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a b s t r a c t

Wave energy is arguably one of the most promising renewables. Less developed at present than other
renewables, the existing models to estimate the costs of a wave energy project are often oversimplified,
and the resulting scatter in the economic assessments weighs on the confidence of potential investors
and constitutes therefore an impediment to the development of wave energy. Indeed, understanding the
costs of wave energy is one of the main fields of research in marine renewable energy. In this context,
the main objective of this paper is to review all the factors that must be considered in an economic
analysis of wave energy, including a number of elements that are usually overlooked. In the process we
characterise the direct and indirect costs of a wave farm – preliminary costs, construction, operation and
maintenance and decommissioning cost – as well as its prospective incomes. For each of them a
reference value is presented, together with a generic formula for its calculation. Moreover, the levelised
cost, i.e., the production cost of an energy unit (1 kW h), is compared between various energy sources,
and on these grounds conclusions on the profitability and competitiveness of wave energy are drawn. In
sum, this work reviews the state of the art and sets the basis for a thorough economic analysis of wave
energy.

& 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

In 2007 the European Union (EU) undertook to transform
Europe into a highly energy-efficient and low-GHG economy,
committing to reduce 20% of CO2 emissions, to reduce 20% of
energy consumption and to achieve the target of a 20% of the total

energy consumption of the EU made up of renewable energy
(Directive 2099/28/EC). The main focus of this policy has been on
wind and solar energy. In order to reach the desired percentages,
however, it is necessary to develop other forms of renewable
energy less developed at present but with high potential [1,2],
such as marine energy—carried by ocean waves, tides, salinity, and
ocean temperature differences. Among these different alternatives,
this paper is focused in wave energy [3,4] which, although it is in
an initial stage of development, presents extensive possibilities
for the future thanks to its enormous potential for electricity
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production [5–19], in the same way than tidal or offshore wind
energy [20–29]. In fact, the global wave energy resource is
estimated at 17 TW h/year [30], with the largest values of average
wave power in the mid-latitudes (between 301 and 601) (Fig. 1).

Nevertheless, the main barriers in the development of marine
energies are: (i) the early stage of development of the technologies
[32–40], (ii) the uncertainties regarding the coastal and marine
impacts of wave farms [41–51], and (iii) the fact that they have
been considered uneconomical [52]. In this sense, the importance
of the economic evaluation of wave energy can hardly be over-
stated—indeed, economic viability is a sine qua non condition for
the development of this novel renewable; it involves a detailed
evaluation of costs and private profits (income) associated with
investment on these technologies. This way, the vast majority of

studies about this field [22,53–58] are based in this last point;
indeed, it is possible to find studies on wave energy profitability at
specific locations according with the current charging system. For
example, [56] or [57] are focused on the Irish economy, [53] on the
UK and [54] analyses the effects on the Scottish economy of
installing 3 GW of wave energy: effect on GDP (Gross Domestic
Product), creation of new jobs, and so on. However, since wave
energy technology is in an initial stage of research [59] and it is
difficult to estimate the costs and performance of the device and
the rest of the installation, the most part of current economic
studies are oversimplified, and this could create insecurity in
investors. In this context, this paper establishes the different costs
incurred in a wave energy farm, their expected values and future
evolution. With this information, the levelised cost (€/MW h) is

Nomenclature

Celect.inst. cost of the electrical installation (€)
Cinitial initial cost (€)
Cmooring cost of the mooring system and its installation (€)
Csubest. cost of the electrical substation (€)
Ct the stream of (real) future costs
Cund.cab. underwater cable cost per unit of length (€/m)
Csubt.cab. underground cable cost per unit of length (€/m)
CWEC cost of one converter and its installation (€/WEC)
CALM catenary anchor leg mooring
CAPEX CAPital EXpenditure (€)
CCGT combined cycle gas turbine
CCS carbon capture and storage
CER European waste catalogue
d diameter of the chain (mm)
ETS European trading scheme
EUA dealing of carbon credits among companies
fe efficiency of electrical energy conversion
fm mechanical efficiency of conversion and the hydro-

dynamic power of a farm
ft efficiency of electrical energy transmission
FIT feed-in-tariff (€/MW h)
GDP gross domestic product
GHG greenhouse gas
h water depth (m)
HVDC high voltage direct current

