
Generating Test Cases From Use Cases

by Jim Heumann
Requirements Management Evangelist
Rational Software

In many organizations, software testing
accounts for 30 to 50 percent of software
development costs. Yet most people believe
that software is not well tested before it is
delivered. That contradiction is rooted in two
clear facts: First, testing software is a very
difficult proposition; and second, testing is
typically done without a clear methodology.

A widely-accepted tenet in the industry -- and
an integral assumption in the Rational Unified
Process® (RUP®) -- is that it is better to start
testing as early in the software development
process as possible. Delaying the start of testing activities until all
development is done is a high-risk way to proceed. If significant bugs are
found at that stage (and they usually are), then schedules often slip.

Haphazard methods of designing, organizing, and implementing testing
activities and artifacts also frequently lead to less-than-adequate test
coverage. Having a straightforward plan for how testing is done can help
increase coverage, efficiency, and ultimately software quality.

In this article, we will discuss how using use cases to generate test cases
can help launch the testing process early in the development lifecycle and
also help with testing methodology.

In a software development project, use cases define system software
requirements. Use case development begins early on, so real use cases for
key product functionality are available in early iterations. According to the
RUP, a use case "…fully describes a sequence of actions performed by a
system to provide an observable result of value to a person or another
system using the product under development." Use cases tell the
customer what to expect, the developer what to code, the technical writer
what to document, and the tester what to test.

For software testing -- which consists of many interrelated tasks, each
with its own artifacts and deliverables -- creation of test cases is the first

jprince
Copyright Rational Software 2001

jprince
http://www.therationaledge.com/content/jun_01/m_cases_jh.html

fundamental step. Then test procedures are designed for these test cases,
and finally, test scripts are created to implement the procedures. Test
cases are key to the process because they identify and communicate the
conditions that will be implemented in test and are necessary to verify
successful and acceptable implementation of the product requirements.
They are all about making sure that the product fulfills the requirements of
the system.

Although few actually do it, developers can begin creating test cases as
soon as use cases are available, well before any code is written. We will
discuss how to do this, and the advantages you can reap from it, below.

An Introduction to Use Cases

Use cases are based on the Unified Modeling Language (UML) and can be
visually represented in use-case diagrams. Figure 1 shows a use-case
diagram depicting requirements for a university course registration
system.

Figure 1: Use Case Diagram for a University Course Registration System

The ovals represent use cases, and the stick figures represent "actors,"
which can be either humans or other systems. The lines represent
communication between an actor and a use case. As you can see, this use-
case diagram provides the big picture: Each use case represents a big
chunk of functionality that will be implemented, and each actor represents
someone or something outside our system that interacts with it.

It is a significant step to identify use cases and actors, but now there is

more to be done. Each use case also requires a significant amount of text
to describe it. This text is usually formatted in sections, as shown in Table
1.

Table 1: Format for a Use-Case Textual Description

Use Case Section Description

Name An appropriate name for the use case
(see Leslee Probasco’s article in the
March issue of The Rational Edge).

Brief Description A brief description of the use case’s role
and purpose.

Flow of Events A textual description of what the system
does with regard to the use case (not
how specific problems are solved by the
system). The description should be
understandable to the customer.

Special Requirements A textual description that collects all
requirements, such as non-functional
requirements, on the use case, that are
not considered in the use-case model,
but that need to be taken care of during
design or implementation.

Preconditions A textual description that defines any
constraints on the system at the time the
use case may start.

Post conditions A textual description that defines any
constraints on the system at the time the
use case will terminate.

The most important part of a use case for generating test cases is the flow
of events. The two main parts of the flow of events are the basic flow of
events and the alternate flows of events. The basic flow of events
should cover what "normally" happens when the use case is performed.
The alternate flows of events covers behavior of an optional or exceptional
character relative to normal behavior, and also variations of the normal
behavior. You can think of the alternate flows of events as "detours" from
the basic flow of events.

Figure 2: Basic Flow of Events and Alternate Flows of Events for a Use Case

Figure 2 represents the typical structure of these flows of events. The
straight arrow represents the basic flow of events, and the curves
represent alternate flows. Note that some alternate flows return to the
basic flow of events, while others end the use case. Both the basic flow of
events and the alternative flows should be further structured into steps or
subflows

Register For Courses

Basic Flow

1. Logon
This use case starts when a Student accesses the Wylie
University Web site.
The system asks for, and the Student enters, the student ID
and password.

2. Select 'Create a Schedule'
The system displays the functions available to the student. The
student selects "Create a Schedule."

3. Obtain Course Information
The system retrieves a list of available course offerings from the
Course Catalog System and displays the list to the Student.

4. Select Courses
The Student selects four primary course offerings and two
alternate course offerings from the list of available course
offerings.

5. Submit Schedule
The student indicates that the schedule is complete. For each
selected course offering on the schedule, the system verifies
that the Student has the necessary prerequisites.

