the rated plant capacity
and the cost of violations was stated as $0.1 per s and MW. They
analyzed several forecasting scenarios: curtailment of expected
clear sky production to certain levels, forecasts from NWP models,
short-term predictions from a set of irradiance sensors, a kind of
persistence method which limited upward ramps to the RRR
(easy-up model) and a perfect forecast to set the limits. They eval-
uated scenarios based on the net revenues, which were obtained
after discounting the penalties from the gross revenues. Thus, a
trade-off appears between energy output and costs from violations
of the RRR, where results are highly dependent on the said penal-
ties. Results showed that a free running plant (no curtailment
applied) would see the gross revenue reduced to 80% due to penal-
ties. The best performing model was the easy-up model, whose net
revenues corresponded to 90% of the gross incomes. The benefits of
the model could be further enhaced if predictions from the set of
irradiance sensors were used to trigger downward ramps.

De Georgi et al. (2015) also adopted a plant manager point of
view and assessed the impact of forecasting accuracy on imbalance
costs in the Italian electricity market. Bids with the predicted
energy have to be made in the Day-Ahead Market and penalties
apply when there are hourly deviations between actual and sched-
uled injected energy. If produced energy falls in the tolerance band
[�10%, 10%], the producer perceives the incomes from the energy
produced at the price established. Nevertheless, when mismatches
exceed that tolerance, actions are taken. If they underestimate
their production (they produce more than scheduled), the differ-
ence in energy between scheduled and produced is paid at a lower
value, whereas if they overestimate their production (they produce
less than scheduled) they have to repay the missing energy. The
three possible situations are described below:

FðiÞ ¼
CE � ETðiÞ if EP � ETj j < 10%EP

CE � ETðiÞ þ ðCE þ CIÞ � ðETðiÞ � EPðiÞÞ if EP > ET

CE � ETðiÞ þ ðCE � CIÞ � ðETðiÞ � EPðiÞÞ if EP < ET

8><
>:

ð9Þ
where FðiÞ is the money received, CE, the energy price, CI , the pen-
alty, ET , the actual energy, and EP , the energy declared in the
schedule.

They showed that the probability to inject the energy within the
tolerance band was around 40% for the Least Square (LS) Support
Vector Machine (SVM) and LS-SVM Wavelet Decomposition (WD)
models (see Section 7). The economic incomes were calculated
by normalizing the benefits with the maximum possible economic
revenue (having all the production within the tolerance). They con-
cluded that the LS-SVM WD model permitted the highest incomes
among the models studied, with a 76% with respect to the maxi-
mum, dropping that amount to 53% for the other models. It was
due to its higher accuracy and its tendency to underestimate the
power output.

Brancucci Martínez-Anido et al. (2014) further deepened the
investigations of economic implications considering the impact of
improving solar forecasts on a basis of 25% of solar integration.
They modeled the Independent System Operator-New England
(ISO-NE) system. Several scenarios were analyzed: no solar power,
no solar power forecasting, current solar power forecasting, cases
where improvements on forecasts of 25%, 50%, 75% were per-
formed and a perfect forecast. Time horizons used were 4 h and
day ahead. Results showed that even in the case with no solar fore-
casts, net generation costs were reduced by 12.3%. When they were
taken into account, the reduction rose to 22.9%. This difference is
explained by a more efficient commitment of conventional plants,
which allowed a reduction in solar power curtailment from 34.5%
to 11%. An improvement of 25% in the solar power forecasts would
lead to a reduction in net generation costs of 1.56%, compared to
the baseline forecasts. The improvement came from a more effi-
cient commitment of power plants, not from a lowering on solar
power curtailment. They conclude that the remaining scenarios
(50%, 75% improved forecasts and a perfect forecast) did not pro-
vide any significant reduction in net generation costs in their sys-
tem. This is in part due to the existence of large gas-fired plants in
the ISO-NE, which can easily adapt their loads to overcome possi-
ble forecast errors. However, they highlighted that improved hour
ahead and sub-hourly forecasts could still lead to cost reductions
due to a better economic dispatch. Regarding electricity prices,
base forecasts could lower the price of no solar by 7%, seeing only
slight reductions afterwards for the improved forecasts scenarios.
Solar energy introduces high variability in electricity prices: if no
forecasts are taken, solar energy increases 40% price variability,
while the increment climbs up to 116% if baseline forecasts are
used (small variation with respect to improved forecasts). The rel-
atively low variability when no forecasts were used was due to an
overcommitment of generation units which limited the amount of
solar energy into the grid.

Similarly, Brancucci Martinez-Anido et al. (2016) continued
with the study of the ISO-NE, but this time they worked on day
ahead forecasts. They focused on a twofold goal: determining the
effects on bulk power systems of increasing solar power penetra-
tion and solar power forecasting improvements. In contrast to
the earlier study, here they selected solar penetration levels of
4.5% (actual case) and some multiples (9%, 13.5% and 18%). They
observed that with increasing solar power on the grid, some con-
ventional power plants were displaced, especially gas combined
cycles and gas and oil steam turbines (ST) (reductions up to 46%
for 18% solar penetration). Moreover, they did not only reduce their
production, but they also changed their operation, increasing the
ratio of ramping to generation. However, gas and oil gas turbines
(GT) and internal combustion (IC) generators increased their share
due to their capacity of responding to fast ramp changes. Solar pen-
etration also increased the starts and shutdowns of conventional
plants. Gas combined cycles, which reduced their production 46%
with 18% of solar share, saw their start and shutdown costs more
than doubled. Moreover, no solar curtailment appeared for the
4.5% penetration, while it increased to 9.5% for the 18% penetration
scenario. As for the impact of improved forecasts, the four scenarios
from the previous study were considered. Increasing accuracy lead to
reductions in solar curtailment, upward ramping of conventional
power plants and in start and shutdown costs. Cost savings would
climb up to $0.77 per MWh for the 13.5% solar share and 50% of fore-
cast improvement, which translates to over $13.22M annually (sub-
jected to fuel prices). Cost savings were derived from decreasing fuel
and variable operation and maintenance costs.

Contrary to previous studies, which analyzed how improved
forecasts could lower balancing reserves, the work by Zhang
et al. (2015b) focused on target values to allow a certain reduction
in reserves. They investigated 4 forecast horizons: day ahead, 4 and
1 h ahead and 15 min ahead. The baselines proposed were the per-
sistence of cloudiness, for horizons between 0 to 4 h, and for longer



Fig. 1. Schedule of the western interconnection EIM. t represents the start of the operating hour (only in this figure). Source: Kaur et al. (2016).
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lead times, the North American Mesoscale (NAM) forecast system.
With these models they predicted irradiance and then, using the
PV-Lib toolbox (Stein, 2012), they converted it into power. The
methodology to obtain the target metrics is as follows: calculate
the cost of reserves for the baseline forecasts; establish a reduction
(in the case of study, 25%) in reserves to set the target reserve. With
the focus on that target value, run several iterations with improved
forecasts, both for ramping (%y) and non-ramping periods (%x),
and calculate the difference between the new reserve thus
obtained and the target reserve. Then, with the combination of
forecasting improvements for both periods leading to the mini-
mum difference, obtain the set of target metrics. For the 15 min
ahead, 1 and 4 h ahead forecasts, the spinning reserves were
assumed to be lowered, since they are capable of responding to
changes in that period of time. They calculated them as the 95%
confidence interval of solar power forecast errors at the respective
lead times. However, in the day ahead forecast, both spinning and
non-spinning reserves were used to obtain the targets. The spin-
ning reserve was defined as the 70% confidence interval of the
day ahead solar power forecast errors, whereas the non-spinning
reserve was stated as the difference between the 95% and 70% con-
fidence interval of the day ahead solar power forecast errors. They
analyzed several cases, covering point and regional forecasts and
different climate zones. For each of them they showed the baseline
and target metrics to achieve the said reduction in reserves. To
highlight the importance of the outcomes, they detailed that a
25% reduction in California Independent System Operator (CAISO)
day-ahead spinning reserves would lead to annual savings of $5
million. Moreover, as said in Hodge et al. (2015), reserve savings
only represent around 5–10% from what could be obtained from
optimum unit commitment and economic dispatch, so possibilities
for improvement are large.

Finally, Kaur et al. (2016) established the benefits of using
improved solar power forecasts in comparison to baseline models
in Energy Imbalance Markets (EIM). The objective of EIM is to
reduce the use of ancillary services or additional reserves to bal-
ance the load/demand curve by permitting energy trading between
interconnected balancing areas. They benefit from the different
demand and generation profiles across the EIM area to reduce
the required reserve capacity, improve reliability and reduce costs.
An in-depth study of the Western Interconnection EIM was
performed, analyzing all relevant time horizons for market opera-
tors and participants. A representation of the timeline for the real-
time operation can be found in Fig. 1.

They studied lead times of 24 h, 75 and 5 min, with time inter-
vals and resolutions of 1 h, 15 and 5 min. Models considered were
the naive persistence, the smart persistence (SP) (corrected for
clear sky solar irradiance), a Support Vector Regression (SVR) based
model optimized with Genetic Algorithms (GA) and a reforecast
model based on a linear regression to correct structured errors
and bias in forecasts. They used the n-sigma method for determin-
ing the reserves, which takes into account the standard deviation
in generation and demand. Reserves are influenced by the Gate
Closure Time (GCT) (which defines the time when the option to
submit or modify a bid expires) and the Program Time Unit
(PTU) (the time window for which bids are submitted). They clas-
sified reserves depending on GCT. For GCT > 75 min, the scheduled
relative reserve was:

Rr ¼ rðeÞ
GHI

ð10Þ

where rðeÞ is the standard deviation of forecast errors for a given
PTU and Global Horizontal Irradiance (GHI). They used an irradia-
tion driven approach, although they claimed that in practice, power
measurements should be used. The model fed with the reforecasted
NWP permitted a reduction of 17.84% in the required reserves com-
pared to the SP. However, for GCT < 75 min they calculated flexibil-
ity reserves, which are a function of change in standard deviation
with respect to the magnitude of solar power production.

rðeÞf r P maxlðrðelÞÞ ð11Þ

where rðeÞf r is the standard deviation in n forecast errors for a given
PTU with a forecast resolution f r . n is ratio between the f i and f r and
l 2 1;2; . . . ;nf g. At this time frame, SVR-GA outperformed both naive
persistence (reductions of 22.62–67.47%) and SP (average reductions of
21%) with respect to flexibility reserves. Biggest improvements were
shown for forecast intervals of 5 min. Also, penalties derived from
wrong forecasts (defined as errors larger than 7.5%) and imbalances
were studied, determining that the proposed SVR-GA method reduces
by 66.93% and 19.65% the probability of imbalance compared to naive
and SP, respectively. They highlighted that flexibility in short time
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operation can reduce the amount of reserves needed and the probabil-
ity of imbalance in the network.

3.1. Summary

The improvement of solar power forecasts leads to the reduc-
tion of net generation costs in the electricity system and to the
reduction of curtailment applied to photovoltaics. To foster these
benefits it is important to allow trading with other markets and
to establish flexibility in thermal plants. Huge potential for opera-
tion costs reduction still exists and the hourly and sub-hourly
domains still have to be analyzed. It has been shown that the eco-
nomic consequences of improved forecasts depend on the type of
generation plants present in each specific market. Improved fore-
casts also permit plant managers to maximize their incomes.
4. Forecasting techniques

As presented in the Introduction, there are two main
approaches for solar power forecasting. The first option consists
in using analytical equations to model the PV system. Normally,
most efforts are dedicated to obtain accurate irradiance forecasts,
which is the main factor related to the power production. This
approach is denoted as PV performance, physical, parametric or
‘‘white box” method. Contrarily, the second option consists in
directly predicting the power output using statistical and machine
learning methods. Additionally, forecasts can also be made based
on a mix of both methods, which is denoted as hybrid model or
‘‘grey box”. Most of the studies found used a direct approach.

4.1. PV performance models

Strictly speaking, the physical conversion of GHI or Irradiance
on Plane Of Array (IPOA) into power output is not a forecasting tech-
nique on its own. The forecasting effort has been previously made
in the prediction of irradiance and other necessary variables, such
as temperature or wind. Predictions of irradiance follow similar
patterns to those of power, inasmuch as comparable techniques
are found depending on the time horizon. Temperature and wind
predictions normally come from NWP models. In this section we
will only give a general overview of PV performance models. We
will not cover the different irradiance forecasting techniques found
in literature. For that, readers are referred to some reviews on irra-
diance forecasting (Inman et al., 2013; Diagne et al., 2013;
Gueymard and Ruiz-Arias, 2016; Urraca et al., 2016).

The main advantage of the PV performance method over the
statistical is that, as no historical data is needed, it is possible to
obtain the power output of a plant prior to construction. Knowing
the technical specifications of the plant and NWP, the power out-
put can be stated. Nevertheless, the major disadvantage of para-
metric models is the high dependence on NWP, which lack
sufficient spatial and temporal resolution and have been reported
as one of the main sources of error of this approach (Brabec
et al., 2011; Dolara et al., 2015b; PVCROPS, 2015). For instance,
whereas an error of 1.2% was reported for the plant modeling, it
increased to 10% when irradiance predictions were incorporated
to the model (PVCROPS, 2015). As a way to avoid these errors,
Model Output Statistics (MOS) are applied to weather forecasts.
The simplest MOS technique to improve temporal resolution con-
sists in directly interpolating the values. There exist other more
accurate methods, such as the incorporation of the clear sky index
along with the solar zenith angle (Lorenz et al., 2008) or a method
based on stepwise linear regression to select the variables that best
represent the errors (Verzijlbergh et al., 2015). Nevertheless, the
application of MOS requires some historical weather data, which
may not be always available, diminishing part of the advantages
of PV performance models. Additionally, each PV performance
model is site-specific and because all technical specifications of
equipment are rarely known, simplifications have to be made,
impacting on the model accuracy.

Authors that used a white box approach in their way to forecast
solar power output are: Lorenz et al. (2007, 2008, 2011b,a), Kudo
et al. (2009), Pelland et al. (2011), Lonij et al. (2013), Lipperheide
et al. (2015), Chu et al. (2015), Larson et al. (2016) and PVCROPS
(2015).

To deepen in the comprehension of PV performance models,
readers are referred to Dolara et al. (2015b) and Ayompe et al.
(2010).
4.2. Statistical models

Statistical models do not need any internal information from
the system to model it. It is a data-driven approach which is able
to extract relations on past data to predict the future behavior of
the plant. Thus, quality of historical data is essential for an accurate
forecast. They have proven superior to PV performance models in
the modeling of a PV plant (Graditi et al., 2016). Contrary to the
parametric approach, for this approach a large historical dataset
is typically required (meteorological and power measurements,
i.e.), for which the plant must have been working already for some
time. This method benefits from the ability of correcting system-
atic errors associated to the measurement of inputs.

The selection of a proper training dataset becomes crucial in the
accuracy of the model developed. Several authors have studied the
relation of the selection of the set of inputs in the final result.
Almeida et al. (2015) compared training sets based on previous
samples, on similar clearness index and on the similarity between
the empirical distribution on the intradaily irradiance forecast for
the day to be predicted and for each day of the dataset. They con-
cluded that the best combination for the training set was the selec-
tion of 30 days (less days proved to be insufficient and more days
did not yield better results) and based on the similarity of the
empirical distribution mentioned before. Other authors found
promising results first classifying the training set with respect to
weather conditions (sunny, cloudy, overcast) and then training
each day to be forecasted with the proper dataset (Mellit et al.,
2014; Shi et al., 2011; Chen et al., 2011; Bouzerdoum et al.,
2013).

Optimization of the set of inputs can be performed by the appli-
cation of GA (Pedro and Coimbra, 2012), Particle Swarm Optimiza-
tion (PSO), Genetical Swarm Optimization (GSO) (Ogliari et al.,
2013), firefly optimization (Haque et al., 2013), stepwise regression
(Ramsami and Oree, 2015), fuzzy logic (Simonov et al., 2012) or
Principal Component Analysis (PCA) (Fonseca et al., 2014c). These
techniques determine the combination of variables that yield best
results and establish a trade-off between complexity and accuracy.
The above-mentioned studies showed better results when opti-
mization of inputs was applied.

What follows next is a broad classification of the main
techniques used in the papers analyzed. For a more in
depth description of the techniques, readers are referred to the cor-
responding authors or to Inman et al. (2013) and Diagne et al.
(2013).
4.2.1. Regressive methods
These set of techniques estimate the relationship between a

dependent variable (solar power output) and some independent
variables, called predictors. Depending on how time series are trea-
ted (linear or non-linear and stationary or non-stationary), a fur-
ther classification appears. Stationary time-series designate those
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time series which fluctuate around a static mean while non-
stationary series do not show such mean.

� Linear stationary models. Here we find Auto-Regressive (AR)
models (Bacher et al., 2009), which model the output as a linear
combination of lagged values of the predictors; simple Moving
Average (MA) models (Li et al., 2014), used when data presents
a constant variance over an equilibrium position around the
mean, for which the average of the past data is used as the pre-
diction; double MAmodels (Li et al., 2014), used when there is a
trend; Auto-Regressive Moving Average (ARMA) models (Chu
et al., 2015), which consider both lagged past values and errors;
AR eXogenous (ARX) models (Bacher et al., 2009), which add
exogenous data to an AR model, and Auto-Regressive Moving
Average with eXogenous variables (ARMAX) models (Li et al.,
2014), which introduce external variables in the time series
analysis (i.e. from NWP). To deal with probabilistic analysis,
there exist some adaptations, such as the Vector AR (VAR) or
the Vector ARX (VARX) (Bessa et al., 2015).