IGCC integrated gasification combined cycle
K a constant with value 0.02 kg/(m mm2) for studless

chain and 0.0219 kg/(m mm2) for stud-link chain
L length of the chain (m)
LCD levelised costs measure under the discounting method

(€/MW h)
Loffshore meters of underwater electric cable (m)
Lonshore meters of underground cable until the electrical

network (m)
N number of converters
Ot stream of (real) future (electrical) outputs
O&M operation and maintenance
OPEX operational expenditure
OWC oscillating water column
PChain weight of the chain (N)
Pf final power of the whole installation (W)
Ph hydrodynamic power (W)
P-Val present value. This factor can be referred to costs or

power output (€, MW h)
PV photo voltaic
PWR pressurized water reactor
r discount rate (interest rate used to bring future values

into the present)
t a point of time (s)
T service life of the wave farm (s)
WEC wave energy converter

Fig. 1. Global distribution of the wave energy resource (average wave power in kWm�1) [31].
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calculated and compared with that of other energy resources; also
in addition, the expected incomes of wave energy farms are
analyzed. The present study is concerned with offshore wave
energy farms, since this type of farm is closest than any other to
commercial development [60,61], and based on it, a complete and
detailed analysis of the profitability of a wave energy plant can be
developed.

2. Wave farm costs

The main costs in a wave energy plant are the following:
(i) pre-operating cost, (ii) construction costs, (iii) operational
expenditure (OPEX), and (iv) decommissioning costs.

The pre-operating cost includes the costs of preliminary studies,
projects, environmental impact assessment, consenting procedures,
etc., as well as direction and coordination. Establishing a generic
value for this cost is a complex process, since it depends very much
on the type of installation, location and particular characteristics of
the project at hand [62]. It is often considered as 10% of the capital
expenditure (CAPEX) [55,63]. The Association of Renewable Energy
Producers estimates that it ranges between 500,000 € and 2000,000
€ [64]. Then, the costs associated with procedures for licenses and
permissions need to be added; these are estimated as 2% of the
initial cost of WECs [55,63] or, more specifically, as 3.7% of the power
of the plant (W) in US dollars [22], i.e., for a 100 MW plant, the cost
of permissions and licenses would amount to $3.7 M (or 28,000
€/MW). The aforementioned information is summarised in Table 1.

As for the initial cost (Cinitial), it refers to the amount necessary
for purchasing the Wave Energy Converters (WECs) and other
elements of the wave energy plant, as well as for its installation:

Cinitial ¼N � CWECþLof f shore � Cund:cab:þLonshore�Csubt:cab:

þCsubest:þCelect:inst:þCmooring ð1Þ

where N is the number of converters, CWEC is the cost of one
converter and its installation, Loffshore is the length of underwater
electric cable, Cund.cab is the cost per unit length of underwater
cable, Lonshore is the length of underground cable up to the existing
electrical network, Csubt.cab is the cost per unit length of under-
ground cable, Csubest. is the cost of the substation, Celect.inst. is the
cost of the electrical installation, and Cmooring is the cost of the
mooring system and its installation.

The WEC price comprises the purchase of the device, together
with the cost associated with its installation. After analyzing and
comparing different studies and sources [65–67], it can be inferred
that the cost of equipment and installation lies between 2.5 and
6.0 M€ per installed MW. Table 2 shows reference values for the

cost of the converter per MW of installed power; information on
the costs of three WECs close to the market is presented in Table 3.
WaveDragon (Fig. 2) is an overtopping device that elevates ocean
waves to a reservoir above sea level, from where water is let out
through a number of low-head hydro turbines and in this way
transformed into electricity [74]. Pelamis (Fig. 3) is an attenuating
wave energy converter that uses the motion of waves to generate
electricity. It is a semi-submerged, articulated structure composed
of cylindrical sections linked by hinged joints. The wave-induced
motion of these joints is resisted by hydraulic rams which pump
high pressure fluid through hydraulic motors via smoothing
accumulators, which drive electrical generators to produce elec-
tricity. [77]. Finally, AquabuOY (Fig. 4) is a floating device consist-
ing of a buoyant float connected with a piston that is inserted into
a cylindrical tube that is flexibly moored with the sea floor. When
the float bobs up and down, the water is pressurised by the piston
cylinder assembly and the pumped water is used to drive a turbine
which produces electrical energy [79].

