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Abstract

This paper introduces a novel approach to estimate the maximum short-term output variability that an arbitrary fleet of PV systems
places on any considered power grid. The paper begins with a model that demonstrates that the maximum possible variability for N

identical, uncorrelated PV systems equals the total installed capacity divided by
ffiffiffiffiffiffiffi
2N
p

. The paper then describes a general methodology
that is applicable to arbitrary PV fleets. A key input to this generalized approach is the correlation, or absence thereof, existing between
individual installations in the fleet at the considered variability time scale. In this respect, the article includes a presentation of new exper-
imental evidence from hourly satellite-derived irradiances relating distance and fluctuation time scales in three geographic regions in the
United States (Southwest, Southern Great Plains, and Hawaii) and from recent high density network measurements that both confirm
and extend conclusions from previous studies, namely: (1) correlation coefficients decrease predictably with increasing distance, (2) cor-
relation coefficients decrease at a similar rate when evaluated versus distance divided by the considered variability time scale, and (3) the
accuracy of results is improved by including an implied cloud speed term.
� 2011 Elsevier Ltd. All rights reserved.
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1. Introduction

PV capacity is increasing on utility systems. As a result,
utility planners and grid operators are growing more con-
cerned about potential impacts of power supply variability
caused by transient clouds. Utilities and control system oper-
ators need to adapt their planning, scheduling, and operating
strategies to accommodate this variability while at the same
time maintaining existing standards of reliability.

It is impossible to effectively manage these systems,
however, without a clear understanding of PV output vari-
ability or the methods to quantify it. Whether forecasting
loads and scheduling capacity several hours ahead or plan-
ning for reserve resources years into the future, the industry
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needs to be able to quantify expected output variability for
fleets of up to hundreds of thousands of PV systems spread
across large geographical territories. Underestimating
reserve requirements may result in a failure to meet reliabil-
ity standards and an unstable power system. Overestimating
reserve requirements may result in an unnecessary expendi-
ture of capital and higher operating costs.

This issue has been the subject of considerable new work
in the last few years – first in Japan and Germany where sig-
nificant level of PV penetration started to occur (Wiemken
et al., 2001, and Murata et al., 2009) and more recently in
the US where this issue was brought to the forefront by util-
ities in the Southwest US (US Department of Energy, 2009).
Numerous contributions to the field by the authors and
others (Hoff and Perez, 2010; Perez et al., 2011a,b, have
brought a better understanding of the temporal, spatial
and site-specific characteristics of short-term variability
(Sengupta, 2011; Lave and Kleissl, 2010, 2011; Frank
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et al., 2011; Kankiewicz et al., 2011; Hinkelman et al., 2011;
Stein et al., 2011).

The objective of this article is to present the develop-
ment of analytical methods and tools designed to quantify
any arbitrary PV fleet’s output variability, ranging from
one single point system to multiple arbitrarily dispersed
single point and extended PV systems. The methods and
tools are designed to accommodate an arbitrary PV fleet
because the composition of the PV fleet is defined by the
electrical system configuration. For example, suppose util-
ity planners are evaluating variability within a particular
transmission or distribution system. The PV fleet of interest
consists of PV systems that are connected to the transmis-
sion or distribution system, not simply PV systems that are
in the same geographic location. Variability in time inter-
vals ranging from a few seconds to a few minutes is of pri-
mary interest since control area reserves are dispatched
over these time intervals.

Variability of a PV fleet is thus a measure of the magni-
tude of changes in its aggregate power output correspond-
ing to the defined time interval and taken over a
representative study period. Note that it is the change in
output, rather than the output itself, that is desired. Also
note that, for each time interval the change in output
may vary in both magnitude and sign (positive and nega-
tive). A statistical metric is therefore employed in order
to quantify variability: the standard deviation of the change

in fleet power output rfleet
Dt (Hoff and Perez, 2010).

rfleet
Dt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var

XN

n¼1

DP n
Dt

" #vuut ð1Þ

where N is the number of PV systems and DP n
Dt is the time

series of changes in power at the nth system occurring over
a time interval of Dt.

