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6.1. INTRODUCTION

In this chapter, we focus on the short-term temporal variability of the solar
resource caused by weather and passing clouds, corresponding to timescales of
seconds to tens of minutes. This type of variability is illustrated in Figure 6.1.

Variability is primarily caused by (1) the movement of the Sun and (2) the
movement and evolution of clouds. Variability due to the movement of the Sun
is precisely predictable, while that due to the movement of clouds is not. The
predictable component is the result of solar geometrydthe Sun’s apparent
motion in the sky induces changes in the resource. These changes are not
noticeable for very short time intervals (seconds to minutes), but become
influential for longer time intervals, particularly near sunrise and sunset. This
chapter focuses on the less predictable part of variability: the “noise” caused by
the motion and evolution of cloud fields.

Short-term variability is relevant to the operation of solar-power systems
and their impact on the power grids to which they are connected: A small cloud
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FIGURE 6.1 Global irradiance (GHI) and clear-sky global irradiance (GHIclear) sampled at 20 s

on a high-variability day. (Data from the Oklahoma ARM Extended Facility Network.) This figure

is reproduced in color in the color section.
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passing in front of the Sun can cause a small PV installation to go from full
production to almost none and then back to full production in a matter of
secondsdthis impact is of concern to grid operators. There is a perception that
solar-generation variability as illustrated in Figure 6.1 could pose major
problems for utility distribution and transmission networks. The work of
Skartveit and Olseth (1992) on understanding and parameterizing short-term
variability was long one of the few references on this topic until increasing
PV penetration, initially in Europe, raised the level of interest in solar energy
variability (Wiemken et al. 2001, Woyte et al. 2007). The topic has generated
a considerable amount of new research during the last few years (e.g., Frank
et al. 2011; Hinkelman et al. 2011; Hoff and Perez 2010, 2012; Hoff, 2011;
Jamaly et al. 2012; Kankiewicz et al. 2011; Kuszamaul et al. 2010; Lave and
Kleissl 2010, 2013; Lave et al. 2011, 2012; Mills and Wiser 2010; Mills et al.
2009; Murata et al. 2009; Norris and Hoff 2011; Perez and Hoff 2011; Perez et
al 2011a, 2011b; Perez and Fthenakis 2012; Sengupta 2011; Stein et al. 2011).

The term ramp rate is often used to characterize solar variability. It origi-
nated in the utility industry to describe power plants coming online and going
offline in response to demand (ramping up or down). It has been widely used by
the wind industry to describe the sudden and noncontrollable coming online or
going offline of a large number of units as a result of local changes in wind
speed such as those associated with passing weather fronts. The analogy with
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135Chapter j 6 Solar Resource Variability
wind-power ramp rates may be appropriate for longer timescales at the upper
range of the domain considered in this chapter, whereby regional output may
ramp up or down from the effect of weather fronts over an hour or more. The
term fluctuation, however, may be a more appropriate term to describe the
short-term variability illustrated in Figure 6.1 that occurs over seconds to
minutes.
6.2. QUANTIFYING SOLAR-RESOURCE VARIABILITY

Properly quantifying variability requires definitions of (1) the physical quantity
that varies, (2) the time interval over which this quantity varies, and (3) the
period during which variability is considered.

The physical quantity of power output (P) of a solar system or an ensemble,
or fleet, of solar systems is of the highest interest to energy producers and grid
operators. P is a function of solar-generator specifications and the solar
resource. A general measure of the solar resource for nonconcentrating flat-
plate1 solar-system configurations is global horizontal irradiance (GHI). Short-
term GHI variability includes the effect of predictable factors due to changes in
Sun position and unpredictable factors due to weather/clouds. The effect of
unpredictable factors is captured by the clear-sky index (Kt*), defined as the
ratio of GHI to GHIclear.

2 Thus, Kt* is the key parameter of interest since GHI is
inferred from the clear-sky index and Sun position, and P is inferred from GHI.

Time interval is the time (Dt) over which the change in the selected physical
quantity, DKt�Dt, is considered. It can range from a few seconds to hours
depending on the particular concern of the user. As will be shown, the relevant
time interval is directly related to the geographical footprint of the considered
solar resource and hence to its impact on the power grid from a transformer on
a distribution feeder to a regional control area.