� Linear non-stationary models. Auto-Regressive Integrated
Moving Average (ARIMA) models (Pedro and Coimbra, 2012),
which consider the union of AR and MA components, and Sea-
sonal ARIMA (SARIMA) (Bouzerdoum et al., 2013), which intro-
duce a seasonal component.

� Non-linear stationary models: Non-linear AR-eXogenous
(NARMAX) model.

It has been proved that feeding the above-mentioned methods
with exogenous data tend to improve results. Bacher et al. (2009)
achieved better results with ARX than with AR, Li et al. (2014) con-
cluded that their ARMAX model outperformed ARIMA, and Bessa
et al. (2015) also got better results with their VARX model than
with the VAR, although a probabilistic analysis yielded worse
results in some quantiles.

4.2.2. Artificial Intelligence (AI) techniques
In this section, the main AI techniques are described:

� Artificial Neural Networks (ANNs). The ANNs are the most
used machine learning techniques in solar power forecasting
(Fig. 2). They are inspired in the neuron operation, where a
group of neurons are interconnected to form a neural network
(NN). Connections have numeric weights, whose final value is
given by the training phase, and all together predict the output.
This range of techniques has proven useful in a wide variety of
Fig. 2. Distribution of studies with respect to the tech
situations and with a large number of inputs. There exist a large
number of topologies. The classification by the number of hid-
den layers (simple perceptron or multi-layer) is the main one.
From the different ANNs, the Multi-Layer Perceptron (MLP)
are highlighted, which can be considered a universal proximate
of functions and shows wide applicability, but many others are
found: Time Delay NN, Elman recurrent NN, Radial Basis Func-
tion NN, Adaptive Neuro-Fuzzy (ANFIS), Adaptive Resonance
Theory (ART), ART-2, etc.

� k-Nearest Neighbors (k-NN). It is one of the simplest machine
learning methods. It is based on an algorithm for pattern recog-
nition, which compares the current state with training samples
in a feature space. Euclidean distances are thus calculated and
the first k nearest neighbors are selected for the predictions
(Pedro and Coimbra, 2012).

� Support Vector Machines (SVM). They are a supervised model-
ing method, firstly introduced by Vapnik and Lerner (1963) and
further developed by Cortes and Vapnik (1995) to be used in
classification problems. When they are applied to regression
problems, they are known as Support Vector Regression machi-
nes (SVR). They stand out for their strong generalization capac-
ity and for their ability to deal with non-linear problems. They
work as a multiple linear regression using transformed predic-
tors but keeping low complexity and a good fitting of data.
There are three main parameters which dominate the perfor-
mance of the technique and should be fine-tuned: �, which is
used in the accuracy term, the cost parameter C, which deals
with the trade-off between accuracy and complexity, and c,
which regulates the kernel function, used to transform the pre-
dictors to a higher-dimensional feature space. SVM/SVR have
shown great potential in several studies (Rana et al., 2015;
Fonseca et al., 2011a).

� Random Forests (RF). Firstly developed by Breiman (2001),
they consist of an ensemble of decision/ regression trees, whose
results show the mean prediction of individual trees. Normally,
focusing on regression trees, they are characterized by overfit-
ting to the training data set, which results on low bias but a high
variance. It is common practice to grow several trees for each
case study. By averaging results from several trees, it is possible
to reduce the variance at the expense of slightly increasing the
bias. Nevertheless, the overall performance of the model
improves. Simple regression trees are very sensitive to noise
of training dataset. Simply averaging the results of several trees
to overcome this problem does not work, since being trained
with the same dataset, they would be very correlated. This issue
nique used. Sample set: studies listed in Table 2.
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is tackled with the bagging method, which consists of growing
unpruned trees, each with a bootstrapped sample of the whole
training set. The out-of-bag samples left out of the model are
used to assess each model’s performance. Nevertheless, trees
can be still correlated, inasmuch as if some variables are very
strong predictors for the output, they will be selected in most
of the bagged trees. Random forests deal with this problem with
feature bagging, which consists of selecting a random subset of
features at each node and thus, they get to reduce correlation.

Also, there are many benchmarking studies to determine which
techniques and under which conditions work best for the proposed
situations (Pedro and Coimbra, 2012; Fernandez-Jimenez et al.,
2012; Alessandrini et al., 2015; Zamo et al., 2014a).
4.3. Hybrid models

Single models can omit some information due to the way each
technique transforms data. Thus, it is also common to combine
techniques to foster their strengths so as to improve accuracy,
which is denoted as hybrid, blended, combined or ensemble mod-
els. Models can be blended by several ways, such as bagging, boost-
ing, voting or stacking.

Two approaches can be followed, either from combining two or
more statistical techniques (hybrid-statistical) or from joining a
statistical technique to a PV performance model (hybrid-
physical). Several works can be found using the former approach.
Bouzerdoum et al. (2013) combined SARIMA with SVM in their
hour ahead predictions, whereas Ramsami and Oree (2015) used
ARIMA with ANN, Vaz et al. (2016) applied an ensemble technique
of ANN and Non-linear ARX (NARX) and Hossain et al. (2013)
developed a methodology to select the best combination of regres-
sion techniques to construct an ensemble model, to name some of
them. They all proved better performance than stand-alone tech-
niques. The latter approach makes use of regressive or AI tech-
niques with the objective of reducing the error associated to
NWP or to forecast in time domains where some NWP models lack
enough resolution, such as the hour ahead horizon. Normally, the
variable predicted by the statistical technique is GHI, although
some authors predicted kt and then converted it into power
(Bracale et al., 2013; Mora-Lopez et al., 2011). Some studies, how-
ever, constructed a black box model to directly predict power but
included in its structure some physical expressions. That is the case
of the Physical Hybrid Artificial Neural Network (PHANN) method,
which combined an ANN with a clear sky model (Gandelli et al.,
2014; Dolara et al., 2015a). Almonacid et al. (2014) also combined
some physical expressions, such as the calculation of the clearness
index and cell temperature, with NAR and ANN techniques.
4.4. Summary of forecasting techniques

Fig. 2 shows the distribution of studies analyzed regarding the
technique used. As seen, the most common approach among the
papers analyzed is the use of statistical techniques, especially
ANN, accounting for the 24% of the studies.
5. Spatial horizon: single plant and regional forecasts

Forecasts can be made for a single PV system or for an ensemble
of them. Normally, grid operators prefer regional forecasts since
they are more useful to keep the balance between demand and
supply in the electric system. To better understand the differences
between point and regional forecasts, first we study the short term
power output variability.
As detailed in Mills and Wiser (2010), variability of solar
resource at different time scales poses several problems to the
integration of solar energy. Forecasts of power output see the con-
sequences of the unpredicted solar variability as deviations
between forecasted and what is really produced. Balancing
reserves have to be scheduled for such unforeseen changes. Vari-
ability is normally defined as the difference in the output of a plant
from one averaging interval (with duration Dt) to another, com-
monly referred as ‘‘deltas” or step changes. Then, the standard
deviation of the deltas over a long period for a certain Dt can be cal-
culated. The overall average variability is normally represented by
the 99.7th percentile. Once calculated the variability for a single
plant, the study can be extended to an ensemble of them, referred
to the standard deviation of the variation of the aggregate output.
It is seen that the variability of the ensemble is lower than the vari-
ability of scaling a single plant. They named this effect the ‘‘diver-
sity filter” (12).

DDt ¼ rDt
DPPN

i¼1r
Dt
DPi

ð12Þ

If it is assumed that all N plants from the ensemble have similar
size and variability, it is seen that the diversity filter depends on
the correlation of the deltas. The step changes, in turn, depend
on spatial and temporal scales. Thus, if plants are totally correlated,
the diversity filter would be 1 and, consequently, the variability of
the ensemble would equal the sum of that of individual systems.
However, perfectly uncorrelated plants would lead to a global vari-
ability

ffiffiffiffi
N

p
times that of a single site. Correlation between sites is

inversely proportional to distance between sites (D) and time
scales. It is also influenced by the speed of clouds (CS) in the area,
which will determine the relevant fluctuation time interval (Perez
and Hoff, 2013). As an example, if an ensemble of equal PV plants
were distributed in a 10x10 grid with 20 km spacing, the aggre-
gated variability would be 6 times less than the variability of a sin-
gle site, for Dt < 15 min (Mills and Wiser, 2010). Perez et al. (2011)
proposed an empirical Eq. (13) to determine correlation coeffi-
cients between sites from their study across USA considering the
distance, time interval and cloud speed.

qpair ¼ eLnð0:2ÞD=1:5DtCS ð13Þ
Later on, Arias-Castro et al. (2014) proposed a mathematical

method to determine ramp rates correlations. Since it also took
into account wind direction, an anisotropic model was obtained,
which proved superior to previous isotropic models for up to 60 s.

As pointed out in Perez and Hoff (2013), real situations are con-
formed by dispersed generation with different systems and arbi-
trary distances. Site-pair correlation varies and depends on PV
plant sizes, where smoothing effect can even take place intra-
array. Thus, they proposed a general equation for the variability
of non-homogenous PV plants (14), depending exclusively on site
correlation and standard deviations of the plants in the fleet.
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¼
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r
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As seen, variability in power output is reduced when an ensem-
ble of plants is considered. Since forecast errors increase with the
variability of the signal to be forecast, one would expect that regio-
nal forecasts would also benefit from spatial averaging effects. Sev-
eral authors have worked on this issue (Lorenz et al., 2007, 2008,
2009, 2011b,a, 2014; Zamo et al., 2014a; Zhang et al., 2015a;
Fonseca et al., 2014a,b,c,d).

E. Lorenz and colleagues, through several papers (Lorenz et al.,
2007, 2008, 2009, 2011b,a, 2014), made an in-depth study of the
German PV plants, analyzing both single site and regional fore-
casts. They proved how spatial averaging and smoothing effects
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lead to lower errors at the regional frame. They saw that the reduc-
tion of errors over an area was dependent on the correlation of
errors in the plants of the ensemble. That correlation follows an
exponential curve with the distance between plants. It rapidly
decreases with increasing distance at the beginning and then it
slows down for distances of 200 km or more (Fig. 3). The accuracy
of the forecasts is inverse to the error correlation. Low values of
correlation yield better area forecasts.

Whereas the average normalized Root Mean Squared Error
(nRMSE) of single sites was 13%, that value dropped to 5% for the
ensemble of German plants. They defined the error reduction fac-
tor f, stated as the ratio of the Root Mean Squared Error (RMSE)
of the ensemble to the RMSE of single plants. Thus, they found a
f = 0.7 for a subset of 11 PV plants, lowering to f = 0.61 when the
region considered covered an area of 220� 220 km or down to
f = 0.4 for the area of Germany.

Zhang et al. (2015a) also analyzed the differences between sin-
gle site and ensemble forecasting. nRMSEs for a 100 MW plant
were 22% and 17% for day-ahead and 1 h ahead horizons, while
those values dropped to 4% and 2% respectively for the aggregate
of plants in the Western Interconnection (64,495 MW).

Regional forecasts can be approached by several ways, depend-
ing on the availability of data. As described in Fonseca et al.
(2014d), there can be four different cases:

� Knowledge of power generation from all PV systems: If pro-
duction from all the PV plants in the region is known, they can
be modeled separately and the forecasts from each site can be
summed (bottom-up strategy), benefiting from the smoothing
effect (Fonseca et al., 2014a,c,d). This approach normally
requires a big computational effort and the knowledge of data
from all plants, which is difficult to obtain. Nevertheless, as
shown in Fonseca et al. (2014d), it yielded the best results of
the models proposed.

� Knowledge of PV power only from some plants and not
regionally: In some cases, it is only possible to monitor the pro-
duction of some PV plants and the regional production is not
measured. Upscaling from a representative set of PV plants is
then a suitable option. As described in IEA (2013), if done prop-
erly, there are almost no differences in accuracy compared to
the modeling of all the plants. Upscaling is applied in two steps.
In the first one, a subset must be selected so that its behavior is
representative of the power output of the whole ensemble. One
way of getting it is varying a random number of plants until
their forecast errors or correlation parameters are similar to
that of the ensemble. Another option could be, instead of
making random subsets, to make subsets according to plant
0 200 400 600 800

Co
rr
el
a�

on
co
effi

ci
en

t

Distance (km)

1

0.8

0.6

0.4

0.2

0

Fig. 3. Correlation coefficient of forecast errors of two systems in Germany over the
distance between them. Source: Adapted from Lorenz et al. (2008).
characteristics so that they are representative of the complete
set. The second step consists of the upscaling of the power out-
put of the said subset of plants to the complete set.
Lorenz et al. (2011a) stressed the idea of a proper selection of
the representative subset to obtain accurate results. They
detailed an upscaling technique which took into account the
geographic location (latitude / and longitude k) of the PV
plants.
Fonseca et al. (2014d) proposed a method based on stratified
sampling for selecting the subset of representative plants. This
method takes into account the installed capacity and PV system
location. Instead of making subsets with random number of
plants, they applied (15) to select the sampling size n
n ¼ tða=2;1Þs
d

� �2

ð15Þ

where d is the error margin for the mean regional PV power pro-
vided by the sampling, t, the t-Student distribution and s, the
standard deviation of the sampled values. Based on previous
experiences, they considered d = 0.05 kW h/kWcap and
s = 0.15 kW h/kWcap. For the ensemble of 273 PV plants, they
obtained a theoretical sampling size of 39 plants. The sampling
size thus obtained is independent of the number of PV plants
in the region. With the sampling size fixed, they selected the
PV plants according to their location. Thus, if a prefecture con-
tained 20% of the installed capacity, they selected 20% of the
samples from there, with the aim of building a balanced set of
samples. Further corrections were applied to account for the
weight of the capacity of each prefecture with respect to
the total. Then, the regional power Preg was calculated with the
upscaling Eq. (16).

Preg ¼ Pset

Cstot
Ctreg ð16Þ

where Pset is the forecasted power of the sampling set, Cstot , the
set capacity and Ctreg , the total PV power capacity of the region.
This method performed similarly to the bottom-up strategy,
with the additional advantage of not needing to simulate all
PV plants.
Another option is to establish a virtual reference PV plant and
suppose that all other plants from the ensemble will perform
similarly (Zamo et al., 2014a). There, they found that summing
individual forecasts resulted in slightly better results than those
obtained with the virtual plant (RMSE of 5.8% vs. 6%). On the
other hand, both approaches improved single site forecasts
(average RMSE 10–12%).

� Knowledge of the regional production but not from individ-
ual systems: In this case, the regional production is forecasted
directly. Fonseca et al. (2014c) constructed their regional fore-
casts based on NWP from the Japan Meteorology Agency for
the location of each PV plant and then, performed a PCA to avoid
redundant information (i.e. NWP of PV plants located close to
each other). It was observed that the proposed methodology,
based on SVR, outperformed the bottom-up approach for areas
with radius inferior to 100–150 km (depending on the region),
when both forecasting techniques equaled. They found one
exception: in the largest region considered, covering different
climates, summing individual production yielded better results
than their proposed methodology. This contrasts with the find-
ings by Lorenz et al. (2011a) and Zhang et al. (2015a), who
obtained best results for the largest area considered.

� No PV power data is available: if no PV power data is available,
it is still possible to derive production from irradiance forecasts.
However, it is necessary to provide the installed capacity of PV
plants Preg

cap and some information (tilt angle and azimuth).
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Preg
pred ¼

Preg
cap

Iref
k
Xn
i¼1

aiIPOA;i ð17Þ

Xn
i¼1

ai ¼ 1 ð18Þ

where Iref is the irradiance at which the capacity of PV plants is
rated, k is the balance of system coefficient and a, the weight
given to the forecast of solar irradiation that reaches the PV
modules with a given tilt angle and orientation.

5.1. Summary

Forecasts can be made for a single plant or for an ensemble of
them, depending on the purpose for which they are issued. Regio-
nal forecasts benefit from the so-called smoothing effect, reaching
error reduction factors down to 0.12. Such reduction of errors is
dependent on the correlation of errors of the plants in the ensem-
ble, which follows an exponential curve with the distance between
plants. Regional forecasts can be approached by several ways,
depending on the information available. In spite of the bottom-
up strategy (summing individual forecasts) outperforming the
others, satisfactory results can be obtained with other less compu-
tational demanding techniques.

6. Deterministic vs. probabilistic

Energy forecasts have been applied for a long time, not only
predicting production (wind, solar) but also forecasting load. Each
domain has its own peculiarities and differences in accuracy can be
found between them. As seen in Fig. 4, solar power forecasts are
the least mature of the energy forecasts analyzed by Hong et al.
(in press), due to the relatively low solar penetration in electricity
markets so far. However, wind forecasting shows a high level of
maturity for its similarity to meteorological forecasting, which is
more developed.

Traditionally, solar power forecasts have output a single value
for each forecast horizon, what is denoted as a deterministic or
point forecast. As seen in Fig. 5, the purpose of point forecasts is
to determine at time t the power production at time t þ f h. This
approach ignores information that is very valuable for utility man-
agers, like the upper and lower bounds of possible forecasts or the
percentage of confidence for each value.
Fig. 4. Maturity of different energy forecasts. SPF stands for solar power forecasting,
LTLF, for long term load forecasting, EPF, for electricity price forecasting, WPF, for
wind power forecasting and STLF, for short term load forecasting. Source: Hong et al.
(in press).
Thus, some authors have recently started to introduce proba-
bilistic forecasts (normally used in wind and load forecasts), which
add relevant information about the expected values. They are espe-
cially useful for activities with implicit uncertainty and where risk
must be managed, like balancing generation and demand in the
electricity market. Some of the benefits of probabilistic forecasts
are the better allocation of power reserves to overcome solar
power uncertainty and greater economical revenue in the day-
ahead market compared to deterministic predictions
(Alessandrini et al., 2015). Probabilistic forecasts provide a broader
knowledge of the predictions, inasmuch as a range of plausible val-
ues is determined as well as the probability associated to each of
them. Probability Density Functions (PDFs) are normally used at
this point. A further classification can still be made, according to
the adopted approach. Thus, we can find the prediction error
approach, which provides the uncertainty of the error derived from
the use of a deterministic method, and the direct approach, which
directly outputs the statistical representation of the prediction
(Bracale et al., 2013).