It is helpful to graphically illustrate what is meant by
output variability. The left side of Fig. 1 presents 10-s irra-
diance data (PV power output is almost directly propor-
tional to irradiance) and the right side of the figure
presents the change in irradiance using a 10-s time interval
for a network of 25 weather monitoring stations in a 400-m
by 400-m grid located at Cordelia Junction, CA on Novem-
ber 7, 2010. The light gray lines correspond to irradiance
Fig. 1. Twenty-five location network reduces 10-s variability by more than 70%
and variability for a single location and the dark red lines
correspond to average irradiance distributed across 25
locations. This suggests that spreading capacity across 25
locations rather than concentrating it at a single location
reduces variability. It is of course understood that the var-
iability at any one of the single systems and the local tran-
sient-related interconnection issues such as output voltage
and inverter tripping are not eliminated; however the tran-
sients of the ensemble and their related issues at a feeder or
substation level are reduced by resource spreading.

A “fleet computation” approach can be taken to calculate
output variability for a fleet of PV systems as follows: iden-
tify the PV systems that constitute the fleet to be studied;
select the time interval and time period of concern (e.g.,
1-min changes evaluated over a 1-year period); obtain
time-synchronized solar irradiance data for each location
where a PV system is to be sited; simulate output for each
PV system using standard modeling tools; sum the output
from each individual system to obtain the combined fleet
output; calculate the change in fleet output for each time
interval; and finally calculate the resulting statistical output
variability from the stream of values.

A “fleet computation” approach, while technically valid,
is difficult to implement in practice for several reasons. First
multiple system calculations are highly computation inten-
sive, and thus are not suitable for real-time operations
particularly if the required time frequency is high. Second,
solar irradiance data are not always available in sufficient
time/space resolution – while commercial services such as
SolarAnywhere (2011) are starting to offer products with a
1-min/1-km resolution, it may not be sufficient per se to
address all questions down to scales of seconds and meters.
Third, PV variability studies determined using the fleet
computation approach would have to be re-commissioned
whenever additional PV systems came on-line.

A more viable approach is to streamline the calculations
through the use of a general-purpose PV output variability
methodology. The method needs to quantify short-term fleet
power output variability based on the premises that sky
clearness and sun position drive the changes in the short-
term output for individual PV systems and that technical
specifications (i.e., dimensions, plant spacing, number of
plants, etc.) determine overall fleet variability.
in a 400 m � 400 m grid at Cordelia Junction, CA on November 7, 2010.



Table 1
Maximum change in power output at one location.

Time Power (MW) Change (MW/min)

12:00 1 �1
12:01 0 +1
12:02 1 �1
12:03 0 +1
12:04 1

Table 2
Maximum change in power output at two locations (scenario 1).

Time Power (MW) Change (MW/min)

Plant 1 Plant 2 Fleet (1 + 2)

12:00 0.5 0.5 1 �1
12:01 0 0 0 +1
12:02 0.5 0.5 1 �1
12:03 0 0 0 +1
12:04 0.5 0.5 1

Table 3
Maximum change in power output at two locations (scenario 2).

Time Power (MW) Change (MW/min)

Plant 1 Plant 2 Fleet 1 + 2

12:00 0.5 0 0.5 0
12:01 0 0.5 0.5 0
12:02 0.5 0 0.5 0
12:03 0 0.5 0.5 0
12:04 0.5 0 0.5
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Hoff and Perez (2010) developed a simplified model as a
first step towards a general method to quantify the output
variability resulting from an ensemble of equally-spaced,
identical PV systems.

The simplified model covered the special case when the
change in output between locations is uncorrelated (i.e.,
cloud impacts at one site are too distant to have predictable
effects at another for the considered time scale), fleet capac-
ity is equally distributed, and the variance at each location
is the same. Under these conditions, Hoff and Perez showed
that fleet output variability equals the output variability at
any one location divided by the square root of the number
of locations:1

rFleet
Dt ¼

r1
Dtffiffiffiffi
N
p ð2Þ

where r1
Dt is the standard deviation of the change in output

of the fleet concentrated at one single location, and N is the
number of uncorrelated locations. Mills and Wiser (2010)
have derived a similar result that relates variability to the
square root of the number of systems when the locations
are uncorrelated.

2. Maximum output variability model

Eq. (2) has important implications for utility planners. It
allows them to determine reserve capacity requirements to
mitigate worst case fleet variability at any time scale of
interest. For example, suppose that the variability of a sin-
gle system was 10 kW per minute and there were 100
uncorrelated identical systems in the fleet. Total fleet vari-
ability equals 0.1 MW ð100�10 kWffiffiffiffiffi

100
p Þ per minute. The planner

could then apply the desired confidence level (e.g., they
may choose 3 standard deviations) to determine the
required reserve capacity (e.g., 3 � 0.1 MW = 0.3 MW).

