
SelSMaP: A Selective Stride Masking Prefetching Scheme

Jiajun Wang, Reena Panda and Lizy Kurian John

The University of Texas at Austin
{jiajunwang, reena.panda}@utexas.edu, ljohn@ece.utexas.edu

Abstract—Although prefetching concepts have been pro-
posed for decades, new challenges are introduced by sophis-
ticated system architecture and emerging applications. Large
instruction windows coupled with out-of-order execution makes
program data access sequence distorted from cache perspective.
Big data applications stress memory subsystems heavily with
their large working set sizes and complex data access patterns.
To address such challenges, this work proposes a high per-
formance hardware prefetching scheme, SelSMaP. SelSMaP is
able to detect both regular and non-uniform stride patterns by
taking the minimum observed address offset (called a reference
stride) as a heuristic. We evaluated SelSMaP with CloudSuite
workloads and SPEC CPU2006 benchmarks. SelSMaP achieves
an average CloudSuite performance improvement of 30% over
non-prefetching system. With one to two order of magnitude
less storage and much less functional logic, SelSMaP outper-
forms the highest-performing prefetcher by 8.6% in CloudSuite
workloads.

I. INTRODUCTION

Emerging applications pose additional challenges to hard-

ware prefetcher designs. Prior research [1] has shown that

predicting streaming or uniform stride access behavior alone

is not sufficient to improve memory subsystem efficiency for

emerging applications such cloud workloads. Only less than

30% of global memory reference stream exhibit uniform

stride access pattern in CloudSuite workloads. Prefetching

schemes that are able to detect both uniform and non-

uniform stride patterns becomes essential. Also, prior re-

search studies [1], [2] have shown that cache capacity

sensitive applications are prone to get negatively affected by

useless prefetch requests. Both over-prefetching and address

misprediction can generate useless prefetch requests. Useless

prefetch requests not only waste memory bandwidth and

cache capacity, but also cause additional cacheline evictions

and result in extra cache misses. For application whose data

accesses exhibit long temporal reuse distance meanwhile

still benefit from caching, cacheline insertion of useless

prefetched blocks will lead to cache thrashing under which

scenario cache misses rockets. Therefore, an efficient data

prefetching scheme should be able to avoid over-prefetching.

In order to address these challenges, we propose SelSMaP,

a Selective Stride Masking Prefetching scheme. SelSMaP is

able to detect both regular and non-uniform stride patterns

through leveraging a selective stride mask based on the

minimum observed address offset between two consecutive

accesses (called a reference stride).

Uniform stride pattern detection becomes challenging

when cache access order is different from uniform program

access order. For example, a software developer arranges

cacheline accesses “A, A+2, A+4, A+6, A+8, A+10, A+12”

in program order. After going through out-of-order execution

engine, cache access order may become “A+4, A, A+2, A+6,

A+10, A+8, A+12”. Thus the observed cacheline address

offset sequence is not uniform, but may become “-4, +2,

+4, +4, -2, +4”. To tackle this problem, SelSMaP takes

a reference stride as a heuristic, and generates a stride

mask based on the reference stride. The rationale behind

the reference stride is that the real stride will never be

more than the minimum observed address offset between

two consecutive accesses. The minimum observed offset,

which is 2 in the example, is chosen as the reference for

pattern detection in the SelSMaP.

Non-uniform stride or multi-delta pattern can be cap-

tured by SelSMaP if it can be rephrased as multiple uniform

stride accesses. For example, a memory access stream of

“B, B+1, B+10, B+2, B+3, B+11, B+12, B+4, B+5” is

observed in the SPEC CPU2006 milc benchmark, which

contains irregular delta sequence of “+1, +9, -8, +1, +8, +1,

-8, +1”. With the help of the minimum observed delta and

stride mask with fixed window range, SelSMaP is able to

extract two regular (stride of one) streams with base address

B and B+10 from original memory access stream.

Self-trained prefetching degree is achieved at the granu-

larity of individual prefetch request generation in SelSMaP.

Some prefetchers adjust prefetch degree based on the feed-

back of cache miss rate variation, which is an accumu-

lated affect from previous program phase. However, such

approaches fail to address the presence of multiple patterns

in a phase. A prefetching scheme may be highly confident

in detecting one stream and less efficient in other coexistent

streams, and ideally should apply high prefetch degree to

the former stream and low degree to the latter stream.