Time period is the number of time intervals over which variability is
defined; that is, it is a multiple of Dt.

Variability metric for single location is defined here as the standard devi-
ation of the change in power output. This variability is directly proportional to
the change in the clear-sky index across all locations using the specified time
interval (DKt�Dt) over the selected time period (Hoff and Perez 2010). That is,
(power output) variability is directly proportional to

s
�
DKt�Dt

� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAR

�
DKt�Dt

�q
(6.1)
1. Direct normal rradiance (DNI) would be the relevant quantity if concentrating technologies were

considered.

2. The range of the global index is reduced as the Sun’s elevation decreases, because the relative

weight of diffuse irradiance increases during clear-sky conditions.
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6.3. THE DISPERSION-SMOOTHING EFFECT

It has long been observed that the combined (relative) variability of multiple
solar generators (or wind generators) is less than the variability experienced by
a single system (e.g., Wiemken et al. 2001, Murata et al. 2009). For instance,
Figure 6.2 compares the variability of 1 location to that of 25 locations within
a 4 � 4 km footprint.

Uncorrelated locations represent a smoothing effect that can be precisely
quantified when the fluctuations experienced by different locations are
comparable and uncorrelated (Mills and Wiser 2010, Hoff and Perez 2010). In
this case, the variability of an ensemble of identical systems in independent
locations, sfleet, is given by

sfleet ¼ 1ffiffiffiffi
N

p si (6.2)

where si is the variability experienced by a single location, and N is the number
of locations. This is a direct result of the strong law of large numbers that states
that the average of a sequence of independent random variables having
a common distribution will, with probability 1, converge to the mean of that
distribution as the number of observations goes to infinity (Ross 1988, 346).

With partially correlated locations, we know intuitively (1) that if two
systems are located right beside each other, they will fluctuate almost in sync
and the resulting variability will be nearly equal, in relative terms, to the
variability of each individual location; and (2) that if two systems are located
far away from each other, they will fluctuate independently of each other and
a smoothing effect following (equation 6.2) will occur.
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FIGURE 6.2 Dispersion-smoothing effect occurring at 25 locations dispersed over a 4 � 4 km

area (Data from the Cordelia Junction network, San Francisco Bay area, California.) This figure is

reproduced in color in the color section.
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For cases that lie between these two extremes, smoothing will occur but to
a lesser degree than the 1=

ffiffiffiffi
N

p
trend:

spair ¼
ffiffiffiffiffiffiffiffiffiffiffi
rþ 1

p
ffiffiffi
2

p si (6.3)

where the site-pair correlation r ranges between 0 and 1. Therefore,

l It is important to determine how site-pair correlation varies as a function of
the factors that influence it. These factors include (1) the distance between
the stations (D), (2) the considered time interval (Dt), and (3) the speed (CS)
of the clouds producing the fluctuations. The impact of distance is
understandable per the above discussion: Correlation is equal to 1 for
collocated sites and gradually decreases to 0 until the sites are distant
enough so as to fluctuate independently.

l The time interval (Dt) that defines the considered fluctuation is relevant
because it relates to the size of the cloud perturbations causing the fluctua-
tion. High-frequency fluctuations are caused by the fine structure of cloud
fields (e.g., small individual clouds). The correlation of these fluctuations
rapidly decreases with distance. Lower-frequency fluctuations are caused
by larger-scale structures, such as entire cloud fields or weather fronts.
Two stations that are uncorrelated at the small-structure level may
experience almost the same synchronized variability at a longer timescale
and thus be highly correlated at that scale.

l Cloud speed is relevant because it is the major underlying cause of vari-
ability: Simply stated, clouds that do not move do not cause fluctuations.
Assuming for the sake of argument that moving cloud structures remain
largely unchanged over the considered time period, the faster the structure
travels, (1) the smaller the time shift in the signal between two stations and
the larger the correlation between them (for cloud size greater than sensor
FIGURE 6.3 Site-pair correlation as a function of distance (D) and time interval (Dt) for stations

in the ARM network. (From Mills and Wiser 2009.) This figure is reproduced in color in the color

section.
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138 Solar Energy Forecasting and Resource Assessment
spacing); and (2) the longer the distance at which two sites along the direction
of cloud speed experience the same fluctuations for a given time interval and
thus the longer the distance at which they exhibit a given correlation.