This calculation is applicable when two fundamental
conditions are satisfied: (1) the output variability at a single
location can be quantified and (2) the change in output var-
iability between locations is uncorrelated.

Consider the first condition. One approach to determin-
ing single location variability ðr1

DtÞ is to analyze historical
solar resource data for the location of interest. The data
would need to have been collected at a rate that accommo-
dates the time interval of interest (perhaps down to a few
seconds) over a substantial and representative period of
time (perhaps over several years). Such high-speed, high-
resolution data are not generally available.2

An alternative approach is to construct a data set that
simulates worst case variability conditions. The theoreti-
cally worst case variability of a single PV plant would be
that it cycles alternately between 0% and 100% of its rated
output every time interval. For example, suppose that the
PV plant is rated at 1 MW and the time interval of interest
1 See Eq. (8) in Hoff and Perez (2010).
2 One of the few examples of this sort of data is provided by Kuszamaul

et al. (2010).
is 1 min. As illustrated in Table 1 maximum variability
occurs when the PV plant is at full power at 12:00, zero
power at 12:01, full power at 12:02, etc. The corresponding
change in power fluctuates between �1 and 1 MW. The
standard deviation3 of the change in power output equals
1 MW per minute. That is, a 1 MW PV plant that is exhib-
iting maximum variability over a 1 min time interval has a
1 MW per minute standard deviation. This would imply
that 1 MW of reserve capacity is required to compensate
for the output variability for a single plant.

Suppose that the PV “fleet” capacity was split between
two locations and each were to exhibit maximum output var-
iability. Two possible scenarios exist. The first scenario,
illustrated in Table 2, assumes that both plants turn on
and off simultaneously. As was the case where all capacity
is concentrated at a single location, the change in output fluc-
tuates between�1 and 1 MW and the standard deviation for
this scenario is 1 MW per minute.

The second scenario, illustrated in Table 3, assumes that
the plants cycle on and off alternately with a time shift of
3 The standard deviation of a random variable X equals the square root
of the expected value of X squared minus the square of the expected value

of X. r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½X 2� � E½X �2

q
.



Table 4
Maximum change in power output assuming random output.

Time Power (MW) Change (MW/min)

12:00 25% chance if 1
50% chance if 0
25% chance if �1

12:01

Table 5
Summary of input data.

Region Southwest Southern Great Plains Hawaii

Location #1 Latitude: 32�–42� Latitude: 35�–38� Latitude: 19�–20�
Longitude: �125� to�109� Longitude: �99� to �96� Longitude: �156� to �155�
Grid Size: 2.0� Grid Size: 1.0� Grid Size: 0.5�

Location #2 0.1�, 0.3�, . . . , 1.9� from #1 0.1�, 0.3�, . . . , 2.9� from #1 0.1�, 0.2�, . . . , 1.0� from #1
Time intervals 1, 2, 3, and 4 h 1, 2, 3, and 4 h 1, 2, 3, and 4 h
Clear sky irradiance 10 irradiance bins in intervals of

0.1 kW/m2
10 irradiance bins in increments of
0.1 kW/m2

10 irradiance bins in increments of
0.1 kW/m2
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1 min. In this case, the change in output from the first loca-
tion cancels the change in output at the second location.
The result of this scenario is a standard deviation of
0 MW per minute.

It is incorrect to conclude, however, that the upper
bound of output variability for 1 MW of PV is 1 MW
per minute. This is because each of the two scenarios vio-
lates the assumed condition that the locations are uncorre-
lated. Specifically, the change in output between the two
locations has perfect positive correlation in the first sce-
nario (i.e., correlation coefficient equals 1) and perfect neg-
ative correlation in the second scenario (i.e., correlation
coefficient equals �1).
2.1. Feasible maximum output variability

These scenarios demonstrate that it is impossible for two
systems to exhibit the behavior of worst case variance indi-
vidually (by cycling on and off at each interval) without
having either perfect positive or perfect negative correla-
tion. Indeed, for each system to exhibit its maximum vari-
ance, its output changes must be exactly in tempo with the
time interval, loosely analogous to each member of an
orchestra following in time to its conductor, in which case
the systems would by definition have perfect correlation
(whether positive or negative). By this reasoning, the max-
imum output variability scenario described above (1 MW
of variability for each 1 MW of fleet capacity) is impossi-
ble. When the systems have less than perfect correlation,
as must be the case for any real-world fleet, the variability
of the combined fleet must be less than the total fleet
capacity.