Adopting same prefetching degree to both streams would

result in either losing prefetching opportunity or generating

useless prefetch requests. Therefore, a finer granularity of

prefetch degree control is essential. SelSMaP meets such

requirement by evaluating the confidence of every individual

prefetch request and adapting prefetch degree based on the

confidence.

We evaluated SelSMaP using both single-threaded SPEC

CPU2006 benchmarks and multicore CloudSuite workloads.

2017 IEEE 35th International Conference on Computer Design

1063-6404/17 $31.00 © 2017 IEEE

DOI 10.1109/ICCD.2017.63

369

Results show IPC improvement of average 30% compared

to a non-prefetching baseline. Comparison of SelSMaP with

state-of-art prefetchers show average 10% performance im-

provements in CloudSuite applications with less hardware.

The rest of this paper is organized as follows: Section II

describes SelSMaP architecture. Section III presents our

design evaluation. We conclude our work in section IV.

II. SELSMAP DESIGN

Figure 1 demonstrates a multi-core system with SelSMaP

serving as LLC prefetcher. SelSMaP is composed of four

function units: a Stride Reference Table(SRT), a Stride

Mask Logic(SML), a Decision Making Logic(DML), and a

Prefetch Address Computation (PAC) logic. As shown in the

figure, SelSMaP monitors all LLC accesses and maintains

access history in the SRT. Apart from holding access his-

tory information, SRT makes stride pattern prediction (i.e.,

the stride reference) and feeds it into SML to generate a

stride mask. With the stride mask and access history, DML

evaluates the confidence of the predicted pattern. If DML

decides to trigger prefetching based on the stride reference,

then PAC is used to compute prefetching address(es). With

the help of these four units, SelSMaP generates prefetch

requests for LLC. In this section, we are going to introduce

the structure and functionality of these four units.

A. Stride Reference Table (SRT)

SRT holds access history information and generates ref-

erence stride. SRT is a set associative structure, which is

indexed by a region tag obtained from the upper bits of

data address. Each SRT entry keeps track of recent memory

accesses within an address region, which is a fixed size

memory space. An SRT entry consists of four fields. The

Region Tag field indicates access information about which

region is held in that entry. The Stride Reference field holds a

speculative stride pattern of that region. The Previous Access
field saves a partial address indicating the latest accessed

cacheline. The Access History field records which cachelines

within that region have been accessed over time.

Constant data address offset has been a clear indication

of regular stride data access pattern. However, prefetching

scheme with solely previous and current address offset

comparison becomes insufficient in modern computer archi-

tecture.One ideal case is to keep track of all the previous data

Figure 1: SelSMaP Overview

Figure 2: Stride Reference Table and Decision Making Logic

accesses address offsets, but is not practical due to limited

on-chip metadata storage constraint. To address the pattern

detection problem as well as storage constraint, SelSMaP

keeps track of the minimum address offset occurred among

all data accesses to the same memory region. SelSMaP takes

the minimum offset as a reference, and stores the value in

the Stride Reference field at a cacheline granularity. In order

to compute address offset, a Previous Access field is required

to maintain address of previous data access at cacheline

granularity as well.

An Access History field is used to keep track of memory

access history within a region. Access History is stored in a

bit vector, where each bit is corresponding to a cacheline in

a memory region. The bit position is the same as its region

offset, i.e., bit 0 represents the first cache block in a region.

When a new SRT entry is assigned, the Access History field

is reset to all 0s. A bit is set when a demand request is made

to the corresponding cacheline.

The size of each field depends upon the region size and

the cacheline size. In this paper, our simulation system is

configured with 4KB memory region, 64B cacheline, and 48-

bit wide physical address. Thus, Region Tag is 36-bit wide,

indexed by the upper 36 bits of the address, the Previous
Access field has 6 bits, indexed by address bit [11:6], and

the Access History field has 64 bits with 1 bit per cacheline.

The Stride Reference field is set to be 4-bit wide. Although

wider Stride Reference field can holds larger offset and the

largest address offset can be 6-bit wide, we figure out that

wider field does not help much, because stride larger than

16 has a maximum stride match counts of four in a 4KB

region, so that the confidence level of large offset is too low

to trigger prefetching.

Every time SelSMaP observes a demand access and finds

an SRT region tag match, it updates the SRT. In the first

step, the cacheline offset between the current and previous

access is calculated. If calculated offset is smaller than the

value in Stride Reference, the old value is replaced. In the

second step, Previous Access is updated with the current

access. In the last step, the bit corresponding to the access

370

is set in the Access History field. However, if there is no

region tag match, SRT assigns a new entry where Region
Tag is filled with the upper bits of access address; Stride
Reference is initialized to 15; Previous Access is updated

with the current access; and the bit corresponding to the

current access is set in Access History.