Probabilistic forecasts have been successfully used in Bacher
et al. (2009), Almeida et al. (2015), Alessandrini et al. (2015),
Bessa et al. (2015), Monteiro et al. (2013b), Zamo et al. (2014b),
Zhang et al. (2015a), Bracale et al. (2013), Lorenz et al. (2009),
Fonseca et al. (2015), Huang and Perry (2015), Nagy et al. (2016),
Jafarzadeh et al. (2013), AlHakeem et al. (2015), Rana et al.
(2015), Sperati et al. (2016), Mohammed et al. (2015) and
Golestaneh et al. (2016).

Lorenz et al. (2009) presented their results in prediction inter-
vals, indicating the range in which the measured power was
expected to fall with a certain probability. To obtain the accuracy
of the forecasts depending on cloud situations, they made weather
specific prediction intervals based on an error analysis. The clear
sky index kcs and the cosine of the solar zenith angle (cosh) were
used to model the Standard Deviation of Errors (SDE). Then, they
obtained the upper and lower bounds of solar irradiance.

Iupper=lower;limit ¼ Ipred � 2 � sdeðcosh; kcsÞ ð19Þ

where the þ symbol is used for the upper limit and the � symbol,
for the lower limit. Readers are reminded that the authors used a
PV performance model to convert solar irradiance into PV power
output. For single stations, 95% of the measured values fell within
the prediction intervals, whereas for the ensemble of stations stud-
ied that value dropped to 91%, presumably due to the constant error
reduction factor used for the ensemble of stations. Finally, they
applied the error propagation presented in Lorenz et al. (2007),
which also takes into account the uncertainty of the tilt conversion
model and the PV system modeling. Bacher et al. (2009) studied the
uncertainty of the forecasts in relation to the type of weather, con-
cluding that the uncertainty of partly cloudy days was higher than
for overcast or sunny days.

Monteiro et al. (2013b) created a model based on historical sim-
ilarity and apart from giving the point forecast, they also showed
the uncertainty associated with it. They grouped the power output
into different power intervals, covering the whole range of possible
power outputs from the studied plant. Then, they presented the
results showing the probability of occurrence that the PV power
production were included in each of the power intervals. If for a
certain hour two consecutive intervals summed most of the prob-
ability, then it was stated that the uncertainty of that point forecast
was low. Bracale et al. (2013) obtained the power output PDF using
a Bayesian auto regressive time series model. The actual power
measurements were located always between the 5 and 95th per-
centiles. They found it difficult to select a single parameter of the
PDF (mean value, percentiles, . . .) to represent the whole
distribution.
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Fig. 5. Different forecasting schemes. Source: Rana et al. (2015).

Fig. 6. Number of publications in recent years with respect to the time horizon and origin of inputs. Sample set: studies listed in Table 2.

90 J. Antonanzas et al. / Solar Energy 136 (2016) 78–111
Zamo et al. (2014b) applied several nonparametric statistical
quantile regression methods to approach the problem. To try to
improve forecasts, they performed a calibration technique based
on the rank histogram. This graphical tool ranks each observation
with the corresponding predicted members. The graphic is then
obtained by computing several pairs of predicted and measured
values. A flat rank histogram is a necessary but not sufficient con-
dition for a forecast to be reliable. The calibration method works as
follows: create the rank histogram based on the training subset,
associate to each forecast quantile of the test set the associated
proportion of observations below that quantile computed on the
training sample. Said association gives some points of the Cumula-
tive Density Function (CDF). Then, linear interpolation is per-
formed between those points and extrapolation is performed
based on assumptions, creating the corrected CDF. Results were
explained according to the reliability and potential Continuous
Ranked Probability Score (CRPS) terms (see Section 8) and for dif-
ferent set of quantiles. They showed that the climatological model
used as benchmark was beaten by all studied techniques in terms
of CRPS. With respect to the calibration technique, it was observed
that in some cases it worsened the predictions. They found two
explanations: the interpolation and extrapolation between
available quantiles could introduce large errors if not enough
quantiles were known. In addition to this, differences between
training and test rank histograms could lead to an inadequate
correction.

Alessandrini et al. (2015) also drew a rank histogram but with a
different purpose from the above mentioned case. They used it to
see if the observations were equally distributed in the predicted
PDF and calculated the missing rate error to know if the predic-
tions were under or over dispersive. To convert probabilistic
forecasts to deterministic ones, they selected the median value of
the PDF (solution that was also adopted by Almeida et al. (2015)
and Bessa et al. (2015)), arguing that it provides lower Mean Abso-
lute Error (MAE) than the mean. Other metrics used by these
authors are compiled in Section 8. Sperati et al. (2016) also worked
with PDFs and to further improve accuracy, they calibrated them
via the variance deficit and ensemble model output statistics. They
evaluated results in terms of statistical consistency (missing rate
error), spread/skill consistency (with their respective diagrams),
forecast value (Brier Skill Score (BSS) and Relative Operating Char-
acteristic (ROC) Skill Score (ROCSS)), reliability and sharpness, and
the CRPS.

Almeida et al. (2015) used quantile regression forests to obtain
the quantile Q :5 (median), from which they derived the point fore-
casts and all their performance statistics, and a 80% confidence
interval (between quantiles Q :1 and Q :9). They analyzed both the
amplitude and the accuracy of the confidence interval (see Sec-
tion 8) and results were grouped in three classes according to
the daily clearness index.

Bessa et al. (2015) used spatio-temporal correlations of dis-
tributed PV systems in a smart grid for their forecasts. Whereas
in the deterministic analysis (derived from the median value) they
obtained improvements ranging 6.5% and 3.3% for forecast hori-
zons between 1 and 6 h, respectively, in the probabilistic analysis
they obtained negative CRPS improvements for lead times between
4 and 6 h. To explain that difference, they plotted the quantile loss
with respect to the quantiles for horizons of 1 and 5 h. They
observed that for 1 h lead time, the quantile loss of the proposed
model was lower than the baseline, which did not consider infor-
mation from any other system. However, for 5 h lead time, the
quantile loss of the proposed model was higher than the reference



Table 2
Recent publications on solar power forecasting.

Authors/year Forecast horizon Forecast resolution Method Variables

Lorenz et al. (2007) Out to 3 days 1 h NWP with post-processing for GHI. Then, a
GHI!P PV performance model. Regional
forecasting

Forecasted GHI and T

Yona et al. (2007) 1–3 h 1 h ANN for GHI. Then, a GHI!P PV performance
model

Past values of GHI

Lorenz et al. (2008) Out to 3 days 1 h NWP with post-processing for GHI (corrections
as function of kcs and solar zenith angle). Then,
a GHI!P PV performance model. Regional
forecasting

Forecasted GHI and T

Bacher et al. (2009) 1–36 h 1 h AR with only lagged PV values, LM with NWP
and ARX with NWP and lagged P

Past values of P and forecasts of GHI

Kudo et al. (2009) 18–31 h 1 h Direct and indirect approach, based on day-
before data

Past values of P and GHI and forecasts of GHI and T

Li et al. (2009) 15–45 min 15 min Advance Grey-Markov chain Actual and past values of P
Hassanzadeh et al. (2010) 1, 5, 10, 15, 30 and 60 min – GHI modeling via the sum of a deterministic

component and a Gaussian noise signal and
Kalman filtering. Then, GHI!P PV performance
model

Past values of GHI

Mellit and Massi Pavan (2010) Day-ahead 1 h MLP for GHI. Then, a GHI!P PV performance
model

Daily �GHI and T, day of month

Tao et al. (2010) Day-ahead 1 h NARX with NWP. Weather classification Clear sky radiation for next day, forecasted highest and
lowest T and day type index

Berdugo et al. (2011) 10–30 min and 1–3 h 10 min and 1 h k-NN with analogs from neighboring plants Analogs from 11 PV systems as far as 70 km from each
other

Chen et al. (2011) Day-ahead 1 h ANN trained with NWP classified via SOM Daily P; �GHI; T; �RH;W , day of month
Chupong and Plangklang (2011) Day ahead 1 h Elman NN fed with clear sky model and NWP NWP of Tmax ; Tmin and cloudy index
Ding et al. (2011) Day-ahead 1 h ANN models trained with closest historical

data with respect to forecasted weather
conditions

Past values of P and high, low and average T from similar
and forecasted days

Fonseca et al. (2011a) 1 h – SVM fitted with NWP T, RH, low, mid and upper level cloudiness, Iex
Fonseca et al. (2011b) Up to 2 h and up to 25 h – SVM fitted with NWP. Comparison of accuracy

of different forecasting horizons
T, RH, low, mid and upper level cloudiness, Iex

Lorenz et al. (2011b) Out to 3 days 1 h NWP with post-processing for GHI. Then, a
GHI!P PV performance model. Upscaling for
regions

Forecasted GHI and T

Lorenz et al. (2011a) Out to 2 days ahead 1 h NWP and GHI!P PV performance model.
Correction for snow-covered panels

Forecasts of GHI, T, snow depth

Mora-Lopez et al. (2011) Day-ahead – PFA and multivariate regression to predict kt .
Then, a GHI!P PV performance model

P, IPOA , module temperature

Pelland et al. (2011) 0–48 h 1 h NWP with MOS to remove bias and spatial
averaging via Kalman filtering. Then, a GHI!P
PV performance model

Forecasts of GHI and T, system characteristics (tilt,
azimuth, performance, . . .)

Shi et al. (2011) Day-ahead 1 h Selection of SVM models based on previous
data and NWP

Past values of P from similar weather situations

Al-Messabi et al. (2012) 10, 60 min – Dynamic ANN Actual and past values of P
Chow et al. (2012) Real time, 10–20 min 10 min MLP GHI, solar elevation and azimuth angle and dry-bulb T
Fernandez-Jimenez et al. (2012) 1–39 h 1 h NWP in cascade from two models with

different resolutions. Then, benchmark of
different techniques: ARIMA, k-NN, ANN and
ANFIS

Past values of P and forecasts of surface sensible and
latent heat flux, surface downward shortwave and
longwave radiation, top outgoing shortwave and
longwave radiation and T

Mandal et al. (2012) 1 h – WT to decompose past values of P. Then, ANN
and back transformation with WT

Actual and past values of P, GHI and T

Pedro and Coimbra (2012) 1-2 h 1 h Benchmark of ARIMA, k-NN, ANN and GA-ANN.
Study of variability periods

Past values of P

Simonov et al. (2012) Day-ahead 1 h Fuzzy logic pre-processing to filter NWP used
as inputs for ANN

Julian day and forecasts of GHI, T, W, RH and pressure

(continued on next page)
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Table 2 (continued)

Authors/year Forecast horizon Forecast resolution Method Variables

Yang and Xie (2012) 5, 15 min, 1, 24 h – ARX with spatio-temporal data to predict GHI.
Then, a GHI!P PV performance model. Onsite
historical data and from neighboring PV plants

Past values of GHI at different plants and CC percentage

Bouzerdoum et al. (2013) 1 h – Combination of SARIMA and SVM to take into
account seasonality

Past values of P, IPOA , T, module temperature

Bracale et al. (2013) 1 h – Probabilistic forecasting based on Bayesian AR
to predict future kt from historical kt PDF.
Then, a physical kt !P with Monte Carlo
simulation

Past values of clearness index, T, RH, W, CC

Haque et al. (2013) 1–12 h 1 h Combination of WT, fuzzy adaptive resonance
theory mapping NN and firefly optimization
algorithm

Actual and past values of P and GHI

Hossain et al. (2013) 6 h – Ensemble modeling using 3 regression
algorithms: MLP, SVM and LMS

NWP of several variables

Jafarzadeh et al. (2013) 1–3 h 1 h Interval type-2 Takagi–Sugeno-Kang fuzzy
systems for probabilistic forecasts

NWP of GHI and T

Lonij et al. (2013) 15–90 min 15 min Forecasts in cloudy days based on spatio-
temporal correlations with distributed PV
plants. Determination of cloud speed

P from neighboring plants, forecasts of W

Monteiro et al. (2013a) Day ahead 1 h Analytical model based on irradiance and PV
attenuation indexes and MLP model

Past values of P, NWP of several meteorological variables

Monteiro et al. (2013b) 1–24 h 1 h Historical similar mining mechanism based on
transitions between actual and previous values
of variables. Generation of probability matrix
for future intervals

Past values of P, forecasted values of GHI and T, solar
hour

Ogliari et al. (2013) Day-ahead 1 h ANN fed with NWP variables selected by GSO Julian day, hour, predictions of T, W, RH, pressure and CC
Oudjana et al. (2013) 1–7 days 1 day Benchmark of linear and multiple regression

and ANN
Past values of GHI and T

Takahashi and Mori (2013) 30 min – Different ANN models, using Deterministic
Annealing

Present and past values of P and Tcell

Urquhart et al. (2013) 30 s–15 min 30 s Determination of cloud maps based on sky
images

Sky images, values of P

Yona et al. (2013) Day-ahead 1 h Forecasts of GHI based on NWP, fuzzy theory
and ANN. Then, a GHI!P PV performance
model

Forecasts of T, RH and CC

Zeng and Qiao (2013) 1–3 h 1 h Least Square SVM, comparison with AR and
ANN

Past values of meteorological variables

Almonacid et al. (2014) 1 h – Time Delay NN to predict GHI and T. Then, ANN
to predict P

Past values of GHI, T and P

Fonseca et al. (2014a) Day ahead 1 h Characterization of errors of regional forecasts
with SVR

Past values of P and NWP of T, RH and CC in three levels,
Iex

Fonseca et al. (2014b) Day ahead 1 h Different methods for regional forecasting
based on SVR, NWP and PCA

Past values of P and NWP of T, RH and CC in three levels,
Iex

Fonseca et al. (2014c) Day ahead 1 h Principal component analysis, SVR and NWP Past values of P and NWP of T, RH and CC in three levels,
Iex

Fonseca et al. (2014d) Day ahead 1 h Comparison of four methodologies based on
SVR and NWP for regional forecasting

Past values of P, NWP of T, RH and CC in three levels

Gandelli et al. (2014) Day-ahead 1 h PHANN model, combining ANN and a physical
clear sky solar radiation model

Forecasts of T, W, RH, pressure, CC, inputs of clear sky
model

Li et al. (2014) Day-ahead 1 h Benchmarking of time series models (ARMAX
model with NWP variables, ARIMA, simple and
double moving average, etc.) and ANN

Past values of P and forecasts of daily T , dew T, highest
and lowest T, precipitation, W, wind direction, RH,
pressure and insolation duration

Long et al. (2014) Intra day up to 3 days 1 day Benchmark of several techniques: ANN, SVM,
k-NN and MLR

P, GHI, W, RH, rain, insolation time, dew temperature

Lorenz et al. (2014) 15 min to 5 h 15 min and 1 h Benchmark of physical and SVR approach
comparing persistence, satellite CMV and NWP
inputs

Past values of P, NWP, satellite CMV, information on PV
system tilt and orientation
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Masa-Bote et al. (2014) Day ahead 1 h Comparison of PV performance model fed with
NWP and ARIMA fed with endogenous data

Past values of P and NWP of GHI and T

Mellit et al. (2014) Day-ahead 1 h Classification of future days with forecasted
GHI. Then, ANN trained with similar weather
situations to predict P

Actual and past values of P, GHI and cell temperature
and forecasts of GHI and T

Russo et al. (2014) 15–60 min 15 min Genetic Programming, no cloud data is used.
No memory system

Actual value of P and time difference with respect to
sunrise

Wu et al. (2014) 1 h – Hybrid model combining ARIMA, SVM, ANN,
ANFIS and GA

Past values of P, NWP of GHI

Yang et al. (2014) Day-ahead 3 h Classification of historical data with SOM and
learning vector quantization. Then, application
of SVR model trained with similar data to the
forecasted by the NWP to predict P

Forecasted maximum T, probability of precipitation,
weather description, month, past similar GHI values

Zamo et al. (2014a) 28–45 h 1 h Benchmark of statistical regression techniques:
LM, binary regression tree, bagging boosting,
RF, SVM and generalized additive models.
Upscaling

Several NWP variables

Zamo et al. (2014b) 66–72 h 1 h Probabilistic predictions using LM QR and
QRForest. Assessment of the use of one or
several NWP models

Several NWP models and variables

Alessandrini et al. (2015) 0–72 h 1 h Analog Ensemble and QR, providing a likely set
of P

Past values of P and forecasts of GHI, T, CC, solar azimuth
and elevation angles

AlHakeem et al. (2015) 1–6 h 3 h WD of actual PV measurements, ANN
optimized via PSO and bootstrap method to
quantify uncertainty

Actual values of P, predictions of GHI and T

Almeida et al. (2015) Day ahead 1 h QRF considering spatio-temporal variability
indexes and different training sets

Past values of P, IPOA , T, W and several NWP variables

Bessa et al. (2015) 1–6 h 1 h VAR and VARX models with information from
surrounding smart meters in a smart grid to
account for the presence of clouds. Point and
probabilistic forecasts

Inputs of clear sky model, actual and past values of
onsite P and from other systems

Chu et al. (2015) 5–15 min 5 min Benchmark of techniques: cloud tracking,
ARMA, k-NN and reforecast with ANN

Sky images, past values of P

De Felice et al. (2015) 1–10 days – SVR model using estimations and predictions
of GHI and T

Estimations of GHI and T and NWP of GHI and T

De Georgi et al. (2015) 1, 3, 6, 12 and 24 h – Hybrid model based on LS SVM with WD Past values of P and/or records of T, IPOA and module
temperature

Dolara et al. (2015a) 24–72 h 1 h PHANN model with mobile window forecast,
updating training set

Forecasts of T, W, RH, pressure, CC, inputs of clear sky
model

Fonseca et al. (2015) Day ahead 1 h Probabilistic forecasts based on the maximum
likelihood estimation and similarity of input
data using SVR and NWP

Past values of P and NWP of T, RH and CC in three levels,
Iex

Huang and Perry (2015) 1–24 h 1 h GEFCom 2014. Gradient boosting for
deterministic forecasts and k-NN regression for
probabilistic

Several NWP variables from the ECMWF and past values
of P onsite and from neighboring PV plants

Leva et al. (2015) Day-ahead 1 h ANN fed with historical data and NWP Past values of P, GHI and NWP variables
Lin and Pai (2015) 1 month 1 month Evolutionary seasonal decomposition LS-SVR

for monthly prediction of the PV power output
in Taiwan

Past values of P

Lipperheide et al. (2015) 20–180 s 20 s Benchmark of cloud speed persistence model,
AR and persistence methods

Past values of P and measurements of GHI to derive CMV

Lu et al. (2015) Day ahead 1 h Machine learning method combining NWP
from 3 models to generate inputs for a GHI!P
PV performance model

Past values of GHI and several NWP variables

Mohammed et al. (2015) 1–24 h 1 h Probabilistic forecasting based on an ensemble
of statistical techniques

Several NWP variables from the ECMWF and past values
of P

Ramsami and Oree (2015) Day-ahead 1 h Hybrid ANN with input optimization via
stepwise regression with NWP variables

Forecasts of GHI, T, RH, W, wind direction, pressure,
rainfall and sunshine duration

Rana et al. (2015) 30 min, 1, 2, 3, 4, 6 h – 2D Interval forecasts based on SVR Past values of P, GHI, T, RH and W
Schmelas et al. (2015) 1–12 h – Three different models: physical, statistical

(MLP) and hybrid (MLP-physical)
NWP of GHI, T, RH
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for the quantiles 5–20%, penalizing the CRPS. This highlights that
an improvement in point forecasts does not necessarily mean an
improvement in probabilistic metrics.