Note that for a given cloud size, cloud speed defines the relevant fluctuation
time interval.

The relationship between spair, Dt, CS, and D has been studied using several
sources of empirical evidence. For example, Mills and Wiser (2010) analyzed
data from the ARM network (Stokes and Schwartz 1994), including 32 stations
measuring GHI at a 20 s rate. They noted the exponential decay of spair as
a function of station distance and observed that the rate of exponential decay is
a continuous function of the considered time interval Dt. However, the shortest
distance between any two stations in the ARM network being 20 km, they were
not able to observe trends for Dt below 10 min. (See Figure 6.3.)
FIGURE 6.4 Site-pair variability correlation as a function of distance derived from hourly

10 km–resolution satellite data for California (top) and the Great Plains (bottom). The top row in

each case represents r as a function of distance. The bottom row expresses this relationship as

a function of the ratio between D and Dt � implied CS, showing that the distance relationship is

predictably dependent on Dt and CS. This figure is reproduced in color in the color section.
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Hoff and Perez (2012) repeated this exercise using standard-resolution
(10 km) hourly satellite-derived irradiances. They observed a similar expo-
nential decay and a predictable dependence on Dt for time intervals of 1, 2, and
3 h. They also noted that the exponential decay was different for the different
regions they analyzed and attributed these differences to prevailing regional
cloud speeds. (See Figure 6.4.)

Perez et al. (2012) analyzed the 20 s ARM data and added one-dimensional
virtual networks around each ARM station using satellite-derived cloud speeds
to project irradiance downwind from each station and assuming conservation of
cloud structures. By doing so, theywere able to analyze datawith high frequency
(Dt ¼ 20 s) and short distances. They quantified the correlation decay with
distance andDt, and defined a no-correlation threshold as the point beyondwhich
two stations’ fluctuations become uncorrelated. They observed that this distance
is linearly related to the considered Dt. They cautioned that their results would
have to be confirmed by analyzing real two-dimensional, high-density network
datadin particular, the negative correlation peaks that are apparent in Figure 6.4
are a result of the negative correlation occurring downwind as cloud structures
pass, unchanged, from the real to the virtual location; these negative peaks
should be only partially apparent in the case of two-dimensional networks.

Hoff & Norris. (2010) analyzed data from a modular network composed of
25 stations with a total footprint ranging from 400 m � 400 m to 4 km � 4 km
(Figure 6.5). They observed the same trend as in virtual one-dimensional
networks, including the negative correlation in the direction of cloud speed.
They qualitatively observed that cloud speed, acquired independently from
satellite cloud motion, affects the rate of decay.

Perez et al. (2011a) used (true two-dimensional) high-resolution (1 km,
1 min) satellite-derived data to systematically quantify the rpair distance trends
FIGURE 6.5 Site-pair correlation as a function of distance for time intervals ranging from 10 s to

5 min in Cordelia Junction, California. Data are extracted from a 25-station 400 m� 400 m network.

Note that some of the site pairs (likely oriented in the direction of cloud motion) exhibit the negative

correlation peak noted in thevirtual networks. This figure is reproduced in color in the color section.
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as a function of Dt and CS for several regions in the United States (Figure 6.6),
and proposed the following empirical formulation relating spair, Dt, CS, and D:

rpair ¼ eLn ð0:2ÞD=1:5 Dt CS (6.4)

The linear relationship between the no-correlation threshold distance and the
considered time interval noted by Perez et al. (2012) was confirmed, but was
FIGURE 6.6 Site-pair correlation observed with 1min 1 km resolution satellite-derived irradi-

ances in several U.S. regions and illustrating the respective effect of Dt, D, and CS. This figure is

reproduced in color in the color section.
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FIGURE 6.7 Applying equation 6.4 to estimate the effective site-pair decorrelation distance as

a function of Dt and CS. The short line labeled “Virtual network” represents the preliminary

estimate of this relationship based on limited evidence. This figure is reproduced in color in the

color section.
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adjusted to reflect the dependence of this relationship upon cloud speed. This is
shown in Figure 6.7.