To correct the worst case scenario, retain the assump-
tion that each power change is either a transition from zero
output to full output or from full output to zero output.
This assumption in itself is highly conservative since the
impacts of cloud transients on PV systems will almost
never produce changes with magnitudes as high as 100%
of rated output and will generally produce changes much
less than 100%. As for timing, rather than being synchro-
nized, each system is assumed to cycle on and off in a ran-
dom fashion, representing fleets of PV systems with
outputs that are uncorrelated.

Random timing of power output changes is illustrated
for a single location in Table 4 for a 1 MW PV system. Sup-
pose that it is 12:00 and the time interval is 1 min. There is
a 50% chance that the plant is on and a 50% chance that
the plant is off at 12:00. If the plant is on at 12:00, then
there is a 50% chance it will turn off and a 50% chance it
will remain on at 12:01. If the plant is off at 12:00, then
there is a 50% chance it will stay off and a 50% chance it
will turn on at 12:01. The right column in Table 4 presents
the probability distribution of the change in power. At each
time interval, there is a 25% chance of a 1 MW per minute
decrease in power, a 50% chance of no change in output,
and a 25% chance of a 1 MW per minute increase in power.

Note that while this is the maximum possible change, it
is extremely unlikely that such a distribution would



Fig. 2. Maximum variability for 1 MW and 100 MW system sizes with
uncorrelated changes.
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actually exist. First, weather conditions would have to be
exceptionally erratic. Second, clouds would need to be so
dark that there would be no output when covering a PV
system. Third, the entire system would have to turn on
and off, rather than a subset of the arrays. Fourth, each
PV system would need to operate as a “point source” of
output; Kuszamaul et al. (2010) and Mills et al. (2009) have
demonstrated that, in fact, a smoothing effect occurs as
system size increases.4

With these caveats, the above distribution represents an
upper bound of worst case conditions that is conservative
from a grid operator standpoint. This distribution has a
standard deviation of 1ffiffi

2
p times 1 MW.5 If the entire fleet

of PV systems were concentrated at a single point, and
the fleet had a capacity of CFleet, then the maximum stan-
dard deviation of change in output equals:

Maximum r1
Dt ¼

CFleetffiffiffi
2
p ð3Þ

The maximum output variability for a fleet of uncorre-
lated locations can be calculated using this numerical defi-
nition of the maximum output variability for a single
system by substituting Eq. (3) into Eq. (2). The result is
that maximum output variability equals fleet capacity
divided by the square root of 2 times the number of uncor-
related locations.

Maximum rFleet
Dt ¼ CFleetffiffiffiffiffiffiffi

2N
p ð4Þ

Eq. (4) places an upper bound on the maximum output
variability for any time interval as long as the change in
output between locations is uncorrelated. Actual results
are likely to be lower – this practical upper bound on single
point output is substantiated by a wealth of empirical
evidence (see Perez et al., 2011).
4 See Fig. 13 in Kuszamaul et al. (2010) and Fig. 7 in Mills et al. (2009).

5 r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð0:25Þð�1Þ2þ

q
ð0:50Þð0Þ2þ ð0:25Þð1Þ2� � ½ð0:25Þð�1Þþ

ð0:50Þð0Þ þ ð0:25Þð1Þ�2 ¼ 1ffiffi
2
p .
2.2. Example

Suppose that a utility system plans to incorporate
5000 MW of PV. Fig. 2 presents the maximum output var-
iability calculated using Eq. (4) for PV fleets with capacities
ranging from 0 to 5000 MW based on two fleet composi-
tion strategies. The blue line is the variability when the fleet
is composed of uncorrelated 1 MW systems. The red line is
the variability when the fleet is composed of uncorrelated
100 MW systems. As illustrated in the figure at the
5000 MW level, if 100 MW systems are installed at 50 loca-
tions (N = 50) with uncorrelated changes in output, maxi-
mum output variability is 500 MW per time interval, or
10% of fleet capacity. However, if 1 MW PV systems are
installed at 5000 locations (N = 5000) with uncorrelated
changes in output, maximum output variability is
50 MW, or 1% of fleet capacity.