6. Display Completed Schedule
The system displays the schedule containing the selected course
offerings for the Student and the confirmation number for the
schedule.

Figure 3: Textual Description for the University Course Registration Use-Case Basic
Flow of Events

Figure 4 shows a few alternate flows.

Register For Courses

Alternate Flows

1. Unidentified Student
In Step 1 of the Basic Flow, Logon, if the system determines
that the student ID and/or password is not valid, an error
message is displayed.

2. Quit
The Course Registration System allows the student to quit at
any time during the use case. The Student may choose to save
a partial schedule before quitting. All courses that are not
marked as "enrolled in" are marked as "selected" in the
schedule. The schedule is saved in the system. The use case
ends.

3. Unfulfilled Prerequisites, Course Full, or Schedule
Conflicts
In Step 5 of the Basic Flow, Submit Schedule, if the system
determines that prerequisites for a selected course are not
satisfied, that the course is full, or that there are schedule
conflicts, the system will not enroll the student in the course. A
message is displayed that the student can select a different
course. The use case continues at Step 4, Select Courses, in the
basic flow.

4. Course Catalog System Unavailable

In Step 3 of the Basic Flow, Obtain Course Information, if the
system is down, a message is displayed and the use case ends.

5. Course Registration Closed
If, when the use case starts, it is determined that registration
has been closed, a message is displayed, and the use case
ends.

Figure 4: Textual Description for University Course Registration Use-Case Alternate
Flows

As you can see, a significant amount of detail goes into fully specifying a
use case. Ideally, the flows should be written as "dialogs" between the
system and the actors. Each step should explain what the actor does and
what the system does in response; it should also be numbered and have a
title. Alternate flows always specify where they start in the basic flow and
where they go when they end.

Use-Case Scenarios

There is one more thing to describe before we concentrate on how use
cases can be used to generate test cases: a use-case scenario. A use-case
scenario is an instance of a use case, or a complete "path" through the
use case. End users of the completed system can go down many paths as
they execute the functionality specified in the use case. Following the
basic flow would be one scenario. Following the basic flow plus alternate
flow 1A would be another. The basic flow plus alternate flow 2A would be a
third, and so on.

Table 2 lists all possible scenarios for the diagram shown in Figure 2,
beginning with the basic flow and then combining the basic flow with
alternate flows.

Table 2: Scenarios for the Use Case Shown in Figure 2

Scenario 1 Basic
Flow

Scenario 2 Basic
Flow

Alternate Flow
1

Scenario 3 Basic
Flow

Alternate Flow
1

Alternate Flow
2

Scenario 4 Basic
Flow

Alternate Flow
3

Scenario 5 Basic
Flow

Alternate Flow
3

Alternate Flow
1

Scenario 6 Basic
Flow

Alternate Flow
3

Alternate Flow
1

Alternate Flow
2

Scenario 7 Basic
Flow

Alternate Flow
4

Scenario 8 Basic
Flow

Alternate Flow
3

Alternate Flow
4

These scenarios will be used as the basis for creating test cases.

Generating Test Cases

A test case is a set of test inputs, execution conditions, and expected
results developed for a particular objective: to exercise a particular
program path or verify compliance with a specific requirement, for
example.

The purpose of a test case is to identify and communicate conditions that
will be implemented in test. Test cases are necessary to verify successful
and acceptable implementation of the product requirements (use cases).

We will describe a three-step process for generating test cases from a fully-
detailed use case:

1. For each use case, generate a full set of use-case scenarios.

2. For each scenario, identify at least one test case and the conditions
that will make it "execute."

3. For each test case, identify the data values with which to test.

Step One: Generate Scenarios

Read the use-case textual description and identify each combination of
main and alternate flows -- the scenarios -- and create a scenario matrix.
Table 3 shows a partial scenario matrix for the Register for Courses use
case. This is a simple example with no nested alternate flows.

Table 3: Partial Scenario Matrix for the Register for Courses Use Case

Scenario Name Starting Flow Alternate

Scenario 1 - Successful registration Basic Flow

Scenario 2 - Unidentified student Basic Flow A1

Scenario 3 - User quits Basic Flow A2

Scenario 4 - Course catalog system
unavailable

Basic Flow A4

Scenario 5 - Registration closed Basic Flow A5

Scenario 6 – Cannot enroll Basic Flow A3

Step Two: Identify Test Cases

Once the full set of scenarios has been identified, the next step is to
identify the test cases. We can do this by analyzing the scenarios and
reviewing the use case textual description as well. There should be at least
one test case for each scenario, but there will probably be more. For
example, if the textual description for an alternate flow is written in a very
cursory way, like the description below,

3A. Unfulfilled Prerequisites, Course Full, or Schedule Conflicts

then additional test cases may be required to test all the possibilities. In
addition, we may wish to add test cases to test boundary conditions.

The next step in fleshing out the test cases is to reread the use-case
textual description and find the conditions or data elements required to
execute the various scenarios. For the Register for Course use case,
conditions would be student ID, password, courses selected, etc.