AlHakeem et al. (2015) applied bootstrap confidence intervals
to quantify the uncertainty of previously calculated deterministic
predictions, providing a range of possible future values.

Moreover, Rana et al. (2015) applied 2D forecast. 2D interval
forecasts provide a range of expected values for a future time inter-
val. There, they obtained an interval of likely values of solar power,
defined by the upper and lower bounds of the distribution.

Golestaneh et al. (2016) obtained predictive densities, described
with quantiles 0.05 to 0.95. They highlighted the importance of the
reliability and sharpness as a way of evaluating probabilistic
forecasts.

As seen, not many authors have applied yet probabilistic fore-
casts and several challenges are still to be solved. Some of these
issues are whether an improved point forecasting model can lead
to a better probabilistic forecast and whether the combination of
different probabilistic forecasts leads to more accurate models
(Hong et al., in press).
7. Temporal horizon

The main way in which forecasts can be classified is according
to the time horizon. As will be discussed later on, predictions made
for the diverse time horizons are important for different aspects of
grid operation, such as maintenance of grid stability, scheduling of
spinning reserves, load following or unit commitment.

What follows is a complete classification of studies regarding
the time horizon. A general description detailing the main charac-
teristics of each study and their most relevant results was per-
formed. At the end of the section, Table 2 is presented, which
summarizes all the studies described in this section, as well as
some graphics detailing distribution of publications according to
their approach, inputs and spatial scope (Fig. 7), the temporal
and spatial horizon/resolution of some sources of inputs (Fig. 8),
and forecasting errors (Fig. 9). Since the RMSE is the most widely
used metric to present the results in the studies observed, in order
to enable some comparisons between models, we have tried to
describe results with respect to this metric. It has been proved that
longer lead times tend to increase errors, especially under unstable
weather conditions. Skill scores (33) were also provided when
available. In Section 8 there is a complete assessment of other met-
rics used, which add very relevant information, as discussed there.

Fig. 6 depicts the distribution of recent publications with
respect to the origin of inputs and forecast horizon. As seen, as
the time horizon increases, the proportion of studies that incorpo-
rate exogenous variables, mainly derived from NWP, becomes lar-
ger. Most of studies focused on day-ahead, where most of the
electricity is traded, and on intra-day horizons.
7.1. Intra-hour or nowcasting

Very short term forecasting, also denoted as intra-hour or now-
casting, covers forecast horizons from a few seconds to 1 h. It is
important to assure grid quality and stability and to correctly
schedule spinning reserves and demand response. It becomes a
crucial issue when considering island grids or systems with low
quality power supply where high solar penetration is present. It
also provides benefits at the distribution system operation level,
since it allows the reduction of the number of tap operations at
the transformers. Nevertheless, robust systems with distributed
PV plants do not suffer that much from very short term power gen-
eration variability, since aggregating production over large areas
tend to balance fluctuations, as seen in Section 5. From the plant
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manager point of view, it is important to know the most updated
production predictions to be able to reformulate bids in sub-
hourly markets (like in EIM) and to learn about ramping rates that
affect their plants.

At this time, the main factor causing changes in solar irradiation
is the presence of clouds. Cloud generation and movement obey
physical rules, but turbulent processes make them appear to be
stochastic and very difficult to model (Larson, 2013). Several efforts
have been made to understand and predict cloud movement. Bosch
and Kleissl (2013) established a relation between cloud motion
vectors and irradiance and power measurements in a PV plant,
whereas Chow et al. (2015) determined cloud speed and stability
using a ground-based sky imaging system. The difficulty of
detecting clouds in the Sun region, as well as determining the
thickness of clouds was reported (Urquhart et al., 2015; Chu
et al., 2015). Peng et al. (2015) faced the problem of cloud thickness
determination using several total sky imagers and established
spatio-temporal correlations between them, which proved to be
useful. Some studies, as will be shown later in this subsection, used
cloud-tracking techniques to obtain power forecasts.

There are two main approaches, according to the origin of the
inputs, for addressing the intra-hour forecast horizon: models that
use only endogenous data (past records from the PV plant) (Chu
et al., 2015; Hassanzadeh et al., 2010; Li et al., 2009; Lipperheide
et al., 2015; Russo et al., 2014; Al-Messabi et al., 2012; Soubdhan
et al., 2016; Rana et al., 2016) and models that use exogenous data:
outputs from total sky imagers (Urquhart et al., 2013; Chu et al.,
2015), satellite images (Lorenz et al., 2014), NWP (Lonij et al.,
2013; Lorenz et al., 2014; Li et al., 2016), meteorological measure-
ments (Soubdhan et al., 2016; Chow et al., 2012; Rana et al., 2015;
Takahashi and Mori, 2013; Rana et al., 2016; Golestaneh et al.,
2016) or models that incorporate information from nearby PV
plants (Berdugo et al., 2011; Lonij et al., 2013; Vaz et al., 2016;
Yang and Xie, 2012). As seen, there are some studies that fall into
both groups due to the fact that some are comparative studies
which analyze different set of inputs.

Models using endogenous data have the advantage of simplicity
in data collection, as no sky image processing nor communication
with other PV plants are necessary. Regardless of the origin of
input data, several studies showed that outperforming persistence
models is difficult when working at short time frames. For
instance, Urquhart et al. (2013) obtained worse performance for
all time horizons considered. Lipperheide et al. (2015) could not
beat persistence for time horizons less than 28s, whereas Lonij
et al. (2013) underperformed for predicting less than 30 min
ahead. Collaboration from neighboring PV plants was not effective
Fig. 7. Number of publications according to their approach
for horizons of less than 15 min in any of the cases. Normally, the
skill of the forecasts increased with the time horizon and not many
are the studies that worked with time frames inferior to 1 min
(Chow et al., 2012; Urquhart et al., 2013; Lipperheide et al.,
2015). In comparison to solar irradiance forescasting, where many
studies make use of total sky imagers, these devices have not been
yet widely applied to solar power forecasting.

7.1.1. Endogenous
From the authors that used endogenous data, two claim that PV

plants are ‘‘no memory” systems (production in t þ 1 is only
related to operation in t) when talking about forecasting. Li et al.
(2009), already starting with that assumption, applied an advance
Grey-Markov chain, which is a probability analysis that can fore-
cast the state trend of a data sequence based only in the current
state and in a transfer probability matrix, to forecast 2 short peri-
ods during one test day. Their model output forecast power ranges
and the probability for each range and period of time. They
obtained an average relative deviation for time horizons of 15–
45 min of �2.78% and �1.26% for each of the two time periods
considered. Russo et al. (2014) considered 74 different inputs con-
formed by several variables and their lagged values (back to
165 min of the current time) and used Genetic Programming with
the software tool Brain Project (Russo, 2012). Forecast horizons var-
ied from 15 to 60 min in 15 min intervals. Results showed that the
model based solely on current power production and on the time
difference with respect to sunrise was almost as accurate as more
complex ones, concluding that all important information for the
forecast is captured by these two inputs. Errors ranged 21.8–
35.0% for horizons of 15–60 min. It must be said that metrics used
by these authors are different from the most common ones. As will
be further discussed in Section 8, an error of i.e. 21.8% means that
the error is 0.218 times the standard deviation of the output.

Nevertheless, other authors considered lagged values of plant
operation or meteorological records in their best models. Chu
et al. (2015) showed that when considering lagged values of vari-
ables back to 30 min, forecasts in the 5–15 min horizon could be
improved. Also, Lipperheide et al. (2015) used lagged values of
power measurements in an auto-regressive model, which proved
to be the best performing model for horizons of 94–180 s (perfor-
mance skills of 5.8–2.9% for 100–180 s horizons, respectively). That
AR model was used as benchmark for their proposal of cloud speed
persistence. Cloud motion vectors were derived from reference
cells which measured the time delay between clouds arriving at
different sensors in the plant (Bosch and Kleissl, 2013). With this
model, they obtained skill forecasts of 13.9–7.6% for the horizons
and spatial scope. Sample set: studies listed in Table 2.



Fig. 8. Distribution of different techniques and sources of inputs with respect to their spatial resolution/horizon and the temporal horizon for which they are used in power
forecasting. Time and spatial limits were fixed based on the sample set. Inspired by Inman et al. (2013), Diagne et al. (2013). Sample set: studies listed in Table 2.

Fig. 9. Comparison of forecasting skill ss of different approaches.
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40–80 s, respectively. Ramp persistence, however, outperformed
for predictions up to 28 s ahead.

Machine learning techniques are widely use for forecasting. Al-
Messabi et al. (2012) used dynamic neural networks for predicting
10 and 60 min ahead using as inputs only the actual power yield
and lagged power values back to 80 min. They observed best
results for the shortest horizon considered.

Soubdhan et al. (2016) performed predictions for time horizons
of 1, 5, 10, 30 and 60 min. They considered two sets of inputs, one
that consisted only of past PV measurements and another which
also incorporated Cloud Cover (CC) and air temperature (T) values
from a nearby meteorological station. They used a Kalman filter,
where parameter tuning was addressed via two methods: an AR
model and an Expectation–Maximization (EM) algorithm. Results
showed that the EM algorithm outperformed the AR model, with
nRMSEs of 8.29% and 8.87% with endogenous inputs, respectively,
and 8.03% and 8.77% for the case of exogenous inputs and EM and
AR, respectively. Skill scores of 36.81% and 38.80% were also
obtained for the EM algorithm with endogenous and exogenous
inputs, respectively. Nevertheless, the Mean Bias Error (MBE) was
larger for the case with exogenous inputs. Similarly, Rana et al.
(2016) also study the consequences of including meteorological
records in the model, in comparison to models with only endoge-
nous data. They compared two techniques: an ensemble of NNs
and a SVR model. Variable selection was performed via a
correlation-based feature selection algorithm. Univariate models
(only endogenous data) performed similarly. The ensemble
showed a slightly higher performance than SVR (Mean Relative
Error MRE: 7.26 ± 1.37% for ensemble NN). The same trends were
observed for multivariate models, which reached also similar
levels of accuracy (univariate models slightly outperformed multi-
variate models). They outperformed baseline models for all the
time horizon considered (5–60 min).

Other authors that forecasted at this time horizon using
endogenous data preferred an indirect approach. Hassanzadeh
et al. (2010) calculated solar irradiation via the sum of a determin-
istic component and a Gaussian noise signal. The filter was mod-
eled with spectral analysis and ARMA. On partly cloudy days,
solar irradiation was modeled with a Kalman filter. Once solar irra-
diation was obtained, they applied a simple PV performance model
to obtain power forecasts in the horizons of 1, 5, 10, 15, 30 and
60 min, which coincide with the sampling rates. Results, averaged
for a whole day, showed an increase in nRMSE from 23% to 37% for
time horizons from 1 to 60 min, respectively, for the spectral func-
tion method. They concluded that sampling rate should be kept as
short as possible to account for possible changes in cloud
generation.

7.1.2. Sky images
Only two studies were found to use sky imaging products to

directly forecast power output. Urquhart et al. (2013) started
working with sky images derived from two Total Sky Imagers
(TSI) located in a large power plant. They worked with time
horizons ranging 30 s–15 min in 30 s intervals. Cloud maps, as well
as a histogram of power normalized by the expected clear sky
power output, were generated. Clear and cloudy modes were used
then to assign values of normalized power to the shaded and
unshaded cells of the cloud maps. Thus, the complete power out-
put of the PV plant could be stated. However, this approach lead
to underperformance when compared to persistence. Average
RMSEs higher than 40% were obtained for each of the two test days.

Encouraged by the previous study, Chu et al. (2015) performed
a comparison between techniques (cloud tracking, ARMA and k-
NN), applying also a reforecast with ANN. That optimization took
as inputs lagged generation values (back to 30 min in 5 min inter-
vals) and predictions from the baseline models. Results showed
that the cloud tracking technique (described above) performed
the worst, with forecast skills of �71.3% and �18.9% for 5 and
15 min, respectively, when no optimization was applied. They
found two reasons for this poor performance: 2D treatment of
clouds, simplifying their 3D nature, and misidentification of
cloudy/clear pixels, especially near the Sun. However, when refore-
casting was performed, that method outperformed ARMA (forecast
skills of 12.9–19.4%), k-NN (forecast skills of �2.66% to 0.3%) and
persistence, showing forecast skills of 15.1% and 26.2% for 5 and
15 min horizons, respectively. When no reforecast was made, best
performing model was ARMA, with forecast skills up to 8%.

7.1.3. Meteorological records
Chow et al. (2012) built a MLP to obtain real time and 10 to

20 min ahead production using a small number of variables (dry-
bulb temperature, solar elevation and azimuth angles and solar
radiation). They obtained correlation coefficients (values showing
95% confidence intervals) of 0.84–0.94, 0.89–0.99 and 0.82–0.95
for real time, 10 and 20 min ahead, respectively. Takahashi and
Mori (2013) also used ANN and studied 3 different models for
30 min ahead predictions: a Radial Basis Function Network and
Generalized Radial Basis Function Networks with clustering via
k-means and Deterministic Annealing. They used as inputs actual
and lagged values of Power (P) and cell temperature (Tcell). Results
showed that their Deterministic Annealing model outperformed
the other models, having a standard deviation of errors 12% lower
than the former model.

Rana et al. (2015) also worked with a machine learning
approach, in this case SVR. They introduced the 2D interval fore-
casts for predicting intra-hour and intra-day. 2D interval forecast
can be defined as an interval forecast for a range of future values,
what is a continuous probabilistic forecast for a defined future per-
iod (more on this topic in Section 6). They also studied different
sets of inputs depending on how frequently data was sampled.
Results for the 30 min forecast horizon showed a MRE of 6.47%
and an Interval Coverage Probability (ICP) of 65.58%, which repre-
sented big improvements with respect to baselines (more about
these metrics in Section 8).

Golestaneh et al. (2016) worked with Extreme Learning Machi-
nes (ELM) to derive predictive densities. They presented their
results taking into account the reliability and the sharpness, which
they claimed to be the most representative attributes of a proba-
bilistic forecast. They outperformed all baseline models presented
with their approach.

7.1.4. NWP
Li et al. (2016) proposed a hierarchical approach to derive

15 min, 1 and 24 h ahead forecasts. They used and compared
ANN and SVR based models to predict power output at the inverter
level (11 inverters of 500 kW) and then, added individual forecasts
to obtain the predictions at the plant level (6 MW). They used
lagged values of power output, NWP of several variables as well
as solar geometry values to train the models. The hierarchical
approach performed better than the ‘traditional’ one for 15 min
and 1 h ahead using either ANN or SVR, whereas for 24 h ahead,
the hierarchical and traditional approach were similar.

7.1.5. Neighboring PV plants
Regarding the studies that used data from nearby PV plants, it

can be highlighted that none of them could beat the persistence
for a time horizon inferior to 15 min. This is because the spatio-
temporal correlation with other PV plants is low at this time frame.
The way authors approached collaboration between neighboring
plants is diverse. Berdugo et al. (2011) preferred to share a small
part of information (in the form of analogs) so as to keep most of
the operation parameters private between the 11 plants
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considered, which were up to 70 km apart. k-NN was used to
uncover patterns in energy generation. There was a small tendency
for the collaborative method to outperform the non-collaborative
approach. It was claimed that if more neighbors were available,
that tendency would be clearer. Yang and Xie (2012) used an
ARX with spatio-temporal correlations from 5 nearby plants, as
far as 200 km from the studied site, to predict solar irradiation
and then, using a simple PV performance model, obtained the
power output. They outperformed persistence for 1 h horizons,
not in the 5–15 min horizons. On the other hand, Lonij et al.
(2013) assumed a clear sky production of the PV plant, which
was later modified by the presence of clouds (determined by the
variations in the output of 80 PV rooftops over a 50 � 50 km area),
whose velocity was obtained by several ways (NWP, Kalman filters
or persistence). The model outperformed the persistence for fore-
cast horizons between 30 and 90 min, with forecast skills of
�4.8% and 2.4% for 15 and 30 min horizons, respectively.