This example illustrates the potential benefit of dividing
the PV capacity into small systems, and spreading them
apart geographically so that output changes are uncorre-
lated. More importantly, it also illustrates the unnecessary
potential cost that could be incurred if system planners
were to procure reserves without adequate tools for quan-
tifying PV variability. The dotted line in Fig. 2 represents
the reserve resources that would be procured when each
MW of PV was fully “backed up” with a MW of fossil, bat-
tery, or other dispatchable resource intended to remove
variability at the time scale of interest. In the N = 5000
example, such a planning practice — at least for fleets made
up of uncorrelated systems— would result in capital expen-
ditures 99 times the required amounts.
2.3. General model

The preceding section assumed that changes in the out-
put from the different plants are uncorrelated. This section
develops a model that considers what happens when the
output between the various plants is correlated.

Eq. (1) stated that the standard deviation of the change
in fleet output equals the square root of the variance of the
sum of the change in output from each of the systems indi-
vidual. The variance of the sum, however, equals the sum
of the covariance of all possible combinations.

rfleet
Dt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var

XN

n¼1

DP n
Dt

" #vuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

XN

j¼1

COVðDP i
Dt;DP j

DtÞ

vuut
ð5Þ

The covariance between any two plants equals the
standard deviations of each of the locations times the
correlation coefficient between the two locations (i.e.,
COVðDP i

Dt;DP j
DtÞ ¼ ri

Dtr
j
Dtq

i;j
Dt). As a result,

rfleet
Dt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

XN

j¼1

ri
Dtr

j
Dtq

i;j
Dt

vuut ð6Þ



8 The expected value of DKt* equals 0 as long as the starting and ending
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The critical observation to be made about Eq. (6) is that the
standard deviation of the changes in fleet output is based
entirely on the standard deviation of the change in plant out-
put at each location and the correlation between the locations.

The result is that it is crucial to understand and quantify
correlation between the various plants.

3. Correlation versus distance

3.1. Background: critical factors affecting correlation

The critical factors that affect output variability are the
clearness of the sky, sun position, and PV fleet technical
specs (i.e., dimensions, plant spacing, number of plants,
etc.). Hoff and Perez (2010) introduced a parameter called
the Dispersion Factor. The Dispersion Factor is a param-
eter that incorporates the layout of a fleet of PV systems,
the time scales of concern, and the motion of cloud inter-
ferences over the PV fleet. Hoff and Perez showed that
relative output variability resulting from the deployment
of multiple plants decreased quasi-exponentially as a func-
tion of the generating resource’s Dispersion Factor. Their
results demonstrated that: (1) relative output variability
decreases as the distance between sites increases; (2) the
decrease with distance weakens as the time interval
increases; and (3) the decrease weakens as well as the cloud
transit speed increases.

Mills and Wiser (2010) analyzed measured 1-min insola-
tion data over an extended period of time for 23 time-syn-
chronized sites in the Southern Great Plains network of the
Atmospheric Radiation Measurement (ARM) program
(Stokes and Schwartz, 1994). Their results demonstrated6

that the correlation of the change in the global clear-sky
index: (1) decreases as the distance between sites increases
and (2) decreases more slowly as the time interval increases.

Perez et al. (2011b) analyzed the correlation between the
variability observed at two neighboring sites as a function
of their distance and of the considered variability time scale.
They used 20-s to 1-min data to construct virtual networks at
24 US locations from the ARM network and the
SURFRAD Network and cloud speed derived from Solar-
Anywhere (2011) to calculate the station pair correlations
for distances ranging from 100 m to 100 km and from vari-
ability time scales ranging from 20 s to 15 min. Their results
confirmed that the correlation of the change in global clear-
sky index: (1) decreases predictably as the distance between
sites increases; and (2) decreases more slowly as the time
interval increases.

The consistent conclusions7 of these studies are that cor-
relation: (1) decreases as the distance between sites
increases and (2) decreases more slowly as the time interval
increases. Hoff and Perez (2010) add that the correlation
decreases more slowly as the speed of the clouds increases.
6 See Fig. 5 in Mills and Wiser (2010).
7 The results apply to either changes in PV output directly or changes in

the clear sky index.
New experimentally-based evidence tends to confirm qual-
itatively these general trends (e.g., Sengupta, 2011; Lave
and Kleissl, 2011; Hinkelman et al., 2011) noting (Hinkel-
man et al., 2011) that other factors, such as direction with
respect to cloud speed also could modulate observed
relationships.