Other important element in an offshore wave farm is the
mooring system, which has been addressed in the last years by
several authors [80–86]. In general, its costs can be estimated as
10% of the WEC cost [53,55,63]. There are different options as a
function of the line, its material and the type of mooring
employed. Table 4 presents a comparison matrix of three common
mooring systems: (i) the system with catenaries allows the move-
ment of the structure in any one of the six degrees of freedom,
with lines made of chain until depths of 250–300 m [87]; (ii) the
taut system, which not only bears horizontal but also oblique
loads; in this case, it is the rigidity, and not the weight, that acts as
restoring force: in consequence, the radius that the system covers
is smaller [89,90]; and (iii) the TLP system, the most complex and
costly, consists in vertical lines that attain the required tension
thanks to the excess of buoyancy provided by the structure. The
lines can be wires, tubes, steel bars, etc. [91].

The analysis in Table 4 shows that the most appropriate
mooring is the catenary system, which is commonly known as
CALM (catenary anchor leg mooring). This is well in line with
previous analysis [93–95]. Albeit not without downsides (greater
length and weight), other factors, e.g., easy installation, lower cost,
or the fact that it is less affected by the corrosion, make it the best
option in most cases.

For this system, the cost of mooring lines is calculated based on
their diameter and length. Then, its weight is obtained (Eq. (2))
and, finally, the cost per unit weight (0.265€/N) is applied (Eq. (3))
[96]. Moreover, it is necessary to add the installation cost, which is

Table 1
Pre-operating and licenses costs.

Category Cost Source

Pre-operating cost 10% CAPEX (€) [55,63]
500,000–2000,000 € [64]

Licenses and permissions 0.037� Installed power in W ($) [22]
2% WECs cost (€) [55,63]

Table 2
WEC cost per MW [68].

WEC power (MW) €/MW

0.25 5000,000
0.5 4000,000
1 3000,000

Table 3
Rated power and estimated cost of WaveDragon, Pelamis and AquabuOY [69–72].

Technology WaveDragon AquabuOY Pelamis

Rated power (kW) 7000 250 750
Estimated cost ($/MW) 2400 800 3333
Estimated cost ($/unit) 16,800 200 25,008

Fig. 2. WaveDragon device [73].
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conditioned by the cost of the vessel, of the order of 50,000 €/day
[93].

PChain ¼ 9:81Ld2K ð2Þ

Costchain ¼ 0:265Pchain ð3Þ

where PChain is the total weight of the chain (in N), L its length (m),
d its diameter (mm), and K is a constant with a value 0.02 kg/
(m mm2) for studless chain and 0.0219 kg/(m mm2) for stud-link
chain. The total length of the mooring line (L) is usually estimated
as 3–5 times the water depth (h): [97] used 5h, [98] used 4h, and
[99] suggested 3h.

Fig. 3. Pelamis wave energy converter [75,76].

Fig. 4. AquabuOY wave energy device [78].

Table 4
Mooring system comparison. [84–92].

Catenary Taut TLP Factor weight Catenary Taut TLP

Length (of the line) 1 2 3 3 4 8 12
Weight (of the line) 1 3 2 2 2 6 4
Compatibility with kind of anchorage 3 2 1 1 3 2 1
Effect of the growth of marine fauna 3 1 2 2 6 2 4
Complexity of the installation process 3 2 1 4 12 8
Affected zone by the moorings 1 2 3 3 3 6 18
Corrosion effect 3 2 1 3 9 6 3
Design requirements for the platform 1 2 3 2 2 6
Comprehensive anchor 3 3 0 5 15 15 0
Not variation in the position 1 2 3 4 4 8 12
Line cost 3 2 1 4 12 8 4
Installation cost 2 2 1 4 8 8 4
Tidal effects 3 2 1 1 12 8 4
Environmental impact 1 2 3 4 4 8 12
Know how local 3 2 1 2 12 8 4