Finally, Vaz et al. (2016), who applied NARX techniques, used
local meteorological data and measurements from close PV plants
(5 plants separated around 7 km) in the Netherlands. They studied
several input combinations. The best performing model used infor-
mation from all sites and meteorological data. For 15 min horizons
(nRMSE of 0.09), accuracy of NARX was similar to persistence, but
for horizons of 30 min (nRMSE of 0.13) on, the proposed model
clearly outperformed the baseline.
7.1.6. Summary
Nowcasting can be approached via several ways, where models

using only endogenous data or meteorological records are domi-
nant. Methods that incorporate sky images are very promising,
although further work has to be address to correctly identify
clouds. NWP are not normally used at this time frame since they
lack enough temporal resolution. Information shared from other
PV plants has been taken into account in several studies, although
for short lead times (less than 15 min) they do not provide satisfac-
tory results due to the low spatio-temporal correlation between
plants. It has been found that for short time horizons, beating per-
sistence models is a difficult task.
7.2. Intra-day

Intra-day forecasts cover from 1 to 6 h and are important for
load-following purposes. Also, they are essential for grid operators
that control different load zones or who trade outside of the
boundaries of their area (Pedro and Coimbra, 2012).

While for intra-hour forecasts just three of the studies (Lonij
et al., 2013; Lorenz et al., 2014; Li et al., 2016) used NWP, for
intra-day predictions many of them did so. NWP are a common
way to add future information about the atmosphere conditions
to the forecasting models. Nevertheless, at short forecast horizons,
NWP are not used since they lack the necessary granularity for
these issues. NWP are normally taken into account for forecast
horizons longer than 4 h, although there are exceptions. At this
time horizon, methods using satellite images also appear. As
described in Kühnert et al. (2013), satellite images may come from
Meteosat Second Generation (MSG) geostationary satellites, oper-
ated by the European Organization for the Exploitation of Meteoro-
logical Satellites (EUMETSAT), the Geostationary Operational
Environmental Satellite (GOES) for the American region or the Geo-
stationary Meteorological Satellite (GMS) for the Japanese region.
From the gathered images, the cloud-index images are obtained.
Studying differences between time distributed images, it is possi-
ble to derive the Cloud Motion Vectors (CMV). Then, cloud move-
ment is extrapolated to generate forecasts of GHI for the
following hours. Finally, output maps are smoothed to reduce
errors. Normally, accuracy of thus created forecasts is adequate
up to 5 h.

As in the previous subsection, a broad classification of the works
can be made according to the origin of the inputs. Endogenous data
was used by Bracale et al. (2013), Hassanzadeh et al. (2010), Pedro
and Coimbra (2012), Russo et al. (2014), Yona et al. (2007), Zhang
et al. (2015a), De Georgi et al. (2015), Al-Messabi et al. (2012) and
Soubdhan et al. (2016), whereas other researchers introduced
exogenous inputs, either coming from satellite images (Lorenz
et al., 2014), NWP (Alessandrini et al., 2015; Bacher et al., 2009;
Fernandez-Jimenez et al., 2012; Fonseca et al., 2011a; Fonseca
et al., 2011b; Mellit et al., 2014; Lonij et al., 2013; Monteiro
et al., 2013b; Pelland et al., 2011; Lorenz et al., 2007; Lorenz
et al., 2008; Lorenz et al., 2009; Lorenz et al., 2011b; Lorenz
et al., 2011a; Lorenz et al., 2014; Hong et al., in press; Yona et al.,
2013; Li et al., 2014; Huang and Perry, 2015; Wu et al., 2014;
Nagy et al., 2016; Jafarzadeh et al., 2013; Schmelas et al., 2015;
AlHakeem et al., 2015; Li et al., 2016; Sperati et al., 2016;
Mohammed et al., 2015), meteorological records (Mandal et al.,
2012; Haque et al., 2013; Soubdhan et al., 2016; De Georgi et al.,
2015; Almonacid et al., 2014; Rana et al., 2015; Bouzerdoum
et al., 2013; Zeng and Qiao, 2013; Do et al., 2016; De Georgi
et al., 2016) or from nearby PV plants (Berdugo et al., 2011; Lonij
et al., 2013; Vaz et al., 2016; Yang and Xie, 2012; Bessa et al.,
2015; Hong et al., in press; Huang and Perry, 2015).

7.2.1. Endogenous
Models with endogenous data are still widely used for this time

horizon. Yona et al. (2007) followed an indirect approach, firstly
forecasting GHI via NN and then fitting that prediction into a sim-
ple PV performance model. They obtained monthly Mean Absolute
Percent Errors (MAPEs) ranging 11–17% for the three horizons con-
sidered (1–3 h) with a recurrent NN. An indirect approach was also
performed by Bracale et al. (2013). In this work, one hour ahead
probabilistic forecasts were obtained from the power output prob-
ability density function. To generate that, they first constructed the
clearness index probability density function, which was derived
from historical data. Then, they predicted the future mean value
at time t + 1 using a Bayesian auto regressive time series model
(relating solar irradiance to meteorological variables). Finally, a
PV performance model (relating clearness index to power output)
and a Monte Carlo simulation lead to the power predictions. Mean
Absolute Relative Errors (MAREs) of 14.5% and 18.0% were
obtained for winter and summer, respectively, and real measure-
ments were always between percentiles 5–95% of the predicted
power.

The work developed by Pedro and Coimbra (2012) represents a
complete assessment of forecasting techniques. They compared
ARIMA, k-NN, ANN and GA-ANN for the forecast horizons of 1–
2 h using solely past records of power output. They divided the
power output in two parts: a part that is explained by a clear sky
model and a stochastic part. All the proposed models focused on
the prediction of that stochastic part, which is the only one that
presents a certain level of uncertainty. They separated results in
three variability periods. For low variability, best performing
model was k-NN. However, that situation reversed for medium
and high variability periods, were GA-ANN clearly outperformed
the other techniques. Forecast skills ranged 32.2–35.1% and nRMSE
13.07–18.71% for GA-ANN and the 1 and 2 h horizons, respectively,
whereas forecast skills were negative for the k-NN.

7.2.2. Meteorological records
Hybrid techniques have also been applied in forecasting, such as

the work by Mandal et al. (2012). They predicted 1 h ahead power
output using a combination of wavelet transform and ANN. Inputs
were past power measurements, irradiance and temperatures at
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times t, t-12 and t-20 h. Past power values were transformed by
the Wavelet Transform (WT) to obtain a decomposed approxima-
tion signal and detail coefficients. Then, all the variables were fed
in the ANN. Finally, the forecast values of decomposed approxima-
tion signal and detail coefficients were restored by the WT. Results
showed that the hybrid approach outperformed simple ANN,
obtaining MAPEs of 4–13% for the Back Propagation NN. Haque
et al. (2013) also used WT to decompose present and past values
of P and then fed them, in combination with GHI measurements,
into a fuzzy Adaptive Resonance Theory Mapping (ARTMAP) NN.
Optimization was carried out by a firefly optimization algorithm.
With this new methodology, they could outperform all the bench-
mark models, consisting of variations of WT and different ANN
architectures, and obtained MAPEs of 12.11–13.13% depending
on the season.

Bouzerdoum et al. (2013) also used a hybrid method, a combi-
nation of SARIMA and SVM. The SARIMA model analyzed the linear
components of the power, whereas the SVM model was in charge
of finding the non-linear patterns from the residuals of the SARIMA
model. The hybrid model was found to outperform the other two
techniques separately, reaching a nRMSE of 9.40%. Hybrid models
were also used by De Georgi et al. (2015), who applied a combina-
tion of LS SVM with WD for predicting 1, 3, 6, 12 and 24 h ahead
using two sets of inputs: the first one only contained past power
measurements and the second added the module and ambient
temperature and the IPOA. As benchmark, an ANN with WD and
LS SVM with no WD models were used. The model proposed out-
performed baselines, with nRMSE ranging 9.6–15.28% and 10.66–
19.65% for horizons of 1 to 6 h and for the input sets containing
all variables and only power measurements, respectively. Best
results for input datasets that contained more variables were also
obtained in De Georgi et al. (2014). Errors increased up to 22.76%
for the longer lead times considered. They performed a complete
assessment of the model performance calculating several proba-
bilistic metrics.

Almonacid et al. (2014) created a ANN to predict 1 h ahead
module power output, with GHI and cell temperature in t + 1 as
inputs. To obtain those inputs, they first created two non-linear
autoregressive models for forecasting GHI and air temperature
from current and previous measurements, with which they
obtained later the cell temperature. That data was fed to the
ANN model, obtaining a nRMSE of 3.38%. Rana et al. (2015), whose
methodology was previously presented in Section 7.1, obtained an
average MRE of 9.65% and standard deviation of 1.93% for the 1–6 h
horizons, whereas average ICP was 73.07% and standard deviation
of 5.83%. These values represent an improvement of 9–44% in
terms of MRE and 16–60% in terms of ICP with respect to baselines
and ANN model used for benchmarking. Finally, Zhang et al.
(2015a) performed hour and day ahead forecasts. They studied 4
different scenarios, considering geographical aggregation and dif-
ferent locations. They analyzed results via several metrics (see Sec-
tion 8), obtaining a nRMSE of 17% to 2% for the single plant and for
a relatively large ensemble of them (64,495 GW), respectively. This
finding confirmed that spatial averaging reduces errors (Lorenz
et al., 2007, 2008, 2009, 2011a,b, 2014; Mills and Wiser, 2010).
Also, a striking MaxAE greater than 70% was found for the single
plant and 25% for the relatively large ensemble of them. Such large
errors can have a economic impact on grid operation.

Do et al. (2016) investigated on the minimum training period to
achieve accurate one hour ahead forecasts. Their inputs were
actual PV measurements and values of CC and T. They analyzed
three models (ANN, regressive and persistence models) and two
different climatic regions. Results showed that the tropical region
required a shorter training set (3 months) than the template region
(6 months), but once trained, errors were lower for the latter
(nRMSE 10.69% in comparison to 11.97% for the regression
method). The regression model was found to outperform the
ANN and persistence.

De Georgi et al. (2016) combined a LS SVM model with a novel
NN, named Group Method of Data Handling (GMDH), to build an
hybrid model, denominated Group least square support vector
machine. Three set of inputs, differentiated by the way past predic-
tions were incorporated to the input set, were also evaluated.
Results showed that the hybrid model outperformed single mod-
els, although only slight differences could be found with respect
to the GMDH model (in terms of nMAE). Between the single mod-
els, the NN outperformed the LS SVM model.

7.2.3. NWP
Many authors used forecasted variables in their prediction

models. Here, we begin resuming most of the work developed by
E. Lorenz and colleagues with respect to power forecasting. Even
if forecast horizons are diverse, they are collected here for clarity
purposes. Lorenz et al. (2007) took NWPs from the European Cen-
ter for Medium range Weather Forecasts (ECMWF). Since they are
in 3 h bases, they analyzed different spatial and temporal interpo-
lation techniques to downscale irradiance forecasts to 1 h. Once
horizontal irradiance was known, they converted it into IPOA and
then, using a PV performance model, into PV power output. They
studied single plants, an ensemble of 11 plants and another ensem-
ble of 4500 plants distributed over Germany. Averaged results for
up to 3 days ahead and for a single site showed a nRMSE of 13%,
while it reduced to 9% for the ensemble of 11 plants and further
down to 5% for the case of Germany. They concluded that the
increase on forecast accuracy is highly dependent on the size of
the region of study. In Lorenz et al. (2008) they further developed
the model previously explained, whose goal was the hourly fore-
cast of regional PV plants. In contrast to the previous study, they
developed a statistical model to derive the characteristics of the
PV plants, since in real situations many variables (exact location,
orientation, tilt angle, etc.) are not known. They studied an ensem-
ble of 460 PV plants. Irradiance forecasts were best modeled
and corrected as a function of the clear sky index and the solar
zenith angle. PV power output for an ensemble of plants was calcu-
lated applying a representative system model. They obtained
nRMSE of 11%, 6% and 5% for a single plant, an ensemble over a
220 � 220 km area, and the whole of Germany, respectively. They
also studied the possibility of upscaling the results from a subset
to the whole ensemble of PV plants. They found that with 30% of
the plants they could create a representative subset, obtaining
similar accuracy in forecasts for all plants as if they were studied
separately. Lorenz et al. (2011a) further developed the upscaling
modeling. Upscaling is an important procedure since simulation
of all PV systems is very computational demanding and system
information is normally not known. Moreover, if performed
correctly, upscaling results in almost no loss in accuracy. Here, they
grouped representative subsets and compared them to actual
distribution, showing in some grids stronger concentrations than
actual values. To correct that, they also took into account the
distribution of system orientations (azimuth and tilt angles) and
the mix of module types. Additionaly, a scaling factor was added
to single systems, calculated as the ratio between overall installed
power and installed power of the subset for that grid point. Results
showed skill scores in the range of 30–40% and 40–50% for intra-
day and day-ahead forecasts. Overestimation was found in winter
months, due to snow covering PV modules. This fact was corrected
in Lorenz et al. (2011b). There, they introduced a method to correct
systematic deviations due to snow. For that reason, they also used
temperature and snow depth predictions from the ECMWF. An
algorithm that first separated days with high probability of snow
cover was created. Then, an empirical equation predicted power
output when snow cover was present, considering a factor which
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denoted the probability of snow covering PV modules. For single
sites, the RMSE could be reduced to one third of the original RMSE
(not considering snow cover) and for regional forecasts (size of
2� � 2�), the RMSE was lowered to half the prior errors for intra-
day forecasts during winter months. When the whole year and
region were considered, the new snow-approach also outper-
formed the original model, with nRMSEs of 3.9% and 4.6% for
intra-day and day-ahead, in comparison to the original model,
with nRMSEs of 4.9% and 5.7% for the same time horizons.
Lorenz et al. (2014) continued with the study of the German PV
system, in this case considering 921 PV plants, from which they
knew tilt and orientation. They studied time horizons of 15 min
to 5 h ahead using PV power measurements, satellite CMV and
NWP. Additionally, local and regional forecasts were considered
separately. For local and regional forecasts, CMV outperformed
NWP for horizons up to close to 4 h. They also studied the combi-
nation of different source of inputs (power measurements, CMV
and NWP) in a linear regression model (resulting in a considerable
improvement of the combined model with respect to basic models,
especially in regional forecasts) and with SVR, obtaining similar
results.

Bacher et al. (2009) downloaded GHI forecasts from the HIRLAM
mesoscale model of the Danish Meteorological Institute to be used
as part of the inputs in a ARX model for the forecast of 1–36 h
ahead power production of 21 small PV plants in Denmark in 1 h
intervals. They compared three different models: AR with past
endogenous data, a Linear Model (LM) with the NWP and an ARX
with both past data and NWP. Solar power was normalized with
respect to a clear sky model to gain stationarity. Results showed
that for 1 h horizons, AR outperformed LM, indicating that the
most important variable at that time frame was the solar power.
For horizons from 2 to 6 h, the LM slightly outperformed the AR,
concluding that both had a similar accuracy. Nevertheless, when
both group of inputs were combined in the ARX, they resulted in
the best performing model, with an averaged improvement with
respect to RMSE of 35%.

Pelland et al. (2011) preferred a physical approach in their
study. Using Canada’s Global Environmental Multiscale model,
they applied MOS to spatially average values and to remove bias
using a Kalman filter. Post-processing lead to a skill score of 28%
with respect to the base NWP in terms of GHI. Once the GHI was
known, 12 different model combinations to convert GHI into IPOA
were tested, as well as two different PV performance models. They
concluded that the selection of the model to convert from GHI to
IPOA had no big impact on final accuracy, since the biggest error
came from the prediction of GHI. Also, both PV models performed
similarly, although the linear model slightly outperformed the
PVSAT, which was also simpler to train. They obtained RMSEs in
the range of 6.4–9.2% for the whole time horizon (0–48 h). As
pointed out, errors could be further decreased if the horizon of
0–6 h had only been considered for the optimization.

Fonseca et al. (2011a) studied the influence of considering
numerically predicted cloudiness from the Japan Meteorology
Agency (at three different levels in the atmosphere), in combina-
tion with other NWP variables (normalized temperature and
relative humidity) and calculated values (extraterrestrial irradia-
tion), in the prediction of 1 h ahead solar power output. For that
purpose, they utilized SVR. Apart from outperforming persistence,
they found out that not taking into account cloudiness predictions
into the SVR model increased the RMSE by 32.6%. A final year-
averaged RMSE of 9.48% was obtained for the best performing
model. Moreover, Fonseca et al. (2011b) applied the technique
described above (SVR with NWP variables) and observed that the
yearly averaged RMSE increased 13% from up-to-2 h ahead fore-
casts to up-to-25 h ahead predictions. Longer lead times increased
errors, especially for unstable weather conditions.
Fernandez-Jimenez et al. (2012) made use of two NWP models
in a cascade structure. First, predictions from a low resolution
model, the Global Forecasting System (GFS) (National Oceanic
and Atmospheric Administration, 2003), were downloaded, whose
outputs were used as inputs in a higher spatial and temporal reso-
lution model, the MM5 (Dudhia et al., 2005). Then, those outputs
fed a set of different forecasting techniques: ARIMA, k-NN, ANN
and ANFIS. They predicted horizons of 1–39 h with 1 h resolution.
Best performing model was a MLP, with an RMSE of 13.17% aver-
aged for all the time horizons.