3.2. Determination of station pair correlation

New evidence is brought forth in this article to quantify
the station-pair correlations dependence upon distance and
time interval. This evidence includes: (1) a macro scale anal-
ysis of regional satellite-derived irradiances with time scales
ranging from one to 4 h and distances ranging from 10 km
and up, and (2) a micro scale view analyzing 10 s data from
a high density 25-station network.

The analysis is focused on the clear-sky index Kt* that
equals the measured global horizontal insolation (GHI)
divided by the clear-sky insolation, thereby removing much
of the predictable solar geometry-induced variability (Mills
and Wiser, 2010; Perez et al., 2011b). Specifically the
change in the clear-sky index between two points in time
is referred to as DKt*. Since the change occurs over some
specified time interval, Dt, at some specific location n, the
variable is fully qualified as DKt�nt;Dt. This only represents
one pair of points in time. A set of values is identified by
convention by bolding the variable. Thus, DKt�nDt is the set
of changes in the clear-sky indices at a specific location
using a specific time interval over a specific time period.

DKt�nDt ¼ ðt1;DKt�nt1;DtÞ; ðt2;DKt�nt2;DtÞ; . . . ; ðtT ;DKt�ntT ;DtÞ
n o

ð7Þ

Let DKt�1Dt and DKt�2Dt represent two sets of observed data
values for the change in the clear-sky index that have a
mean of 0 and standard deviations, r1 and r2.8

Pearson’s product-moment correlation coefficient (typi-
cally referred to simply as the correlation coefficient) equals
the expected value of DKt�1Dt times DKt�2Dt divided by the cor-
responding standard deviations.

q1;2 ¼ E½DKt�1DtDKt�2Dt �
r1r2

ð8Þ
3.3. Macro scale satellite data analysis

The correlation coefficients were computed for station
pairs extracted from the gridded satellite-derived Solar-
Anywhere dataset (2011). This dataset uses a model that
evolved from the model of Perez et al. (2004) which had
been applied to produce the US National Solar Resource
Data Bases (1998–2005). Whereas satellite-derived data
GHI values are the same. This condition is satisfied when the time period
of the analysis is performed over one day because the starting and ending
GHI both equal 0. It will also be approximately true when the analysis
encompasses many data points (as would be the case, for example, of an
analysis of 1 h of data using a 1-min time interval).



Fig. 3. Correlation coefficients presented by time interval for Southwest.

Fig. 4. Correlation coefficients presented by time interval for Great Plains.
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fall short of site-specific measurements in terms of abso-
lute accuracy, their strength lie in relative accuracy, hence
are well suited to determine point to point differences and
correlations. As summarized in Table 5, three separate
geographic regions in the United States were selected
for analysis: Southwest, Southern Great Plains, and
Hawaii. For each pair of points analyzed, the first loca-
tion, was selected using a grid size of 2.0�, 1.0�, or 0.5�
for the Southwest, Southern Great Plains, and Hawaii,
correspondingly, and the second location was selected
between 0.1� and 2.9� (about 10–300 km) from the first
location in north–south and east–west directions. Many



Fig. 5. Correlation coefficients presented by time interval for Hawaii.

Fig. 6. Correlation coefficients for all locations and time intervals.
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other map coordinates and possible pair of points were
available on the SolarAnywhere 0.1� � 0.1� grid, but
selected points provided samples: over 70,000 pairs in
total. Hourly insolation data were obtained for each
selected pair of locations from January 1, 1998 through
September 30, 2010. The site-pair correlation analysis
was then performed as described above for time intervals
(Dt) of 1, 2, 3, and 4 h.



Fig. 7. Results scale linearly with the time interval for a fixed correlation coefficient.
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3.4. Results

Fig. 3 presents the correlation coefficients for the South-
west.9 The columns summarize the results for each time
interval and the rows present the measured correlation coef-
ficients versus several alternative candidate sets of variables.
The first column summarizes results for a time interval of
1 h. The second, third, and fourth columns plot the same
results using time intervals of 2, 3, and 4 h. Results in the
top row present correlation coefficients versus the distance
between the two locations. Results in the middle row present
correlation coefficients versus distance divided by time
interval. Results in the bottom row present correlation coef-
ficients versus distance divided by time interval multiplied by
an implied relative cloud speed;10 this estimated cloud speed
is related to the Dispersion Factor introduced by Hoff and
Perez (2010). The dashed line in the bottom figures repre-
sents the results of a generalized method, proposed in this
paper for use in future tools, that will be validated in the
present analysis. Results are calculated using parameters
obtained from SolarAnywhere. Figs. 4 and 5 present com-
parative results for the Great Plains and Hawaii. The pat-
terns presented in the figures are similar across all time
intervals in the three geographic locations. Fig. 6 compresses
the results for each location and presents results where all
time intervals are combined into the same figure.
3.5. Discussion