B. Stride Mask Logic (SML)

SML generates a stride mask based on the stride reference

value from SRT. SML is implemented as a lookup table, in

which every reference stride is couple with a stride mask.

A stride mask represents the partial access history pattern if

predicted reference stride exists. The width of stride mask,

which is 64 here, is set according to the width of access

history field in the SRT. Each stride mask is formed by

repeated stride patterns in binary form. The number of

repetitions, which is eight in our work, is called window size.

When the reference stride value is 2, every other position

of the stride mask is a logic 1, or 1010101010101010b. The

reason for setting a window size is to eliminate any potential

negative effects of one region containing multiple chunks

of various stride access patterns. Since stride mask will be

matched against real access history, setting a window size

could mask out accesses from different chunks.

C. Decision Making Logic (DML)

DML evaluates the confidence of a reference stride using

stride mask and makes prefetching direction. As shown in

Figure 2, DML consists of two main components: a positive

and negative stride matching logic, and an arbitration logic.

The two stride matching logic have the same components: a

shifter, a series of logic AND gates, and a count-ones logic.

Making a prefetch decision involves the following steps.

In the first step, the Access History field is loaded into both

left and right shifters. Once loaded, the history is shifted

until the bit representing the current access is shifted out

and 0s are shifted in. This step is to isolate accesses in the

positive and negative directions.

In the second step, shift register bits and stride mask are

fed into AND logics. This step is to filter the shifted access

history with the help of the stride mask, so that history

accesses that do not match the speculative access pattern

are filtered out. Since speculative pattern is evaluated in both

positive and negative direction, stride mask bits are wired in

a reverse order in the positive and negative stride matching

logic.

In the third step, results from previous step are fed into the

corresponding count-ones logic, which counts the number of

bits set to one, to generate a P count and a N count.

In the last step, the arbitration logic determines whether

the speculative pattern guided by stride reference is iden-

tified, and if so, decides prefetch direction and prefetch

degree. The outputs P and N from the previous step tell

how many pattern matches are detected in the positive and

the negative direction. If both outputs are smaller than a

preset threshold, the arbitration logic considers predicted

access pattern as low confidence and sets the Trigger bit to

0. Otherwise, the Trigger bit is set to 1 to trigger prefetching,

whose direction will be determined by the larger of values

P and N. If more positive stride matches are detected in

history, Direction will be set to 0, and vice versa. If the

sum is larger than a predefined cutoff value, a large prefetch

degree is applied dynamically.

There is no need to perform decision making operations

when a new SRT entry representing a newly encountered

memory region is brought into SRT, since it indicates that

the observed cacheline access is the first access of that region

in a short period.

D. Prefetch Address Computation (PAC)

The PAC generates prefetch address(es) based on signals

from DML. If the Trigger signal is set by DML, PAC

computes the prefetching address by adding or subtracting

current access address with stride reference value based on

the Direction signal. According to the Degree signal, PAC

may generate more than one prefetch requests.

III. EVALUATION

A. Simulation Methodology and Workloads

We evaluate four prefetching schemes, AMPM, BO,

stream buffer and SelSMaP. AMPM [3] and BO prefetcher

are implemented based on publicly available implemen-

tations from the 1st and 2nd Data Prefetching Champi-

onship [4]. The stream buffer prefetching scheme adapts the

idea of multi-entry stream buffer discussed in Palacharla’s

work [5]. SelSMaP is configured to consume a total storage

of 476 B, which is solely the storage cost of SRT as other

components can be implemented with logic only.

B. Single Core Performance Evaluation

Figure3 shows the performance of four prefetchers nor-

malized to the baseline of non-prefetching system. Com-

pared against baseline, SelSMaP attains an performance

speedup of 1.76X among prefetch friendly benchmarks and

1.28X among all benchmarks. SelSMaP beats stream buffer

across all workloads, and performs 35% better than BO

among prefetch friendly workloads and on average 13%

among all workloads. SelSMaP and AMPM show similar

average speedups among prefetch friendly workloads. For

benchmarks that benefit more from SelSMaP than AMPM,

SelSMaP outperforms AMPM by 6%. Although SelSMaP is

less efficient than AMPM in some workloads, the average

performance difference is within 2%. SelSMaP performs bet-

ter than BO in almost all workloads except for cactusADM

(14% less than BO).