To clearly document the test cases, once again, a matrix format is useful,
like the one in Table 4. Notice the top row. The first column contains the
test case ID, the second column has a brief description of the test case,
including the scenario being tested, and all other columns except the last
one contain data elements that will be used in implementing the tests. The
last column contains a description of the test case's expected output.

Table 4: Test Case Matrix for the Register for Courses Use Case

Test
Case
ID

Scenario/
Condition

Student
ID

Password Courses
selected

Prerequisites
fulfilled

Course
Open

Schedule
Open

Expected
Result

RC 1 Scenario 1-
successful
registration

V V V V V V Schedule
and
confirmation
number
displayed

RC 2 Scenario 2-
unidentified
student

I N/A N/A N/A N/A N/A Error
message;
back to
login screen

RC 3 Scenario 3-
valid user
quits

V V N/A N/A N/A N/A Login screen
appears

RC 4 Scenario 4-
course
registration
system
unavailable

V V N/A N/A N/A N/A Error
message;
back to step
2

RC 5 Scenario 5-
registration
closed

V V N/A N/A N/A N/A Error
message;
back to step
2

RC 6 Scenario 6-
cannot
enroll --
course full

V V V V I V Error
message;
back to step
3

RC 7 Scenario 6-
cannot
enroll --
prerequisite
not fulfilled

V V V I V V Error
message;
back to step
4

RC 8 Scenario 6-
cannot
enroll --
schedule
conflict

V V V V V I Error
message;
back to step
4

Notice that in this matrix no data values have actually been entered. The
cells of the table contain a V, I, or n/a. V indicates valid, I is for invalid,
and n/a means that it is not necessary to supply a data value in this case.
This specific matrix is a good intermediate step; it clearly shows what
conditions are being tested for each test case. It is also very easy to
determine by looking at the Vs and Is whether you have identified a
sufficient number of test cases. In addition to the "happy day" scenarios in
which everything works fine, each row in the matrix should have at least
one I indicating an invalid condition being tested. In the test case matrix
in Table 4, some conditions are obviously missing -- e.g., Registration
Closed -- because RC3, RC4, and RC5 each has the same combination of
Is and Vs.

Step Three: Identify Data Values to Test

Once all of the test cases have been identified, they should be reviewed
and validated to ensure accuracy and to identify redundant or missing test
cases. Then, once they are approved, the final step is to substitute actual
data values for the Is and Vs. Without test data, test cases (or test
procedures) can't be implemented or executed; they are just descriptions
of conditions, scenarios, and paths. Therefore, it is necessary to identify
actual values to be used in implementing the final tests. Table 5 shows a
test case matrix with values substituted for the Is and Vs in the previous
matrix. A number of techniques can be used for identifying data values,
but these are beyond the scope of this article.

Table 5: Test Case Matrix with Data Values

Test
Case
ID

Scenario/
Condition

Student
ID

Password Courses
selected

Prerequisites
fulfilled

Course
Open

Schedule
Open

Expected
Result

RC 1 Scenario 1-
successful
registration

jheumann abc123 M101>

E201

S101

Yes Yes Yes Schedule
and
confirmation
number
displayed

RC 2 Scenario 2-
unidentified
student

Jheuman1 N/A N/A N/A N/A N/A Error
message;
back to
login screen

RC 3 Scenario 3-
valid user
quits

jheumann abc123 N/A N/A N/A N/A Login
screen
appears

RC 4 Scenario 4-
course
registration
system
unavailable

jheumann abc123 N/A N/A N/A N/A Error
message;
back to step
2

RC 5 Scenario 5-
registration
closed

jheumann abc123 N/A N/A N/A N/A Error
message;
back to step
2

RC 6 Scenario 6-
cannot
enroll --
course full

jheumann abc123 M101

E201

S101

Yes M101
full

Yes Error
message;
back to step
3

RC 7 Scenario 6-
cannot
enroll --
prerequisite
not fulfilled

jheumann abc123 M101

E201

S101

No for E201 Yes Yes Error
message;
back to step
4

RC 8 Scenario 6-
cannot
enroll --
schedule
conflict

jheumann abc123 M101

E201

S101

Yes Yes E202 and
S101
conflict

Error
message;
back to step
4

Putting It All Together

In current practice, use cases are associated with the front end of the
software development lifecycle and test cases are typically associated with
the latter part of the lifecycle. By leveraging use cases to generate test
cases, however, testing teams can get started much earlier in the lifecycle,
allowing them to identify and repair defects that would be very costly to
fix later, ship on time, and ensure that the system will work reliably.

Using the clearly-defined methodology I've outlined above for generating
test cases, developers can simplify the testing process, increase efficiency,
and help ensure complete test coverage.

For more information on the products or services discussed in this
article, please click here and follow the instructions provided.
Thank you!

Copyright Rational Software 2001 | Privacy/Legal Information