The analysis provides several key findings. First, consis-
tent with previous studies, the correlation coefficients
decrease with increasing distance (top row of Fig. 6). Second,
also consistent with previous studies, this decrease occurs
more slowly with longer time intervals (top row of Fig. 6).
An alternative way of viewing this result is that correlation
9 There were a large number of results for this analysis. Plotting all of
the results made it difficult to read the figure, particularly when the
different time intervals were overlaid on the same figure. Thus, the figures
present randomly selected samples of the results to make the figures more
readable.
10 Implied relative cloud speed equals the implied speed derived for the

specific location from SolarAnywhere data by the average implied speed
across the entire geographic region. Note that this implied cloud speed is
solely used for presentation purposes for the benefit of the reader so that
the scale of the x-axis remains constant.
coefficients decrease at a similar rate when plotted versus dis-
tance divided by time interval (middle row of Fig. 6). Third,
the scatter in results is further decreased when an implied rel-
ative speed10 is introduced for the first location in the pair of
locations (bottom row of Fig. 6). Finally, a model, shown by
the dashed black line in the bottom row of Fig. 6, fits the
empirical data well when calibrated using the location-spe-
cific derived input parameters, where

q ¼ 1

1þ Distance
ðDtÞðRelative speedÞ

ð9Þ
3.6. Microscale analysis

3.6.1. Projection to shorter time intervals

An encouraging result of the foregoing analysis is the
ability of the proposed general method, validated directly
with several empirical data sets, to predict correlation coef-
ficients with such accuracy. Even more encouraging is that
the method is shown to be valid regardless of the selected
time interval. While input data to produce Eq. (9) was
taken from the SolarAnywhere data set with a 1-h time
interval, the method is shown to produce accurate correla-
tion coefficients for 1-h, 2-h, 3-h, and 4-h time intervals.
This finding prompted the authors to evaluate the potential
of using the method based on parameters derived from the
SolarAnywhere data set to project results to time intervals
shorter than 1 h.

While the desired objective is to demonstrate that the
method accurately determines correlation coefficients
(and therefore variability) as a function of PV spacing, a
mathematically equivalent objective is to show that, for a
given correlation coefficient, it is possible to accurately
determine spacing between PV systems.

The circles in Fig. 7 correspond to the method results
taken from the dotted curve in the bottom row of Fig. 6.
For example, Fig. 6 implies that PV systems need to be
spaced 40 km apart in the Great Plains in order to achieve
a 25% correlation coefficient using a 60 min time interval.
Triple the time interval to 180 min and plants need to be
spaced triple the distance (120 km apart) to achieve the
same 25% correlation coefficient.

The solid lines connecting the four time interval obser-
vations for each location in Fig. 7 illustrate that the rela-
tionship is linearly related to the time interval. The figure



Fig. 8. Comparison of results to geographic diversity study (Mills and Wiser, 2010).

Fig. 9. Key results from virtual network study (Perez et al., 2011b).
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begs the question as to whether the results can be projected
in the region with shorter time intervals (i.e., the gray sec-
tions of the figures).
11 Fig. 5 in Mills and Wiser (2010).
12 The differences in 180-min time intervals are due to methodological

differences between the two studies in how the interval results were
calculated.
3.6.2. Evaluation of time-independence claim

The above linear relationship suggests that the method
is independent of selected time interval, even down to the
very short time intervals (several seconds to several min-
utes) that are of primary interest to utilities particularly
for issues pertaining to PV integration within their distribu-
tion network. This section provides an initial validation of
time-independence by comparing results calculated from
the 1-h SolarAnywhere data set against results from inde-
pendent studies that used 10-s, 20-s, and 1-min data sets.

3.6.2.1. Geographic diversity study. Mills and Wiser (2010)
used measured 1-min insolation data for 23 time-synchro-
nized sites in the Southern Great Plains network of the
Atmospheric Radiation Measurement (ARM) program to
characterize the variability of PV with different degrees of
geographic diversity. That report presented11 the correla-
tion of changes in global clear-sky index between these geo-
graphically dispersed sites. Mills and Wiser provided an
electronic version of their results and these were used to
compare against the general method proposed here. While
the 1-h SolarAnywhere data set was used as input to the
general method, correlation coefficients were calculated
that corresponded to much shorter time intervals in the
Mills and Wiser study. The results, presented in Fig. 8,
are comparable to the Mills and Wiser study even down
to 1-min time intervals.12



Fig. 10. Comparison of results to virtual network study.