Yona et al. (2013) applied fuzzy theory to perform irradiance
forecasts using NWP of Relative Humidity (RH) and CC. Then, using
a PV performance model, converted prediction of GHI and T into PV
power. Jafarzadeh et al. (2013) also used fuzzy systems, in this
case, Takagi–Sugeno-Kang (TSK), for 1–3 h ahead forecasting. They
used NWP of GHI and T, but instead of being numerical, they were
linguistic variables, such as low or mild for T and mostly cloudy or
sunny for GHI. Using interval type-2 triangular membership func-
tions, they provided probabilistic forecasts which accounted for
the uncertainty in predictions.

Monteiro et al. (2013b) used a mesoscale NWP to create a data-
base of weather variables. Considering also past records of power
production, they created a model based on transitions recorded
in the past (for each variable in the dataset, two values were kept,
the present and the previous one). For that purpose, they applied a
historical similar mining mechanism, which assigns different
weights to cases depending on their similarity with the current
case. Later, they calculated power transitions and, once they were
known, a probability matrix was created, containing the probabil-
ities for each future forecast interval. Model parameters were opti-
mized via GA. This model not only provided point forecasts, but
also the uncertainty associated to them. Results showed that a skill
forecast of 36.3% (nRMSE 10.14%) could be obtained and an
improvement with respect to MLP (the second benchmark model)
of 0.8%, averaged for the whole forecast horizon (1–24 h).

Alessandrini et al. (2015) also performed a probabilistic forecast
taking data from the Regional Atmospheric Modeling System
(RAMS) and historical data from the PV plant. They forecasted 0–
72 h ahead using Analog Ensemble, a method which provides a
set of likely PV predictions. The model selected the 20 past situa-
tions with lowest distance between forecasted and concurrent val-
ues and, based on that, the ensemble forecast was created. The
Analog Ensemble model outperformed in statistical consistency
both Quantile Regression (QR) and persistence, although similar
results with QR in terms of MAE and CRPS were obtained. It slightly
outperformed ANN from a deterministic point of view. Authors
highlighted the little computational effort it took to make these
forecasts. Sperati et al. (2016) continued with probabilistic fore-
casting in the same time horizon. They took forecasts of meteoro-
logical variables from the ensemble prediction system derived
from the ECMWF and applied NN to remove bias from those vari-
ables and obtain PDFs of solar power. To further improve the pre-
dictions, they used two methods: the variance deficit, in order to
adjust the ensemble spread, and the ensemble model output statis-
tics, which seeks the minimization of the CRPS. They analyzed the
results focusing on the reliability, resolution and uncertainty
terms. Results showed that both methods obtained similar levels
of statistical consistency.

Mellit et al. (2014) performed weather classification in accor-
dance to forecasted GHI. That variable, along with forecasted cell
temperature and current P, were fed into a ANN trained for the
specific weather conditions to predict P in day-ahead basis. MAPEs
of 1.8%, 4.0% and 3.6% were obtained for sunny, partly cloudy and
overcast days.

Wu et al. (2014) constructed a hybrid model combining ARIMA,
LS SVM, ANN and ANFIS techniques for predicting 1 h ahead. As
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inputs they only needed historical power measurements and NWP
of GHI. To calculate the weights of each single forecast they applied
a GA. It was shown that the hybrid model outperformed each of the
techniques that conformed it, obtaining nRMSEs ranging 3.43–
6.57% depending on the test case.

Schmelas et al. (2015) compared three different forecasting
techniques (physical, statistical MLP and hybrid, which incorpo-
rated physical information) for the energy prediction of a positive
energy building. Predictions were made from 1 to 12 h ahead. Spe-
cial focus was applied to the study of shadows, which end up being
very problematic. NWP of T, RH and GHI were obtained from the
Deutscher Wetterdienst (DWD). Best results were obtained for
the hybrid model.

AlHakeem et al. (2015) forecasted 1, 3 and 6 h ahead. They
applied Wavelet Decomposition to actual PV power values, which
were added to predictions of GHI and T into a ANN, optimized
via PSO. Results were reconstructed and the uncertainty of fore-
casts was obtained using the bootstrap method (see Section 6).

Zeng and Qiao (2013) predicted 1–3 h ahead using LS SVM. They
used several meteorological variables to model atmospheric trans-
missivity and then, converted it to solar power as a function of the
latitude and time of the day. The model proposed outperformed
other benchmarking approaches (AR and Radial basis function NN).

7.2.4. Neighboring PV plants
Regarding the use of information from neighboring PV plants,

two new studies in this time horizon are found (Bessa et al.,
2015; Huang and Perry, 2015). The same studies as in the intra-
hour domain also persist, whose performances were described
above. The work developed by Bessa et al. (2015) focused on point
and probabilistic forecasts in a smart grid, for time horizons of 1 to
6 h. They used a Vector Auto-Regression framework (VAR), which
is an auto-regressive network with information both temporal
and spatial. They worked at Low Voltage (LV) levels with VAR
and at Medium Voltage (MV) levels both with VAR and VARX,
which included information from the smart meters at the LV level
to account for the influence of clouds. Also, with the aim of bench-
marking, a classical AR was also calculated. At the secondary level
(MV), VAR and VARX models outperformed AR in around 7.5–1.6%
and 10–2.5% for lead times of 1 to 6 h, respectively. As pointed out,
improvements decayed with the time horizon, showing that dis-
tributed information is more important for the first 3 h. This is
because the area of study is small and cloud events cross the area
in a short period of time. A similar conclusion was reached by Vaz
et al. (2016). At the primary level, VAR outperformed AR, revealing
the same trend: improvements dropped with the time horizon. An
average improvement of around 12.5–2% over AR could be found
for horizons of 1–6 h, respectively. High variability between cases
(smart meters in LV and Distribution Transformer Controllers
(DTC) in MV) was reported. For the probabilistic forecasts, VARX
model outperformed AR in all lead times and VAR for horizons
between 2 and 6 h at the DTC level using the CRPS. Nevertheless,
at the primary level, improvements were negative for lead times
4–6 h. This is explained by a poor performance of VAR in some
quantiles, which impacts the overall performance.

To conclude this part we present, as a summary, the main find-
ings of the Global Energy Forecasting Competition 2014 GEF-
Com2014, detailed in Hong et al. (in press). Participants had to
make probabilistic forecasts for the horizon of 1–24 h with hourly
resolution. They were provided information from NWP and had to
predict the output of three solar power plants in Australia. It must
be highlighted that the five best models were nonparametric and
they usually applied variations of QR and gradient boosting. More-
over, in a similar competition, the American Meteorological Society
2013–14 Solar Energy Prediction Contest, aiming at the prediction
of daily solar energy in 98 sites, the top participants also used
Gradient Boosted Regression Tress in their models (Aggarwal and
Saini, 2014), which reveals their good performance. Back in the
GEFCom2014, whereas four of the five best models used informa-
tion from the neighboring PV plants to issue the forecasts, the team
that ranked second (Nagy et al., 2016) only used onsite information
(in addition to the aforementioned NWP). This proves that a proper
selection of onsite inputs and techniques can lead to satisfying
results without falling in the complexity and higher dimensionality
derived from including offsite information.

Huang and Perry (2015) took part in the GEFCom2014 and used
both NWP variables from the ECMWF and production from neigh-
boring plants. They chose the gradient boosting machine for the
deterministic forecast, which they fed with variables from NWP,
variables obtained from physical equations and data from the
neighboring PV plants. However, they went for k-NN regression
for the probabilistic analysis. They obtained an overall quantile
score of 0.01211 using the pinball loss function (see Section 8).
Nagy et al. (2016) employed regressor ensembling to issue the
forecasts. As said before, they did not use information from neigh-
boring PV plants. They tried four ensembling methods (voting, bag-
ging, boosting and stacking predictors) and obtained best results
with a voted ensemble of QR Forests (QRF) and a stacked RF. Their
overall quantile score was 0.01241. Mohammed et al. (2015) used
the data from the GEFCom2014 an applied an ensemble of statisti-
cal techniques (decision tree regressor, random forest regressor, k-
NN regressor (uniform), k-NN regressor (distance), ridge regres-
sion, lasso regression and gradient boosting regressor) combining
their results via a naive model, a normal distribution and a normal
distribution with different initial settings. For individual models,
best results were obtained with random forests and gradient
boosting (average pinball loss of 0.0194 and 0.0193, respectively).
Nevertheless, when ensemble models were created, they outper-
formed all single models. The combination via the normal distribu-
tion with different initial settings obtained the best results, with an
average pinball loss of 0.0148.

7.2.5. Summary
There exists a wide range of options to issue intra day forecasts

which have proven satisfactory results. Because of this, it is diffi-
cult to select a single best performing technique. Most selected
models were ANN, SVR and regressive methods. Important lessons
can be extracted also from the forecasting competitions described
herein, since all researchers worked with the same database. There,
gradient boosting machines obtained best results. On the other
hand, NWP variables were extensively used at this time frame.
The used of cloudiness predictions and variable selection algo-
rithms showed to improve forecasts. Taking into account informa-
tion from neighboring PV plants decreased forecasting errors when
applied.

7.3. Six hours to day ahead

Forecasts from 6 h up to day ahead are normally used for plan-
ning and unit commitment. They cover horizons from 6 to 48 h,
depending on when forecasts are issued. If for intra-hour forecasts
there were only three studies introducing NWP variables, that
amount increased to 57% in intra-day forecasts and further to
79% for the day ahead. These numbers give an insight on the ben-
efits of using NWP when time horizons increase, since NWP are
able to feed models with some future meteorological trends. Thus,
when the same classification as in previous sections is shown, it is
seen that only a few authors limited to endogenous data (Kudo
et al., 2009; Rana et al., 2015; De Georgi et al., 2015; Haque
et al., 2013; Masa-Bote et al., 2014; Long et al., 2014), whereas
most of them took into account NWP (Alessandrini et al., 2015;
Bacher et al., 2009; Mellit et al., 2014; Chen et al., 2011; Dolara
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et al., 2015a; Fernandez-Jimenez et al., 2012; Lorenz et al., 2007;
Lorenz et al., 2008; Lorenz et al., 2009; Lorenz et al., 2011b;
Lorenz et al., 2011a; Fonseca et al., 2011b; Lu et al., 2015;
Monteiro et al., 2013a; Pelland et al., 2011; Almeida et al., 2015;
Ramsami and Oree, 2015; Shi et al., 2011; Tao et al., 2010; Zamo
et al., 2014a; Zhang et al., 2015a; Hong et al., in press; Leva
et al., 2015; Ogliari et al., 2013; Simonov et al., 2012; Yang et al.,
2014; Gandelli et al., 2014; Ding et al., 2011; Yona et al., 2013;
Larson et al., 2016; Huang and Perry, 2015; Fonseca et al., 2014a;
Fonseca et al., 2014b; Fonseca et al., 2014c; Fonseca et al.,
2014d; Fonseca et al., 2015; Chupong and Plangklang, 2011;
Hossain et al., 2013; Masa-Bote et al., 2014; De Felice et al.,
2015; Schmelas et al., 2015; AlHakeem et al., 2015; Li et al.,
2016; Monteiro et al., 2013b; Mohammed et al., 2015; Sperati
et al., 2016). Meteorological records were also used (Mellit and
Massi Pavan, 2010; Mora-Lopez et al., 2011; Oudjana et al., 2013;
De Georgi et al., 2016). Some others considered information from
neighboring PV plants (Bessa et al., 2015; Vaz et al., 2016; Yang
and Xie, 2012; Hong et al., in press; Huang and Perry, 2015).

7.3.1. Endogenous
Kudo et al. (2009) compared an indirect and direct approach to

issue 18–31 h ahead forecasts. Results showed that the direct
method performed better, achieving a mean error of 25.6%, in com-
parison to 28.1% of the indirect method.

Masa-Bote et al. (2014) compared an indirect and a direct
approach. For the former, they used NWP of GHI and T and a PV
performance model which took into account shading, optical and
system losses. However, for the latter approach they used an
ARIMA model but using only endogenous data. The forecasts were
applied to a self-sufficient solar house, were it was also possible to
storage energy and there was a ADSM system to schedule the
deferrable loads along the day (programmed to maximized self-
consumption). Results showed that the physical approach per-
formed better than the ARIMA, obtaining MAPEs of 37.2% and
42.3%, respectively. Although other studies proved that the direct
approach was more accurate than the indirect, it has to be stressed
that the two models studied here were not fed with the same
inputs (endogenous/NWP) and thus, results cannot be directly
compared. An interesting conclusion of this work is that when
the energy exchanged with the grid is forecasted (taking into
account self-consumption with the ADSM technique), its mean
daily error is 2%, compared to errors of 40% if all the energy pro-
duced were fed into the grid.

Long et al. (2014) carried out a benchmark of techniques for
predicting daily solar power from the same day and up to three
days ahead. They analyzed two scenarios: in the first one, records
of dew T, RH, insolation time, W, precipitation, GHI and P with
lagged values fed models created with ANN, SVM, k-NN and Mul-
tivariate Linear Regression (MLR). In the second approach, only
records of power were used. For the scenario with all the variables,
the MLR outperformed the others in most horizons, while in the
case with only power values, ANN outperformed for intra day
and day ahead predictions. None of the models proved superior
to other for all time horizons.

7.3.2. Meteorological records
Mellit and Massi Pavan (2010) chose an indirect approach in

their study of day-ahead forecasting. First, they predicted solar
irradiance using present values of mean daily solar irradiance
and air temperature with a MLP structure. A simple PV perfor-
mance model considering fixed module efficiency and balance of
system converted solar irradiance into power output. They took
for the test case 4 sunny days. MAEs were below 5% for all days.
Also, Mora-Lopez et al. (2011) employed an indirect approach to
forecast day ahead production. They only used past values of
power, solar irradiance and temperature recorded onsite. They pro-
posed a Probabilistic Finite Automata (PFA) and multivariate
regression. The method was divided in 3 steps: in the first one, a
linear regression was applied to predict the clearness index. In
the second step, the PFA was created with the significant variables
of each group. The values of irradiance were predicted using the
PFA and the predicted values of clearness index. Finally, taking a
physical equation, they predicted power output. They obtained
an average mean prediction error of 16.25%.

The work developed by Oudjana et al. (2013) focused on fore-
casting 1 to 7 days ahead. They created 6 different models, accord-
ing to the inputs considered and techniques used. Each set of
inputs (temperature, irradiance and both) fed linear/multiple
regression and ANN, obtaining best results for the ANN with the
2 inputs.

7.3.3. NWP
Apart from the work developed by E. Lorenz et al., described in

Section 7.2, other studies are found. Many authors applied weather
classification prior to training, so that models were fed with similar
data to that forecasted. Chen et al. (2011) developed an online fore-
casting model for 24 h ahead using a Self Organized Map (SOM) to
classify weather (sunny, cloudy and rainy) in accordance to mete-
orological variables (solar irradiance, total cloud amount and low
cloud amount). Thus, the ANN-RBFN could be better trained. They
tested several days and obtained MAPEs of 9.45%, 9.88% and 38.12%
for sunny, cloudy and rainy days, respectively. A similar approach
was followed by Shi et al. (2011), who also classified days accord-
ing to their characteristics (sunny, cloudy, foggy and rainy). Then,
using the historical data from the previous time step and the
weather report of the next day, they built different models with
SVM depending on the type of day to predict the power output.
They obtained and average RMSE of 10.5% and a MRE of 8.64%.
The sunny model performed the best and the cloudy the worst,
with 4.85% and 12.42% in terms of MRE, respectively. Similarly,
Ding et al. (2011) selected the closest historical record with respect
to weather conditions to the forecasted day and then trained a
ANN with that data for day-ahead predictions. They obtained a
MAPE of 10.06% and 18.89% for sunny and rainy days, respectively.
Weather classification of the database was also done by Yang et al.
(2014), who proposed a methodology for day-ahead forecasting
that included three stages. In the first one, after collecting histori-
cal data, a SOM and a learning vector quantization were applied to
classify the data in different weather types. Then, they trained sev-
eral SVR models and using the NWP for the forecast horizon, they
selected, with the aid of a fuzzy inference model, the most suitable
SVR model. They obtained an average nRMSE of 7% for their pro-
posed model, outperforming both traditional SVR and ANN.
Fonseca et al. (2015) generated prediction intervals based on input
data similarity (computed via the Euclidean distance). From the
selected ‘‘close” situations, they studied the forecasts errors and
represented them following Laplacian and Gaussian distributions.
Associating prediction intervals to reserves of power to deal with
PV power uncertainty led to the proposed model outperforming
the reference model. High forecast error coverages (ranging
97–98%) were obtained with substantially less reserve power than
the reference.

Tao et al. (2010) created a NARX model that used NWP but no
irradiance predictions, reaching a MAPE of 16.47% and outperform-
ing a ANN model used for benchmarking for day ahead forecasts.
Chupong and Plangklang (2011) neither used irradiance predic-
tions from NWP (only Tmax; Tmin and cloudy index), but fed their
Elman NN with the output from a clear sky model. They obtained
a MAPE of 16.83% for day ahead predictions. Hossain et al. (2013)
proposed an ensemble method combining three different regres-
sion techniques (selected among a set of ten regression tech-
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niques), formed by MLO, SVM and least median square, for predict-
ing power output 6 h ahead.

Monteiro et al. (2013a) compared two models for day ahead
predictions. The first approach was analytical and modeled the dif-
ferences between real and clear sky production via the irradiance
and PV attenuation indexes. The second method was a MLP model.
Both approaches showed similar errors, reaching RMSEs around
12%.