Bing et al. (2012) analyzed 30 highly variable days from a newly
deployed 66-station network distributed over the Sacramento Municipal
Utility District’s (SMUD’s) territory and covering an area of roughly
200 km2. Each station measures irradiance at a time rate of 1 min. Cloud
speeds aloft were obtained from satellite imagery. The researchers’ results
confirmed the preliminary empirical relationship linking rpair, Dt, CS, and D
(Figure 6.8).
FIGURE 6.8 Site-pair variability correlation vs. distance for three fluctuation timescales using

data from the SMUD 66-station network. The solid line represents the mean of a model (equation

6.4)based on Dt, D, and CS. This figure is reproduced in color in the color section.
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FIGURE 6.9 Site-pair variability correlation as a function of distance for Dt ¼ 24 h obtained

using daily total irradiances from NASA/SSE (2012). (From Perez and Fthenakis 2012)
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Interestingly, there is evidence that the trend outlined in Figure 6.7 for Dts
ranging from a few seconds to a few hours is conserved for much longer time
intervals of days, as noted by Perez et al. (2012; Figure 6.9).
6.4. THE GENERAL CASE OF AN ARBITRARILY DISPERSED
FLEET OF SOLAR GENERATORS

We discussed the ideal case of N identical uncorrelated systems with identical
variability si, resulting in a relative fleet variability equal to 1=

ffiffiffiffi
N

p
that of

individual installations. We also showed how this relationship is modified when
correlation is not equal to 0 and how correlation evolves as a function of
distance, time interval, and prevailing cloud speed.

General situations where dispersion smoothing occurs fall into two broad
categories of centralized and dispersed solar (PV) generation. The centralized
case may be approximated to a series of identical point systems regularly
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143Chapter j 6 Solar Resource Variability
spaced at known distances. A more general situation is the case of dispersed
generation that involves nonidentical systems distributed at arbitrary distances
and hence experiencing varying degrees of site-pair correlation.

Because systems are not always identical, the output of the fleet, and thus its
variability, may be influenced by the size of its individual systemsdand the
variability of each system, which may itself be the result of spatial intra-array
smoothing in the case of large arrays. It is thus necessary to return to an
absolute formulation of variability based on the power output of each system,
siðDPi

DtÞ, where i represents the ith system in the fleet.
The variability of the fleetdthat is, the standard deviation of change in fleet

output, sfleetDt , dequals the square root of the variance of the sum of the changes
in output from each of the individual systems. The variance of the sum, however,
equals the sum of the covariance of all possible combinations.

sfleetDt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAR

hXN

n¼1
DPn

Dt

ir
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

XN

j¼1
COV

�
DPi

Dt;DP
j
Dt

�r
(6.5)

The covariance between any two plants equals the standard deviations of each
of the locations times the correlation coefficient between the two locations (i.e.,
COVðDPi

Dt;DP
j
DtÞ ¼ siDt s

j
Dt r

i;j
Dt). As a result,

sfleetDt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

XN

j¼1
siDt s

j
Dt r

i;j
Dt

r
(6.6)

The critical observation to be made about equation (6.6) is that the standard
deviation of changes in fleet output is based entirely on the standard deviation of
changes in plant output at each location and the correlation between the locations,
which can begauged fromempirical formulations such as proposed in equation 6.4.

6.5. VARIABILITY IMPACT ON THE DISTRIBUTION AND
TRANSMISSION SYSTEM

Although some of the evidence presented in this chapter is empirical (i.e., based
on imperfect measurements over a limited time spans and covering a limited
climatic range), it overwhelmingly suggests that (1) solar-resource variability is
a predictable function of the considered timescales and geographic scales and
of the velocity of the variability-causing cloud structures; and (2) the variability
of any solar-generation configuration, from a single small system to a fleet of
systems that are arbitrarily spaced and sized, including geographically
extended individual solar farms, can be adequately estimated.

In particular, it can be stated with a fair degree of certainty that 20 s fluc-
tuations should not be an issue for solar-power plants distributed over more
than 500 m (even for cloud speeds equal to 50 km/h). Figure 6.10 shows an
example for the city of New York, comparing measured variability on a highly
variable day from a single point to a city-wide distributed-generation network.
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FIGURE 6.10 Smoothing effect at the scale of a metropolitan area comparing single-site and

modeled 40 km � 40 km extended fluctuations for different timescales. This figure is reproduced

in color in the color section.
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Figure 6.11 illustrates the implications of the temporal and spatial charac-
teristics of variability for utility integration.