Fig. 11. Correlation coefficients for high-density, 25 unit network at
Cordelia Junction, CA on November 7, 2010 for time intervals from 10 s
to 5 min.
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3.6.2.2. Virtual network study. Perez et al. (2011b) obtained
20-s to 1-min insolation data for 24 measuring stations,
including 17 stations in the ARM network and 7 stations
in the SURFRAD network. They constructed 1-dimen-
sional virtual networks13 using satellite-derived cloud
speeds to translate time measurements into space mea-
surements. They then calculated correlation coefficients
between the change in clear-sky index for various time
intervals and distances. Fig. 9 presents some of the key
results from that study. Fig. 10 re-plots the data from
the virtual network study along with corresponding pro-
jections from Eq. (9). Results compare well to virtual net-
13 See Hoff and Perez (2010) for a discussion of virtual network
construction.
work study down to correlation coefficients of 40% for
time intervals between 20 s and 15 min. Results from the
virtual network study correlation coefficients below 40%
may be lower as a result of the negative correlation aris-
ing from locations that are very close together and
because of the one dimensional nature of the virtual
networks.
3.6.2.3. High density weather station network. A third data
set was provided based on a data set from a network of 25
weather collection devices. This network is interesting from
several perspectives. First, it is one of the few known
high-density networks providing high speed data (see
Kuszamaul et al., 2010 for a network of 24 sensors in
Lanai, HI). Second, it is designed to be deployed to
multiple locations for short durations of time and thus is
mobile.

The clocks on the 25 data recording devices were set using
a single computer to ensure that time synchronized results
would be obtained. This network was then deployed at
Cordelia Junction, CA in a 400-m by 400-m configuration
(a square composed of 100 m between stations). Fig. 11 pre-
sents the correlation coefficients for November 7, 2010. Since
there are 25 locations, there are 625 possible combinations,
300 of which are unique. Each of these combinations was
evaluated using nine different time intervals (10, 20, 30, 40,
50, 60, 90, 120, and 300 s). Thus, there are 2700 unique
scenarios.

The black line in the figure represents the relationship
proposed in Eq. (9). These independently measured data
fit the proposed method fairly well. It is interesting to note
that this data set exhibits some of the negative correlation
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effects identified by Hoff and Perez (2010) and Perez et al.
(2011b) using the virtual network approach.
4. Conclusions

The objective of this paper was to lay the foundation for
a new method that could be employed in future utility tools
to enable the calculation of PV fleet variability for planning
and operational purposes.

A maximum output variability model was introduced as a
practical tool for utilities to size reserve capacity require-
ments applicable to arbitrary time scales. One of the key
inputs to this model is the correlation coefficients between
the variability of individual plants composing a PV fleet at
any considered time scale.

A method was proposed to extract such coefficients based
upon station distance and implied cloud speed. Hourly
global horizontal insolation data from SolarAnywhere were
used to validate the method by calculating correlation coef-
ficients for 70,000 pairs of points across three separate geo-
graphic regions in the United States (Southwest, Southern
Great Plains, and Hawaii), while varying distance, time
interval, insolation bin, and other parameters. These empir-
ical correlation coefficients compared favorably with those
derived by the method. The method was then shown to be
independent of selected time interval, such that hourly satel-
lite data could be used to calculate correlation coefficients
for very short time intervals (several seconds to several min-
utes). These extrapolated results were validated using results
from studies that are based on 20-s to 1-min insolation data
and using high density network data with time scales of 10 s
to 5 min.

The article presented and confirmed important findings.
First, correlation coefficients decrease with increasing
distance. Second, correlation coefficients decrease at a sim-
ilar rate when plotted versus distance divided by time inter-
val. Third, the accuracy of results is further improved when
an implied speed term is introduced into the analysis.
Together, these results provide the basis for validating
the proposed site-pair correlation method. The method,
derived with input parameters from hourly SolarAnywhere
data, can produce correlation coefficients for short time
intervals (seconds to minutes) that compare quite well to
results from independent studies that used 10-s, 20-s, and
1-min data sets.
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