Total 2.13 2.07 1.73 7.2 7.0 6.13
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Apart from WECs and moorings, the wiring and electrical
installation are the basic elements in a wave farm. To determine
their cost, first of all, it is necessary to choose the type of power
output, i.e., direct current or alternating current. The latter can be
easily transformed but, in the case of underground and under-
water lines, entails relevant losses due to the conductors’ capaci-
tance [100]. At present high voltage direct current (HVDC) is under
study as a most effective alternative for evacuation and transport
of energy; however, this system is still very costly [101–104]. For
this reason, and given that the distances between coastline and
the wave plant are usually below 5 km and high tensions are not
commonly used, the best option for the time being is transporting
in alternating current,. The required length of underwater cable
depends basically on the distance to the shore, but in the case of
more than one WEC (a wave farm) it will also depend on its layout.
The WECs in a wave farm are generally grouped and then
connected in series, with each group attached to a hub [105].
The spacing between devices will define the cable between
converters, and it depends on the kind and number of devices,
and also the wave climate. It is clear that the smaller the length
between devices, the lower the cost of the cable and mooring
system. However, the spacing selected will also influence the
interactions between devices and the wave field, and the perfor-
mance of the installation can be lower if the WECs are too close.
On the contrary, if the array spacing is large compared with the
size of the WECs the direct interactions can be neglected [106,107],
but the capital cost will be greater as the mooring and submarine
cables will be more expensive. Some studies consider a spacing of
100 m [108,109], whereas others assume smaller spacing values
[110]. In some cases [111, 112] the spacing is given as a function of
the device diameter, with a typical value of 10 times the diameter;
finally, in other cases the spacing is given as a function of the
wavelength, namely 75–100% of the wavelength [105,106].

Another issue to take into account is that the underwater cable
has to be used also on dry land for a sufficient security distance,
which is around 250 m [113]. Once all the specifications of the
electric cables are defined, and the sections determined, the cost
can be looked up in the manufacturers’ catalogs. As a first
estimate, the value can be calculated as 10% of the initial costs
[56,58]. In addition, the installation cost has to be considered,
especially for the underwater cable. This value is around 0.20 €/m,
and the cost of the required vessel is approximately 1.87 €/m
[106]. Apart from the costs of the cable, it is necessary to take into
account the other elements of the electrical installation. The most
relevant is the electrical substation, whose cost varies with the
tension elevation required to deliver electricity to the network. For
example, the cost of a substation to elevate the tension from 11 to
33 kV is of 1110,000 €, and from 11 to 66 kV, 1330,000 € [107].
Table 5 summarizes the above information about the initial cost of
a wave farm and the subcategories involved.

As well as the initial investment, the operation and mainte-
nance cost (OPEX) must be included in an economic analysis.
Calculating this cost is a complex process, since there is not

enough experience in wave energy installation. Nevertheless, it
is possible to obtain a first estimate based on the experience in the
oil and gas and offshore wind energy sectors. In Table 6, some of
these costs are collected in €/MW h and/or as a percentage of the
CAPEX or the OPEX. A detailed methodology to work out the cost
of both routine and emergency maintenance is presented in [22].