Table I: System Configuration
Processor 4-way out-of-order, Tournament Branch Prediction, 32 load store queue buffer
L1 cache Private, 64KB, 4-way associative, 64B cacheline, LRU
L2 cache Shared, 2MB, 8-way associative, 64B cacheline, LRU

371

Figure 3: Single core performance normalized to the non-prefetching system

Figure 4: Normalized CloudSuite performance comparison

C. Multicore Performance Evaluation

Figure4 shows prefetching performance on cloud appli-

cations in a multicore system. Web Frontend and Web

Serving are prefetch-friendly, i.e., they gain performance

benefit from most of the prefetching schemes. Among all the

evaluated prefetching schemes, SelSMaP shows the highest

speedup in these two workloads. The benefit of fewer useless

prefetch requests in SelSMaP isn’t marked in SPEC bench-

marks, but becomes obvious in cloud applications. Those

prefetching-friendly SPEC benchmarks exhibit more regular

data access compared to CloudSuite, and their dominant

working sets can easily fit into an 8M LLC. Thus, use-

less prefetching isn’t harming SPEC benchmarks seriously.

However, according to workload analysis in prior work [1],

CloudSuite data access pattern shows long reuse distance,

and dominant working sets hardly fit into LLC. SelSMaP

generates less amount of useless prefetch requests than

prefetchers with similar accuracy but more aggressive(e.g.

AMPM). Useless prefetch requests consumes cache space,

indirectly reduce the effective LLC capacity. Therefore,

CloudSuite benchmarks are less tolerant of cache pollution

than SPEC.

IV. CONCLUSION

In this paper, we presented SelSMaP, a high-performance,

low-budget LLC prefetching scheme to make prefetch de-

cision based on a referenced stride. The reference stride is

picked as the minimum observed offset of two consecutive

accesses in the same page. The referenced stride is evaluated

by generating a stride masking and comparing it to the

access history pattern, which reveals how well matched the

history pattern is to the guidance. This prefetching scheme

saves on-chip area in comparison to many state-of-the-art

prefetchers and uses less logic to achieve high performance.

We evaluate our prefetching scheme running Cloud-

Suite and selected SPEC CPU2006 benchmarks. SelSMaP

achieves an average performance improvement of 30% over

non-prefetching system. With one to two order of magni-

tude less storage and much less functional logic, SelSMaP

outperforms the highest-performing prefetcher by 8.6% in

CloudSuite workloads.

V. ACKNOWLEDGEMENT

The authors of this work are supported partially by SRC

under Task ID 2504 and National Science Foundation (NSF)

under grant number 1337393. Part of this work was collab-

orated with the Centaur Technology during an internship.

We wish to acknowledge the computing time we received

on the Texas Advanced Computing Center (TACC) system.

Any opinions, findings, conclusions or recommendations

expressed in this material are those of the authors and do

not necessarily reflect the views of NSF or other sponsors.

REFERENCES

[1] J. Wang, R. Panda, and L. K. John, “Prefetching for cloud
workloads: An analysis based on address patterns,” in 2017
IEEE International Symposium on Performance Analysis of
Systems and Software, ISPASS 2017, Santa Rosa, CA, USA,
April 24-25, 2017, 2017, pp. 163–172. [Online]. Available:
https://doi.org/10.1109/ISPASS.2017.7975288

[2] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee,
D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and
B. Falsafi, “Clearing the clouds: A study of emerging
scale-out workloads on modern hardware,” SIGPLAN Not.,
vol. 47, no. 4, pp. 37–48, Mar. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2248487.2150982

[3] Y. Ishii, M. Inaba, and K. Hiraki, “Access map pattern
matching for data cache prefetch,” in Proceedings of the 23rd
International Conference on Supercomputing, ser. ICS ’09.
New York, NY, USA: ACM, 2009, pp. 499–500. [Online].
Available: http://doi.acm.org/10.1145/1542275.1542349

[4] “The 2nd data prefetching championship (dpc-2),”
http://comparch-conf.gatech.edu/dpc2/, 2015.

[5] S. Palacharla and R. E. Kessler, “Evaluating stream buffers
as a secondary cache replacement,” in Proceedings of 21
International Symposium on Computer Architecture, Apr 1994,
pp. 24–33.

372