Zamo et al. (2014a,b) made a very complete study about the
incorporation of NWP in the power forecasts. The latter will be
described in subSection 7.4, as the forecast horizon is 2 days. In
their first work, they selected a time horizon of 28–45 h to perform
a benchmark of statistical regression methods. They used ARPEGE
model, developed by Meteo France, and selected several variables.
For benchmarking they selected 3 models: persistence (2 days
before), linear model with the clear sky global irradiation as the
only predictor and linear model with the downward solar irradia-
tion forecast by ARPEGE as the only predictor. The more complex
models were LM with all the predictors, binary regression tree,
bagging boosting, RF, SVM and generalized additive models.
Results showed that out of the baseline models, persistence was
the best, and random forests outperformed in the other set of tech-
niques. They also studied an upscaling technique, which consisted
of creating a virtual reference power plant. Results showed this
approach obtained comparable results to summing the power pre-
dictions of each single plant.

Regional forecasting was also a task performed by Fonseca and
collegues, who focused on predicting in Japan, considering day
ahead horizons (18–31 h, daylight values only). They started with
the evaluation of regional forecast errors in comparison to single
site predictions (Fonseca et al., 2014a). They applied a method con-
sisting of summing individual forecasts and observed a smoothing
effect of 30–45% depending on the region considered, with nRMSEs
of 0.059–0.069 kW h/kWcap. Then, Fonseca et al. (2014c) continued
with the study of regional forecasts using data from 453 PV sys-
tems grouped in four regions. NWPs from the Japan Meteorological
Agency of T, RH and CC were used, as well as values of Iex, of the 60
previous days to the forecast day. To select the most relevant vari-
ables, a principal analysis component (PCA) was applied to a
covariance matrix made of all the input variables, which had
already been proven successful (Fonseca et al., 2014b). They
selected those variables that explained 90% of the cumulative vari-
ance as inputs for a SVR model. Thus, they eliminated redundant
information and simplified the predicting task. Results showed
that the PCA model yielded better results than models without it.
Skill scores of up to 80% and annual nRMSEs of 7% were reported.
Moreover, this model also proved superior to the methodology
consisting of summing the individual predictions of every PV sys-
tem, except for a large region covering different climates.
Fonseca et al. (2014d) further investigated the study evaluating
four methods for different scenarios regarding availability of data.
They considered the same variables as in the previous studies and
focused on two regions, with different climates and size, and a
third one formed by those two (273 PV systems in total). Two of
the methods, summing individual forecasts (M1) and directly
forecasting regional PV (PCA approach) (M3) had already been
introduced in former articles and two new ones were proposed.
One of themwas based on stratified sampling (M2), suitable for sit-
uations when the individual production of some systems is known
but regional generation is not measured. Thus, a small set of PV
systems are chosen as representatives, from whom the regional
production is derived. The last model is proposed for cases where
no PV power data is available (M4). Then, PV power forecasts are
derived from irradiance forecasts (for more information about
these models, see Section 5). Results showed that for areas with
similar weather conditions and little snow fall, all models
performed similarly. Nevertheless, for the Chubu region (large
and with variety of climates), models M1 and M2, which better
account for the smoothing effect, outperformed the others. M2
advantages M1 in the sense that just a small subset of systems
has to be modeled. Skill scores and nRMSEs ranging 79.2–84.3%
and 0.255–0.345 kW h/kWcap were obtained for all the cases,
respectively. Method M3 was the most stable one and M4 yielded
poor results in winter months. Even if irradiance forecasts bene-
fited from the smoothing effect, this was not directly translated
into power. They found two reasons for the decoupling of power
forecasts with respect to irradiance forecasts: the snow accumu-
lated on PV panels (causing poor performance in Lorenz et al.
(2011b) as well), which irradiance forecasts do not take into
account, and the characteristics (installation, efficiencies, etc.) of
the PV plants, which are not fully modeled as in M1 model. How-
ever, as authors highlighted, each model can be applied in situa-
tions were others cannot, so none of them should be neglected.

Dolara et al. (2015a) predicted 24–72 h ahead using a method
consisting of PHANN. This model was firstly introduced by
Gandelli et al. (2014) but in the new study they applied a mobile
window forecast, which updated the training set with new data.
They presented the model as a ‘‘grey-box”, taking the best charac-
teristics of both the physical method and the ANN. It combined an
ANN with a PV performance model describing the clear sky solar
radiation. The aim of using the clear sky model was to know the
time period between sunrise and sunset and to compute the max-
imum solar radiation available. Then, they combined NWPwith the
said model. The PHANN outperformed the ANN in most days, get-
ting a 50% reduction in the nMAE for many days.

Lu et al. (2015) presented day ahead predictions based on a
machine learning blended method that combined NWP from
three different models (NAM, Rapid refresh RAP and High-
Resolution Rapid Refresh HRRR) as inputs for a PV performance
model. Results showed that the blended model outperformed sin-
gle models, permitting a reduction of 30% in MAE compared to
single models. Such reduction was mainly explained by the
cancelation of systematic bias errors in individual forecasts.
Zhang et al. (2015a), who obtained day-ahead forecasts by 3TIER,
based on NWP, got a nRMSE of 22% to 4% for a single plant and
for a large ensemble, respectively. Hour ahead forecasts were
more accurate than day-ahead. They also revealed that the accu-
racy difference between forecasts at different time horizons (hour
to day ahead) increased with the area of aggregation in terms of
MAE.

Day ahead predictions was a task also addressed by Ramsami
and Oree (2015). They created a model with stepwise regression-
feedforward NN hybrid model. The regression method was
adjusted to determine the most important variables from the
NWP to be used later on the ANN. This hybrid method outper-
formed the linear regression and ANN taken separately, showing
RMSEs of 2.74%. Simonov et al. (2012) and Ogliari et al. (2013)
worked with ANN for their day-ahead forecasts. The former used
ANN with a fuzzy model to preprocess a subset of weather data
to filter the inputs of the ANN, while the latter optimized the vari-
able selection via a combination of GA and PSO, called Genetical
Swarm Optimization GSO. For the latter, the yearly absolute error
was 20.01% and the ANN-GSO model outperformed the simple
ANN used as baseline. Li et al. (2014) compared different time ser-
ies models, highlighting the superiority of ARMAX fed with NWP
compared to ARIMA for day-ahead prediction. They obtained a
MAPE 82.69% compared to 104.10% of the ARIMA. De Felice et al.
(2015) predicted 1–10 days ahead without using local meteorolog-
ical measurements. Instead, they obtained irradiance records from
the Satellite Application Facility on Climate Monitoring (CMSAF)
and temperature values from the E-OBS dataset, whereas predic-
tions of those variables were got from the ECMWF. They applied
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SVR and observed larger errors for longer forecast horizons and for
regions with higher weather variability.

Leva et al. (2015) applied an ANN fed with historical irradiance
and power measurements and NWP to forecast day-ahead produc-
tion. They analyzed the sensitivity of the model to different input
sets, obtaining an average nRMSE of around 16%. Almeida et al.
(2015) also presented 24 h ahead predictions using QRF. Their
methodology consisted of the collection of previous power mea-
surements and the download of NWP variables from the forecast-
ing service Meteogalicia, with which they trained the QRF. For the
NWP variables they interpolated from surrounding cells to obtain
point forecasts. They used several indexes to quantify spatial (ter-
rain ruggedness, topographic and roughness indexes) and time
variability (standard deviation of collection forecasts). They also
studied different training sets: based on previous samples, on the
similarity of the clearness index and on the similarity between
the empirical distribution function of the intradaily irradiance
forecast for the day to be predicted and for each day included in
the database. They studied 17 different scenarios depending on
the variables and training set selected. Results showed that select-
ing the training set based on the similarity of the empirical distri-
bution yielded best results. Other conclusions drawn from the
assessment are that 30 days seemed to be enough for the training
set, Sun geometry variables were included in top scenarios as well
as solar irradiance predictions. The accuracy of the model was not
compromised if a small set of predictors were used and variability
indexes slightly improved predictions. They obtained a skill score
of 33–36%. They also presented the coefficient of variation of
MBE and MAE to account for possible penalizations: if markets
penalize daily energy error, the metric to be used is the cvMBE,
but if they penalize the hourly energy error, then it is the cvMAE.
They obtained cvMBE inferior to 1.3% and cvMAE less than 9.5%.

Larson et al. (2016) investigated day ahead production of two
PV plants using NWP from two models. The NAM forecast system
outputs GHI, but the Regional Deterministic Prediction System
(RDPS) does not, so the forecasted CC allowed them to obtain
GHI. Then, they applied MOS via spatial averaging to correct said
GHI. Finally, a PV performance model allowed them to obtain
power output from the GHI. On clear days, they could not beat per-
sistence, while on overcast days their model proved superior. Aver-
aged for all conditions they outperformed the persistence, with
best nRMSE in the range of 9.3%. For single plant forecasts, over
prediction errors larger than 20% of the plant rated capacity
occurred during less than 9% of the total study time (over three
years, hourly aggregation), although averaging predictions with a
neighboring PV plant reduced such deviations due to the smooth-
ing effect.

7.3.4. Neighboring PV plants
Yang and Xie (2012) obtained a nRMSE of 16.90%, averaged for

the case studies proposed. They pointed out that for day ahead
forecasts, the model which considered information only from the
closest PV plant was more likely to obtain better results than mod-
els that took into account information from more PV plants. Con-
trarily, hour ahead forecasts were more accurate when data from
the surrounding PV plants was considered. Vaz et al. (2016)
showed almost no improvement with respect to persistence (RMSE
of 19% and 20%, respectively) in the 24 h ahead forecast, contrast-
ing with the results obtained for shorter time horizons.

7.3.5. Summary
As in other time horizons, the diversity of techniques used

makes it difficult to extract clear conclusions about which are
the best techniques or sets of predictors. However, it can be
pointed out the supremacy of models that use NWP variables.
The selection of the training database according to weather
conditions instead of on previous days proved satisfactory results.
Incorporating Sun geometry variables into the suite of predictors
also showed to improve accuracy. A trade-off between complexity
of the model and accuracy may be established to limit computa-
tional times.

7.4. Two days ahead or longer

Forecasts of 2 days ahead or longer are used for unit commit-
ment, transmission management, trading, hedging, planning and
asset optimization (Zamo et al., 2014a). They are also important
for planning plant maintenance in a cost-effective way, that is,
when the expected production is low. They cover horizons longer
than 48 h. In comparison to other forecast horizons, here, not so
many studies are found. Using the same classification as above,
some studies predicted using endogenous data (Lin and Pai,
2015; Long et al., 2014; De Georgi et al., 2015). The rest used
exogenous data, either from NWP (Alessandrini et al., 2015;
Dolara et al., 2015a; Lorenz et al., 2007, 2008, 2009, 2011b,a;
Zamo et al., 2014b; De Felice et al., 2015; Sperati et al., 2016),
meteorological records (Oudjana et al., 2013; De Georgi et al.,
2015; Long et al., 2014) or from neighboring PV plants (Vaz
et al., 2016).

7.4.1. Endogenous
Lin and Pai (2015) predicted monthly power output for the

ensemble of PV plants in Taiwan using only past values of P. To
account for seasonal effects, they applied a seasonal decomposition
(SD) to detrend and seasonally adjust the time series. Then, LS SVR
were used, as the work by De Georgi et al. (2015), in which they
applied GA to select the best set of inputs. Results showed that
the proposed SD LS SVR model outperformed the benchmarking
models (SARIMA, ARIMA, generalized regression NN and LS SVR)
with a MAPE of 7.84%. Second best model was SARIMA, which
proved the importance of seasonal decomposition.

7.4.2. NWP
With respect to the models that used NWP, the only new one

(the rest were explained in previous sections) is the work devel-
oped by Zamo et al. (2014b). Similarly to the twin study they con-
ducted (Zamo et al., 2014a), in this one they adopted a probabilistic
focus to forecast daily production 2 days ahead (66–72 h ahead)
and compared several statistical quantile regression methods. They
worked with 35 different NWP models and concluded that no one
performed better than the others. Conclusions were not clear
either whether to use just one NWP or the ensemble. They studied
the rank histogram calibration, which tried to improve the reliabil-
ity of the forecasts through correcting the cumulative distribution
factor with information from the rank histogram done with the
training set. Results proved that calibration worsened the fore-
casts. They explained it by the interpolations made in the method,
which in quantiles with low amount of data could be wrong. Addi-
tionally, dissimilarities between training set and test set can intro-
duce more errors. Despite having large amount of data, it was not
possible to state that corrected forecasts were better than
uncorrected ones. They benchmarked against a simple monthly
climatology model and all QR models performed better, reducing
the CRPS by 25–50%.

7.4.3. Neighboring PV plants
Vaz et al. (2016), whose model was previously explained in Sec-

tion 7.1, obtained better results with the NARX model compared to
the persistence for 4, 7 and 15 days ahead (nRMSE of around 20%),
whereas for larger horizons (20 days to 1 month), RMSEs went up
to 24%, equaling persistence.
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7.4.4. Summary
This time frame does not see as many publications as the previ-

ous since electricity markets are more active at shorter time hori-
zons. NWP variables are commonly incorporated whereas the use
of information from neighboring PV plants decreases due to the
low spatio-temporal correlation of PV plants at this horizon.
7.5. Summary of papers

Table 2 depicts all recent studies on solar power forecasting,
previously detailed in this section, showing the forecast horizon
and resolution, the main characteristics of the model proposed
and the variables used.

Fig. 7 depicts a classification of studies regarding their approach
(deterministic/probabilistic) and spatial scope (single plant/regio-
nal) and the origin of inputs used. As seen, roughly 80% of the stud-
ies are for single plants and follow a deterministic analysis. NWP,
as observed, constitute the main source of inputs.

Fig. 8 represents the distribution of different forecasting tech-
niques and sources of inputs considering their spatial resolution/
horizon and the temporal horizon in which they are applied.
NWP, satellite images and sky images are plotted against their spa-
tial resolution, whereas the statistical approach is represented
against its spatial horizon (using only endogenous data). If inputs
from NWP models, satellite or sky images are fed into statistical
models, the spatial horizon of the statistical approach would
expand, but that situation is not represented in Fig. 8 for clarity.

Finally, to conclude this section, Fig. 9 depicts a comparison of
forecasting skills (with respect to naive persistence) of those stud-
ies that presented it or allowed its calculation. What first comes to
sight is the small number of articles included in the comparison.
The reason for this is the absence of agreement on which are the
most adequate metrics to show results. A wide variety of indicators
are calculated and finding a common metric that enables compar-
ison becomes difficult. As a general rule, the forecasting skill
increases with larger lead times, with some exceptions, such as
the work by Lipperheide et al. (2015), who focused on the cloud
movement over a small area penalizing forecasts at large time
horizons. In the hour ahead horizon, several studies are found,
achieving up to 40% of forecast skill.
8. Performance metrics

The performance and accuracy of a certain model can be
assessed via several metrics. Metrics permit the comparison
between different models and locations. Each one focus on a cer-
tain aspect of a point distribution. Thus, there is not a unique met-
ric valid for all situations; instead, each one adds some information
about the accuracy of the model. In the bibliography, several met-
rics can be found, although there are a group of them that are more
commonly used. In the last years, some authors have focused on
different metrics, which set the foundations for more complete
assessments. Zhang et al. (2015a) made a through review of fore-
casting metrics.
8.1. Classical statistical metrics

Normalized Error (nE)

nE ¼ Ppred � Pmeas

maxðPpredÞ ð20Þ

where Ppred is the predicted power output and Pmeas is the measured
power output.
Mean Absolute Error (MAE). It shows the average distance
between the measured values and the model predictions. It is suit-
able for evaluating uniform forecast errors.

MAE ¼ 1
N

XN
i¼1

Ppred � Pmeas

�� �� ð21Þ

It can be normalized with respect to diverse factors, such as the
predicted or measured power; then it is called Mean Absolute Rel-
ative Error (MARE), rMAE or MAE/Avg.

Mean Bias Error (MBE). It tells if the model over/
underestimates.

MBE ¼ 1
N

XN
i¼1

ðPpred � PmeasÞ ð22Þ

Standard Deviation of Errors (SDE).

SDE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1
ðPpred � Pmeas �MBEÞ2

r
ð23Þ

Root Mean Square Error (RMSE). It penalizes large errors in a
square order.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1
ðPpred � PmeasÞ2

r
ð24Þ

The above mentioned equations are related to each other by

RMSE2 ¼ MBE2 þ SDE2 ð25Þ
Mean Absolute Percentage Error (MAPE). Like the MAE, it

should be used to evaluate uniform forecast errors.

MAPE ¼ 100
N

XN
i¼1

Ppred � Pmeas

P0

����
���� ð26Þ

where P0 is the capacity of analyzed PV plants.
Median Absolute Percentage Error (MdAPE). It is less sensitive

to outliers than the MAPE (De Felice et al., 2015)

MdAPE ¼ median 100
Ppred � Pmeas

Pmeas

����
����

� �
ð27Þ

Coefficient of Determination (R2) or Pearson’s coefficient. It shows
how correlated the forecasted and real values are.

R2 ¼ 1� VarðPmeas � PpredÞ
VarðPpredÞ ð28Þ

Correlation Coefficient (q)

q ¼ ðCovðPmeas; PpredÞÞ2
VarðPmeasÞVarðPpredÞ ð29Þ

Skill Score (ss) or forecasting skill was firstly defined as the ratio
of the uncertainty U of solar forecasts to solar variability V.
Marquez and Coimbra (2013) defined those two terms, which have
been adapted here for PV power, (30) and (31).

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
t¼1

ðDkðtÞÞ2
vuut ð30Þ

where Dk are the power step-changes depending on which I (Ics or
I0) has been used in the calculation.