Besides, it is necessary to consider that ten years after their first
installation, the WECs have to be removed from the sea for an
overhaul, including repainting and replacement of some elements,
such as hydraulic cylinders. The estimated cost is approx. 4.2% of
the initial costs [93]. Moreover, the whole plant is supposed to be
dismantled after 20 years and the decommissioning cost is
estimated to be 0.5–1% of the initial investment [64,124,125].
Another study [126] considers that the average decommissioning
costs would be around 50,000€/MW. Apart from that, there are
other important factors related to O&M costs, such as the avail-
ability and failure rate. The availability is a key player in the
profitability of a wave farm since it is the amount of time the
device is on hand to produce power; it is affected by a number of
factors, including device reliability and the ability of the device to
be accessed for maintenance [58,127]. The levels of access to wave
energy devices are likely to be lower than offshore wind, due to
the more aggressive wave climates that the wave devices will be
deployed in, as well as the fact of the devices themselves not being
stationary, making access from floating vessels even more difficult.
As a result, availability levels for wave energy may be lower than
90% [58,128–130]. As regards the failure rates, the WEC system can
be divided in four different sub-systems: (i) mooring; (ii) struc-
ture; (iii) power take-off system; and (iv) power transmission
system. A failure rate of 0.185 was obtained [131] for the mooring
system. As regards the structure, assuming the comparability of
single-hull oil tankers and the structural housing of the WEC, an
indication of expected failure rates can be established as 0.011
[132]. The failure rate of the joints is extremely difficult to
estimate, as information is virtually not available in the public
domain neither on design nor on expected loads. However a
failure rate of 0.315 has been proposed [133]. Finally, Table 7
reflects the failure rate associated to the power take-off system
and power transmission subsystems.

Table 5
Summary of initial costs.

Element Cost Source

WEC and installation 2.5–6.0 M€/MW [65–67]
Mooring system 10% WECs cost [53,55,63]

0.265 €/N [96]
Mooring installation 50,000 €/day [93]
Underwater cable 10% CAPEX [56,58]
Cable installation 2.07 €/m [106]
Electrical substation E1.2 M€ [107]

Table 6
Annual costs of operation and maintenance [58,63,68,114–123].

Cost €/MW h % CAPEX % OPEX

O&M tasks 20–35 1.5–5% 57%
Revision and time off 10
Spares 90
Public services 3.5
Renting 2.5
Insurance cost 15 0.8–2% 13–14%

Table 7
Failure rate of the power take-off system and power transmission subsystems [131–
137].

Power take-off Power transmission

Component Failure rate Component Failure rate

Hydraulic ram 0.24 415 V busbar 0.01
Manifold 0.004 Transformer 0.07
Accumulator 0.42 Circuit breaker 0.26
Hydraulic motor 0.17 Umbilical 0.04
Electric generator 1.59 Sea cable 0.09
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3. Levelised cost of wave energy

The cost of energy production remains perhaps the single most
important factor in determining whether an energy technology
can reach commercialization. To properly assess the cost of a
specific energy conversion technology it is necessary to develop a
standard by which we can compare the various technologies. One
such standard is the levelised cost, which is widely reported in the
energy policy literature [53,138–142]. It is the ratio of total lifetime
expenses versus total expected outputs, expressed in terms of the
present value equivalent [141]. There are different models to
calculate the levelised cost. In this work the discounting method
[53,66,141] is used. The levelised costs measured with the dis-
counting method, LCD, is given by Eq. (4): the stream of (real)
future costs and (electrical) outputs, identified as Ct and Ot in
period t, are discounted back to a present value (P-Val). The P-Val of
costs is then divided by the P-Val of lifetime output:

LCD ¼ P � Val ðCostsÞ
P � Val ðOutputÞ ¼

Pn
t ¼ 0 Ct=ð1þrÞtPn
t ¼ 0 Ot=ð1þrÞt ð4Þ

In order to apply Eq. (4) it is necessary to choose a discount rate
(r), which will be used to convert the stream of future costs and
electrical output into their present values. The range of discount
rates used for marine energy is in the range 5–15% [53,66,143,144].
To analyse the competitiveness of wave energy versus other
energy sources, their levelised cost (€/MW h) is shown in Table 8.

From this data, it is easy to notice that the most economical
technology is pulverized fuel, with a cost of 32.57€/MW h,
whereas the most expensive non-renewable electricity generation
method is CCGT with CCS at 59.78€/MW h. As for renewable
energies, the cost of onshore and offshore wind energy is slightly
higherː 67.68€/MW h and 101.43€/MW h respectively. In the case
of wave energy, the cost ranges from 90€/MW h to 140€/MW h for
onshore and nearshore plants, and from 180€/MW h to 490
€/MW h for offshore energy farms [53,147]. Naturally the actual
value will vary from one country to another, and even inside a
country, depending on the location, devices, distance to the
coastline, and so on. All in all, it is clear that wave energy is more
expensive than any non-renewable energy and also than most
renewables—a result that might have been expected, for wave
energy is a still in its infancy [57].