Short-term fluctuations and ramp rates of less than 20 s will affect small
individual systems, but should be minimized when a fleet of such systems
covers an area of a few square kilometers. At the system level, these fluctua-
tions can (rarely) cause localized voltage disturbances and can cause systems to
trip offline. The best way to address them is at the interconnection-hardware
level, which can include appropriate “shock absorbers” to increase their elec-
trical inertia and eliminate such risks. An analogy is a car that is designed to
operate perfectly on a rough road if it has the proper suspension without having
to anticipate and account for every bump.
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FIGURE 6.11 Temporal and spatial fluctuation scales of relevance to PV-grid interconnection

issues and technical solutions, from a single installation on a small feeder to dispersed generation

within a utility balancing area. This figure is reproduced in color in the color section.
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Fluctuations of the order of a few minutes remain a concern for areas of
a few square kilometers,which are representative of a fleet of distributed
systems served by a substation or a very large centralized power plant (several
hundreds of megawatts). However, in the case of the distributed fleet, these
fluctuations should be of minimal concern for utility-wide generation. Miti-
gation at this level involves both the interconnection shock absorbers
mentioned above and some level of voltage and power regulation, including
short-term storage of a few minutes in the case of large centralized arrays,
injecting vast amounts of power on the grid so as to “buy time” for the ramping
up and down of associated combined cycle gas turbines that can now accom-
modate ramp-up times approaching 5 min. Forecasting the exact timing of such
variability will become valuable at the upper range of this temporal-
geographical scale, especially if the area is a separate grid (such as on an
island). Here again the car analogy is short inclines where the driver must
actively participate and modulate power input to maintain speed.

Fluctuations of a half-hour to an hour and longer may have implications for
the utility system and will require load-following action, in terms of reserve (or,
worst-case, contingency) generation, load management, and storage. Fortu-
nately, the temporal and spatial scales involved (over a half hour and many tens
of kilometers) and the accuracy of solar-radiation (forecast) resources available
at these scales make the management of these fluctuations possible and
effective. At the upper range of this scale, regional balancing areas serving
several regional utilities should be concerned only with fluctuations of more
than one hour.
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In practice, a utility or developer can use the results presented in this chapter
in conjunction with historical solar-resource satellite-derived data to estimate
the variability of any proposed PV configurationdcentralized or dis-
perseddwith a footprint of 1 km or more. Equation 6.4 provides guidance for
selecting the Dt of concern for the considered footprint (the smaller the foot-
print, the higher the required frequency). Since satellite-derived irradiance
models are now capable of producing data at frequencies approaching 1/min
and 1 km resolution, the variability of any footprint in excess of 1 km can be
inferred directly from satellite-data time series. In addition, Hoff (2011) has
proposed and patented a methodology to infer variability on any temporal or
spatial scale starting from a known reference point (e.g., 1km/1min), thus
extending the use of satellite data down to a single system where the relevant
time interval may be of the order of seconds.

6.6. A FINAL NOTE ON THE SMOOTHING EFFECT

It is helpful at this point to make a final comment on the force behind the
smoothing effect, given that it is seen so consistently across a broad set of
research results. The relationship that links the spatial and temporal scales of
cloud-induced fluctuations appears to be connected to the long observed fractal
nature of cloud fields (Mandelbrot 1982) that are self-similar at all scales. In
other words, a fine cloud structure causing fluctuations of the order of seconds
is self-similar to a much larger structure. This larger structure will cause similar
fluctuations but at larger temporal and spatial scales as long as cloud speed does
not change between the two. Interestingly, these space-time characteristics
have equivalences in other aspects of solar-resource assessment: It is well
known, for instance, that the dispersion accuracy of both satellite remote-
sensing and forecast models (MAE or RMSE) improves as the geographical
extent of the considered solar resource increases from a single point to a region
(Hoff and Perez 2012, Lorenz et al. 2011). Similarly, it has recently been shown
that the peak shaving-capacity credit of a dispersed solar resource increases and
the loss-of-load probability decreases as the dispersion of the solar resource
increases (Perez and Hoff 2012).
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