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
t¼1

Ppred;t � Pmeas;t

Pcs;t

� �2
vuut ð31Þ

The skill score is then defined:

ss ¼ 1� U
V

ð32Þ
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As the uncertainty of a forecast diminishes, ss approaches to 1. A
persistence forecast presents ss ¼ 0. Thus, it is seen that the ss
behaves as a measure of performance quality using the persistence
model as a baseline. The closer to 1, the better the forecasting
model. The authors demonstrated that the aforementioned ratio
of U=V is robust through all time window subsets and represents
a statistical invariant for different time horizons. When applied
to regional forecasts, it can provide an estimate of the amount of
stochastic solar variability that can be reduced. They also con-
cluded that if a model is well trained for an specific climatology,
the performance metric should not vary much if the model is
applied to other locations with similar climates, reducing thus
the influence of climatic variability over performance metrics.
Moreover, it was noted that ss could be approximated with the
RMSE, following (33):

ss � 1� RMSE
RMSEp

ð33Þ
8.2. Recently applied metrics

Classical metrics are commonly used by most authors. How-
ever, Zhang et al. (2015a) stressed the idea that these classical indi-
cators may not fulfill the requirements of grid operators. For
instance, large forecasting errors can have dramatic economic
and stability consequences in real operation. Thus, metrics that
highlight large errors are necessary. With this aim, they performed
a complete assessment on more suitable metrics to evaluate power
forecasts, taking into account different forecast horizons, geo-
graphic locations, etc. To this purpose, they classified metrics into
4 categories: statistical metrics for different time and geographic
scales, uncertainty quantification and propagation metrics, ramp
characterization and economic metrics. What follows summarizes
these findings:

8.2.1. Statistical metrics
MAE and RMSE are the most common metrics used to evaluate

forecasts. Nevertheless, they do not differentiate between two set
of values with equal mean and variance but different skewness
(which measures the asymmetry in the distribution) and kurtosis
values. Thus, they overlook some characteristics of the distribu-
tions that could affect system operation. For example, an over-
forecasting tendency (positive skewness) could derive in a sub-
optimal commitment of large thermal units. This would result in
the use of more dispatchable (expensive) power plants to correct
such deviations. Also, excess kurtosis can give insights about the
relative frequency at which extreme events are produced so that
system operators can be warned. These two metrics are not
stand-alone, they have to be used in combination with other met-
rics (Zhang et al. 2015a).

skew ¼ N
ðN � 1ÞðN � 2Þ

XN
i¼1

nE� �nE
SD

� �3

ð34Þ

kurt ¼ NðN � 1Þ
ðN � 1ÞðN � 2ÞðN � 3Þ

XN
i¼1

nE� �nE
SD

� �4
( )

� 3ðN � 1Þ2
ðN � 2ÞðN � 3Þ ð35Þ

Maximum absolute error (MaxAE) shows the largest forecast
error. A big value on this metric could derive in a large economic
impact on grid operation.

MaxAE ¼ max
i¼1;2;...;N

Ppred � Pmeas

�� �� ð36Þ
Hossain et al. (2013) used the Mean Absolute Scaled Error
(MASE), which they claimed to be scale free and have little sensi-
tivity to outliers. The smaller MASEs indicate better forecasts.

MASE ¼ MAE

ð1=N � 1ÞPN
i¼2 Pmeas;i � Pmeas;i�1

�� �� ð37Þ

Kolmogorov–Smirnov Integral (KSI). It is a nonparametric test
to determine if two data sets are significantly different. A small
value of KSI means that the predicted and real values behave sta-
tistically similar, which translates into a good forecast. A KSI value
of zero indicates that the CDFs of the two data sets are equal
(Espinar et al., 2009).

KSI ¼
Z xmax

xmin

Dndx ð38Þ

where Dn is the difference between two CDFs.
Similarly, the OVER parameter determines the statistical simi-

larity on large forecast errors between the forecasted and actual
power curve.

OVER ¼
Z pmax

pmin

tdp ð39Þ

where pmax and pmin and the maximum and minimun values of
power generation, respectively, and t is defined by

t ¼ Dj � Vc if Dj > Vc

0 if Dj 6 Vc

�
ð40Þ

where Vc is the critical value and Dj, the difference between two
CDFs. Both KSI and OVER can be normalized by the term ac

(ac ¼ Vcðpmax � pminÞ) to obtain KSIPer and OVERPer, respectively.
As proposed in Beyer et al. (2009) in their work on solar model-

ing, KSI and OVER can be combined in one parameter, the KSD, to
enable a continuous classification of the results (41):

KSD ¼ w1KSI þw2OVER ð41Þ
where w1 and w2 are weight parameters. Moreover, they also pro-
posed a new metric (RIO), resulting from the combination of the
above-proposed KSD and the RMSE, to provide information from
the CDFs and the distance between pairs.

RIO ¼ KSDþ RMSE
2

ð42Þ
8.2.2. Uncertainty quantification
For the uncertainty quantification, Zhang et al. (2015a) pro-

posed the Rényi entropy (43), and the standard deviation of the
power forecast errors. As pointed out, classical statistical metrics,
such as MAE and RMSE, are only unbiased if they are based on a
Gaussian distribution.

Rényi entropy

HaðXÞ ¼ 1
1� a

log2

XN
i¼1

pai ð43Þ

where a (a > 0 and a– 1) is the order of the Rényi entropy and pi is
the probability density of the ith discrete section of the distribution.
Normally, large values of Rényi entropy mean a higher uncertainty
in the forecasts.

8.2.3. Characterization of ramps
With respect to metrics to characterize ramps, the swinging

door algorithm was proposed (Florita et al., 2013). It is a flexible
and simple method, based on a threshold parameter (�) which rep-
resents the width of the ‘‘door” or ramp. Small values of � identify
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many fluctuations, whereas a bigger value would only show the
largest changes.

8.2.4. Economic metrics
The way grid operators face solar variability is through reserves.

Operating reserves have an associated cost and the greater the
penetration of solar energy, the bigger the energy reserves have
to be to face possible variations. Thus, an accurate forecast can
reduce the amount of operating reserves and, consequently, the
operating costs of the system. The authors proposed the 95th per-
centile of forecast errors as a measure of the operating reserves
needed.

The study carried out by Zhang et al. (2015a) concluded that all
the metrics proposed were able to capture uniform improvements
in solar forecasts. When ramp forecasts were improved or the
threshold of the ramps was changed, the metrics of skewness, kur-
tosis and Rényi entropy were also sensitive to those changes. Based
on the sensitivity analysis and on the nonparametric statistical
results, they selected a smaller set of metrics to robustly assess
the accuracy of forecasts. They recommended the use of the MBE,
standard deviation, skewness, kurtosis, distribution of forecast
errors, Rényi entropy, RMSE and OVERPer.

8.2.5. Other metrics
Apart from the metrics shown above, some authors have intro-

duced other metrics for error analysis. This way, Russo et al. (2014)
proposed this error:

E ¼ 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNi

i¼1

ðPmeas;i � Ppred;iÞ2
r2

i Ni

vuut ð44Þ

They claimed that this metric is more correct than using MAE,
RMSE or similar metrics because it proportionally correlates the
learning error with the actual variability of the output. The inter-
pretation of this error is as follows: for example, an error of 30%
means that the modeling error is 0.3 times the standard deviation
of the output.

Alessandrini et al. (2015) also proposed a different set of met-
rics from the most common ones. They used the missing rate error
to analyze statistical consistency. It represents the fraction of
observations lower/higher that the lowest/highest ranked predic-
tion above or below the expected missing rate of 1=ðnþ 1Þ (n is
the number of ensemble members). A large positive missing rate
error indicates an under dispersive ensemble. The same authors
made use of binned-spread/skill diagrams to assess the uncertainty
in probabilistic predictions. In these diagrams, the ensemble
spread is compared to the RMSE of the ensemble average over
small class intervals of spread. The ensemble is capable to predict
its own error if there is good correlation in the diagram. Another
metric used was the Continuous Ranked Probability Score (CRPS),
which compares the cumulative distribution functions.

CRPS ¼ 1
N

XN
i¼1

Z 1

�1
ðFpred

i ðxÞ � Fmeas
i ðxÞÞ2dx ð45Þ

where Fpred
i ðxÞ is the CDF of the probabilistic forecast and Fmeas

i ðxÞ is
the CDF of the observation for the ith ensemble prediction/observa-
tion pair and N is the number of available pairs. A low value of CRPS
indicates a good forecast. Zamo et al. (2014b) also used the CRPS
and distinguished between the reliability and potential term of
the CRPS. The reliability term measures the statistical consistency
between the predicted and the observed distribution. The potential
term is the CRPS of a perfectly reliable model. It gathers the intrinsic
variability of the variable to predict and the resolution of the fore-
casting system. The resolution mentioned before refers to the abil-
ity to output different forecasts for different observations.
Continuing with Alessandrini et al. (2015), they also used the
Brier Score (BS) for the probabilistic analysis, which is comparable
to the RMSE of a deterministic forecast. It measures the difference
between the predicted probability of a distribution and its
occurrence.

BS ¼ 1
N

XN
i¼1

ðpn � onÞ2 ð46Þ

where p is the forecasted probability of a categorical event, on, the
categorical observation and N, the total number of ðpn; onÞ pairs. A
low value of BS shows a good performance of the forecast model.
The Brier Skill Score (BSS) was also defined to show improvements
with respect to a reference model.

Sperati et al. (2016) further continued using these metrics and
also applied the Relative Operating Characteristic (ROC) Skill Score
(ROCSS). It is based on the ROC curve, which plots the false alarm
rate. ROCSS values close to 1 mean accurate forecasts.

Rana et al. (2015), who worked with interval forecasting, used
some other metrics to evaluate their models. They applied the
Mean Absolute Interval Deviation (MAID), which measures the
deviation of the predicted interval from the actual interval. Low
MAID means a forecast with lower error.

MAID ¼ 1
2N

XN
i¼1

UP
meas;k;i � UP

pred;k;i

��� ���þ LPmeas;k;i � LPpred;k;i
��� ���

( )
ð47Þ

where UP
meas;k;i and LPmeas;k;i are the upper and lower bounds of the

actual k-length interval and UP
pred;k;i and LPpred;k;i the predicted upper

and lower bounds of the interval for i-th example in the dataset.
It can be normalized by the range of target values to obtain the per-
centage error. The Interval Coverage Probability (ICP) was also
applied by these authors. This metric measures the probability that
the k values of the time series Ptþ1; . . . ; Ptþk for the next k-length
interval will fall between the upper bound UP

meas;k;i and lower bound

LPmeas;k;i of the predicted interval, averaged over all observations in
the data set. The higher the value of ICP, the lower the forecast
error.

ICP ¼ 1
N � k

XN
i¼1

Xiþk

j¼iþ1

cj � 100% ð48Þ

where N is the number of samples, k, the length of the interval and
cj:

cj ¼ 1 if Pj 2 ½Umeas;k;i; L
P
meas;k;i	

0 otherwise

(
ð49Þ

Almeida et al. (2015) used a modified version of the MAE and
MBE, denoted as the coefficient of variation of the MAE and MBE,
to assess models in markets which penalize the hourly energy
error or the daily energy error, respectively.

cvMAE ¼ MAE
�Pmeas

ð50Þ

cvMBE ¼ MBE
�Pmeas

ð51Þ

where �Pmeas is the mean of the measured power.
Also, they assessed the performance of the confidence interval

output by their model regarding its accuracy and its amplitude.
The amplitude of the interval was calculated as its area normalized
by the area of the observations. It gives an insight about the
amount of energy forecasted in relation to the measured energy.
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Greater values of this metric means more uncertainty of the quan-
tile Q :5.

Q1Q9sum ¼
PN

i¼1ðQ :9i � Q :1iÞPN
i¼1Pmeas;i

ð52Þ

The performance statistics for the accuracy were calculated sep-
arately for the Q :9 and for the Q :1. They computed the instants
when the observations were higher or lower than the respective
quantiles.

Lastly, Hong et al. (in press) discussed several metrics to evalu-
ate the different models that participated in the competition. After
analyzing the suitability of MAE, KSI, CRPS and pinball loss func-
tion, they opted for the latter due to its adequacy for probabilistic
forecasts and ease of implementation and communication. They
calculated the pinball loss function (L) with all percentiles from

the 1st to the 99th.

Lðqa; yÞ ¼
ð1� a

100Þðqa � yÞ if y < qa
a

100 ðy� qaÞ if y P qa

(
ð53Þ

where qa is a quantile forecast, a=100, the target quantile, y, the
observation used for forecast evaluation and a ¼ 1;2; . . . ;99. Then,
the score can be averaged over the target quantiles, time periods
and forecast horizons. As for the CRPS, the lower the score, the more
precise the forecasts are.

8.3. Comparability of studies

Independently of the metrics used to assess the performance of
the proposed models, there are some other factors that hamper
comparisons among studies.

� Climatic variability: High climatic variability normally leads to
higher forecast errors than areas with a more stable climate. It
is recommended to test a same technique in different locations
to know its robustness. Also, the creation of a general database
covering different climatic situations and production of several
PV plants would be desirable to allow researchers to test their
models under the same circumstances and, thus, enable fair
benchmarks between techniques.

� Day/night values and normalization: To make a fair compar-
ison between studies it is important to state clearly which time
frame has been taken into consideration and whether only day-
light values, both day and night or only hours in which GHI is
larger than threshold have been considered. Grid operators nor-
mally demand forecasts for all hours of the day. However, most
of the studies compiled here only considered daylight hours.
Also, another added difficulty for comparison is normalization
of errors. There is no agree on which denominator should be
used. It can be performed with respect to the plant peak power,
the average power, weighted average or a range of measured
values. Hoff et al. (2012) performed an assessment to address
the issues raised above for irradiance predictions. Working on
RMSE and MAE metrics, they calculated the impact of including
night values or not, which in the case of RMSE normalized with
the average, resulted in an increase of 41%, whereas in the rest
of the cases the addition of night values decreased the error
percentage, with reductions up to 50% for the MAE normalized
with the capacity. The MAE normalized with the average proved
to remain unchanged with the inclusion of night values, which
along other subjective appreciations, it was proposed as the
best practical metric from those studied. The RMSE normalized
by the capacity also ranked high in their classification.

� Sample aggregation: The way samples are aggregated also
affects results. Averaging samples over larger times leads to
smaller errors (Kaur et al., 2016; Russo et al., 2014). Russo
et al. (2014) obtained smaller errors for values averaged to 1 h
in comparison to aggregation in 15 min.

� Spatial aggregation: Not only time aggregation alters results,
but also spatial aggregation. As discussed over the paper, spatial
aggregation of plants reduces the ensemble error, so regional
results cannot be compared to single site results.

� Testing period: Some authors tested over a long period of time
covering all sky conditions. However, other authors tested their
models on either only sunny days (Mellit and Massi Pavan,
2010) or only cloudy days (Lonij et al., 2013), which also
increases difficulty to perform comparisons. Test samples
should not have been previously used in the training stage. If
the amount of samples is reduced, it is recommended to apply
some kind of cross validation to avoid overfitting.

� Specific plant attributes: Distribution of errors along the day is
different for fixed tilt modules than for dual-axis tracker mod-
ules. Tuohy (2015) showed that the MAE and variability of
dual-axis modules is higher, especially during mid-morning
and mid-afternoon hours.

9. Conclusions

Solar power forecasting becomes a crucial task as solar energy
starts to play a key role in electricity markets. The complexity of
issuing reliable forecasts is mainly caused by the uncertainty in
the solar resource assessment. Moreover, energy markets work
within different time frames and, thus, specific forecasts are
needed for each time horizon. Several models appear to issue fore-
casts as accurate as possible.

From the collection of studies shown in this paper, the following
trends and conclusions about solar power forecasting can be
stated:

� The forecast horizon where most research has been done is the
day-ahead. The reason for this behavior is that most of the
energy is traded in day-ahead markets, when planning and unit
commitment take place. As energy markets evolve, such as the
case of EIM, intra-hour trading will becomemore important and
thus, more research will focus on that time horizon and with a
higher applicability in electricity markets.

� As the time horizon increases, the proportion of studies that use
NWP in their models in comparison to those which use other
variables also grows, reaching a 79% for the day-ahead lead
time.

� The statistical approach was not only used in most occasions,
but it also proved superior when compared to the parametric
approach. Most recent papers used machine learning tech-
niques, due to the ease of modeling without the need of know-
ing PV plant characteristics.

� Spatial averaging reduces variability of the solar resource and
generates regional forecasts that are more reliable than single
site ones. This is caused by the smoothing effect, which cancels
errors with opposite sign in different PV plants. Regional fore-
casting results are also more useful for grid operators, which
must handle the production of several distributed plants, whose
impact is treated as an ensemble. However, point forecasts are
needed by plant operators to assist them in market bidding.

� Traditionally, most of solar power forecasts were deterministic,
that is, for each forecast horizon they provided a single value.
Nevertheless, state-of-the art papers are introducing probabilis-
tic forecasts, which enable a better risk assessment and decision
making. Compared to load or wind power forecasting, the state
of probabilistic solar power forecasting is still inmature and
several challenges are yet to be solved.
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� The economic impact of solar power forecasting has not been
analyzed yet in depth. Recent papers have shown the potential
for reducing balancing reserves with improved forecasts, yield-
ing important economic savings and strengthening the grid.
Economic assessments of improved forecasts are system speci-
fic because they greatly depend on the type of energy genera-
tors present in each electricity system. Also, reliable forecasts
allow avoiding penalties to plant managers caused by devia-
tions between scheduled and produced.

� Classical statistical metrics have been proved to omit important
information in the evaluation of forecasting models. New met-
rics, not only statistical but also to quantify uncertainty, charac-
terize ramps and evaluate economic impacts have been
introduced recently, improving the capacity of model assess-
ment. Guidelines for a proper model evaluation have been sta-
ted, not only referring to the metrics used but pointing out
other crucial aspects for model comparisons as well.
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