The implication is that, at present, wave energy is only economic-
ally viable if subsidized. However, over time it can be expected that
promoters will realize greater investments based upon tested technol-
ogy and economies of scale will thus be achieved. This would lead to
reductions in costs and, consequently, investors could obtain profits
and promoters could operate with market prices similar to other
common renewable energies. All this is represented by means of the
so-called learning curve, which identifies cost reductions arising
through economies of scale and technological effects, such as

technological advances and improvements by practice, for example,
in the case of wave energy, the greatest chance of reduction lies in the
cost of construction [53]. There are not many studies examining the
impact of learning curves on the profitability of wave energy plants.
Despite that, most of them agree on a learning rate of 85–90% within
the next 10 years [56,53,80,11,148–151].

Moreover, for encouraging investors and ensuring a successful
financial of wave energy projects, all the risks attributed to these
projects need to be avoided or mitigated [152,153]. Volatility in
interest rate, currency exchange rate and inflation can affect
economics of project. However, wave energy technology has not
matured yet and technology risks are high compared to resource
risk [152,154]. The risky conditions in energy production occur
during the shortage of wave heights to initiate the wave energy
conversion device [155]. The risk of a failure for a wave energy
converter platform with a project life of 20 is 75–90% [155,156].

4. Incomes from a wave farm

To analyze the profitability of a wave energy plant it is
necessary to determine the income that will be generated.
The main income stems from selling the energy produced to the
electrical network, which corresponds with the integral of the
final power Pf of the wave farm during its lifetime (Eq. (5)):

Energy¼
Z T

0
Pf dt ð5Þ

where Pf stands for the final power of the whole installation, t is
time, and T represents the service life. Therefore, the first step is to
determine the final output, and this can be calculated as follows
(Eq. (6)):

Pf ¼ f t f ef mPh ð6Þ

where Ph is the hydrodynamic power, fm stands the mechanical
efficiency of conversion and the hydrodynamic power of a farm, fe is
the efficiency of electrical energy conversion and ft stands for the
efficiency of electrical energy transmission.

To obtain the hydrodynamic power (Ph), it is necessary to
multiply the power matrix of the WEC, which is a bivariate matrix
indicating the average power generated by the WEC as a function
of significant wave height and wave period, by the resource matrix
[33,157,158]. In addition, it is necessary to take into account the
losses, which are usually considered as 30% of the theoretical
power [53,159]. It is also estimated that 5% of the time the farm is
under repair or suffering a failure that stops electricity production
[160]. This process enables to obtain the hydrodynamic power for
a single WEC; nevertheless, the question in the case of a wave farm
is more complex. In this case, it is necessary to take into account
the interactions among converters, for example, [160] studies the
power of a wave farm, and, depending on the layout, the
differences in power generated can reach up to 30%.

Finally, some data on the capacity factor, which is the ratio
between the average annual energy and the theoretical maximum
energy, are included. It depends on the chosen WEC, its location,
the kind of energetic conversion, and so on, and that is why this
factor is hard to determinate. Nevertheless, some entities and
authors have provided an order of magnitude for it: 20–45% [66],
22.5–35% [161], 35–40% [58]. According to the WECs’ working
principle: 40% for an OWC [162], 25–40% for hydraulic systems
[77], 33% for pneumatic systems, 50% for OWC with hydraulic
intermediate system, and 20% for direct conversion through linear
generators [159]. Tables 9a and 9b show some performances of the
conversion system for existing devices.

With the total energy production calculated, the income
generated by its sale depends on the feed-in-tariff (FIT). This value

Table 8
Levelised cost estimates for ten electricity generation technologies [53,145,146].

Technology Cost (€/MW h)

Onshore wind 67.68
Offshore wind 101.43
PWR nuclear (pressurized water reactor) 49.96
CCGT (combined cycle gas turbine) 43.17
IGCC coal (integrated gasification combined cycle) 36.59
IGCC coal with CCS (carbon capture and storage) 55.76
Retrofit coal 44.40
Pulverized fuel 32.57
Pulverized fuel with CCS 50.79
CCGT with CCS 59.78
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varies in a high degree depending on the country and it is,
together with the resource, one of the most important factors for
investors to decide the location. However, many changes have
taken place during the last years in European policies with regard
to renewable energies and, although these policies aim for a
greater incorporation or marine renewables into the energetic
mix, the economic support towards them is lower. The value of the
selling price (€/MW h) for wave energy in the European Union is
shown in Fig. 5. It is apparent that many of the countries in the
European Union do not have a clear and defined policy for wave
energy. And within the remaining countries there is a large
disparity. The average lies around 110€/MW h.

5. Externalities

Apart from the direct profit obtained by selling the generated
energy, there exists a current tendency that consists in including
other indirect profits known as externalities [167–177] that have
to be internalize (Fig. 6).

For example, it is interesting to take into account the profits
obtained by avoiding carbon emissions when comparing wave
energy with other sources of technology, since those countries
that reduce their emissions more than what they agreed to have
the possibility of selling the surplus carbon credits to the countries
that do not fulfill their commitments. This is regulated by a

Directive of the EU (Directive 2003/87/EC) defined in October
2003, which implied the beginning of the ETS (European Trading
Scheme), applicable only to emissions generated by the activities
regulated by the Directives 2003/87/EC and 2004/101/EC. Fig. 7
shows the evolution of the CO2 prices in the last twelve months
(September 2014).

There are few studies in relation to the oceanic energies and
the GHG emissions produced by them. This is due to the fact that
WECs are in their initial phase of development and also, because it
is necessary to work with a complete and dynamic life-cycle
analysis to determinate carbon emissions [179]. Even so, some of
these studies estimate that carbon emissions in wave energy are
6 gCO2/kW h of produced electricity [180], whereas the average
value in Spain (2010) was 250 gCO2/kW h [181]. So, comparing
both values, a saving of 244 gCO2/kW h might be achieved by wave
energy production, which can be translated into 1.22 c€/kW h.

Another factor to be considered as an externality is the effect
that the renewable energies have on the supply security, reducing
the risk of supply cuts of conventional fuels, and therefore

Table 9b
Comparison of performances of European WECs [163].

Device Installed
power
(kW)

Absorbed
annual
energy
(kW h)

Efficiency
(%)

Annual
electrical
production
(kW h)

Installation
performance
(%)

Swan DK3 203 441,234 54 23,8267 11
Point
absorber

78 147,325 72 10,6074 8

Bølgehøvlen 6 4062 81 33,2920 2
Bølgemøllen 15,000 39,813,000 85 33,841,050 20
Wave Dragon 3,160 3577,740 81 2897,969 11
Bølgeturbinen 14 31,908 85 27,122 1
Wave Plunge 110 255,402 72 183,889 9
Bølgemøllen 15 9,421 72 6,783 1
DWP-system 120 236,365 72 198,875 14
Planta de Pico 400 988,455 54 539,160 18
Pelamis 597 1299,030 72 935,302 5
Mighty
Whale

110 398,566 54 110 3
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Fig. 5. Selling price for wave energy (€/MW h) in the European Union [164–166].

Table 9a
Performance of some WECs in operation [163].

Device Efficiency

Primary (%) Secondary (%) Total (%)

OWC NEL 76 60 46
OWC QUB 20–90 50
OWC ART OSPREY 115–60 60
OWC Sanze 11
OWC Kaimei o10
OWC Sakata 50 36 18
OWC (BBDB) 53 60 35
OWC (Portugal) 50
Mighty Whale 60
OWC China 10–35
Pendulum 75 40–50
Tapchan 33
Lilypad 57 70
OWC NEL 76 60 46

Fig. 6. New tendency to calculate the incomes providing for a wave farm including
external costs apart from the sales revenue.

Fig. 7. Evolution of the CO2 prices (in €/t CO2) from October 2013 to September
2014. The dealing among companies corresponds to the line EUA in the chart, and
the one among states with CER (European Waste Catalogue) [178].
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avoiding important economic losses; e.g., a cut of one day in the
gas supply in Spain would produce a loss of 0.03% of the GDP [182].

Other positive impacts associated with renewable energies are
the creation of new jobs and integration into the economic fabric.
For example, in Germany the ports of Bremerhaven and Cuxhaven
had gone into a phase of economic slowing down, and they have
been reactivated by the development of offshore wind energy, due
to the implantation of companies specialized in wind energy or to
the reconversion of companies to be adapted to this dynamic
market. For example, in the year 2010, around 3000 jobs were
created in those locations, although there was no offshore wind
farm in that area [68].

6. Wind and wave energy combined systems: Cost savings

The idea of taking advantage of different ocean renewable
resources in the same offshore installations is gaining importance
[183–187] as a way to achieve a better use of the marine resource
[188,189] and turn this renewable into a cost-competitive option
[190]. In the case of wave energy, the combination with offshore
wind energy is emerging with force due to the synergies between
both renewables [191–195]. There are different possibilities for a
combined wave and wind array [192,193]: (i) co-located wind-
wave energy; (ii) hybrid converters; and (iii) energy islands. In all
cases, wave production might increase the availability and
smoothen the energy output by compensating in part for the
variability of offshore wind power. Moreover, a reduced capital
cost per MW installed may be achieved thanks to the common
elements and equipments. In the same way, cost savings in
maintenance tasks are expected due to sharing strategies and
other factors such as the shielding effect of WECs over the offshore
wind farm [191,192,196], which increases the weather windows
for O&M. Fig. 8 reflects the global distribution of the wind and
wave energy resource; it is apparent that there are some areas
with large possibilities to this combined options.

7. Conclusions

In this paper a thorough review of the economics of wave
energy was presented. The costs and incomes were described and
quantified, and a number of uncertainties were highlighted, which
can constitute a barrier for the development of this novel

renewable. The cost of the WECs was found to be a very significant
part of the overall cost of a wave farm. Indeed, as in the case of
other renewables (e.g., solar PV, solar thermal) the capital costs of
wave energy currently exceed those of conventional generation
technologies (e.g., gas, coal). However, these costs can be expected
to decrease with economies of scale, as wave farm deployments
are undertaken; this fact, combined with rising long-term con-
struction and uncertain long-term fuel costs for conventional
generation technologies, is leading to a closure of formerly wide
gaps in electricity costs. The cost of operation and maintenance is
also high, as corresponds to a facility in the sea. The importance of
these operations can be hardly overstated–proper and regular
maintenance is necessary to maintain production capacity over the
service life of a wave farm; however, their economic assessment
presents a number of difficulties. One is related to replacement
decisions. The need for replacement may arise because of obsoles-
cence, early service failure, destruction, etc. It is difficult to
estimate the number and type of replacement interventions that
will be made, especially in respect of emergency maintenance. The
experience of offshore wind installation can be used to form a
preliminary idea. All in all, a MW h generated from wave power is
at present more expensive than its counterpart from conventional
sources and most other renewables, and hence wave power
installations can only be economically viable if favoured by
subsidies.

As regards the incomes from a wave farm, the sale of the
generated energy is naturally the main income. In this sense,
current converters have low performances, and improving them
will greatly contribute to the economic viability of wave energy. As
for the FIT, it varies significantly between countries and is thus one
of the most important factors for choosing the location of a wave
farm. In addition to the sale of the generated energy, income from
selling carbon emissions credits ought to be considered in coun-
tries that adhere to the Kyoto Protocol, such as EU member-
countries. These countries are subject to a cap of carbon emis-
sions; those exceeding the limit will have to buy additional carbon
credits from countries emitting below their limits. Further to these
direct sources of income, other benefits of a wave farm could be
quantified as a form of indirect income, e.g., the improvement of
infrastructures in the area, the reactivation of related sectors, such
as shipbuilding, which are contracting in many countries, and the
creation of new jobs. Including these factors into the economic
evaluation is necessary in order to derive appropriate conclusions
on the competitiveness of wave energy and, more generally,
renewable energies vs. conventional energies.

Fig. 8. Global distribution of wind and wave energy resource. The former is reflected through the colour scale in units of PW h, and the latter by means of the numerical scale
in kW m�1 [31,197]. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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