0000000909007
A Pragmatic Introduction to UML

O,REI LLY® Russ Miles & Kim Hamilton

CHAPTER 12

Managing and Reusing Your System’s
Parts: Component Diagrams

When designing a software system, it’s rare to jump directly from requirements to
defining the classes in your system. With all but the most trivial systems, it’s helpful
to plan out the high-level pieces of your system to establish the architecture and
manage complexity and dependencies among the parts. Components are used to
organize a system into manageable, reusable, and swappable pieces of software.

UML component diagrams model the components in your system and as such form
part of the development view, as shown in Figure 12-1. The development view
describes how your system’s parts are organized into modules and components and
is great at helping you manage layers within your system’s architecture.

Logical View Process View

Use Case View

Physical View ‘ Development View

Figure 12-1. The Development View of your model describes how your system’s parts are organized
into modules and components

What Is a Component?

A component is an encapsulated, reusable, and replaceable part of your software. You
can think of components as building blocks: you combine them to fit together (possi-
bly building successively larger components) to form your software. Because of this,
components can range in size from relatively small, about the size of a class, up to a
large subsystem.

186

Good candidates for components are items that perform a key functionality and will
be used frequently throughout your system. Software, such as loggers, XML parsers,
or online shopping carts, are components you may already be using. These happen
to be examples of common third-party components, but the same principles apply to
components you create yourself.

In your own system, you might create a component that provides services or access
to data. For example, in a CMS you could have a conversion management compo-
nent that converts blogs to different formats, such as RSS feeds. RSS feeds are com-
monly used to provide XML-formatted updates to online content (such as blogs).

In UML, a component can do the same things a class can do: generalize and associ-
ate with other classes and components, implement interfaces, have operations, and
so on. Furthermore, as with composite structures (see Chapter 11), they can have
ports and show internal structure. The main difference between a class and a compo-
nent is that a component generally has bigger responsibilities than a class. For exam-
ple, you might create a user information class that contains a user’s contact
information (her name and email address) and a user management component that
allows user accounts to be created and checked for authenticity. Furthermore, it’s com-
mon for a component to contain and use other classes or components to do its job.

Since components are major players in your software design, it’s important that they
are loosely coupled so that changes to a component do not affect the rest of your sys-
tem. To promote loose coupling and encapsulation, components are accessed
through interfaces. Recall from Chapter 5 that interfaces separate a behavior from its
implementation. By allowing components to access each other through interfaces,
you can reduce the chance that a change in one component will cause a ripple of
breaks throughout your system. Refer back to Chapter 5 for a review of interfaces.

A Basic Component in UML

A component is drawn as a rectangle with the <<component>> stereotype and an
optional tabbed rectangle icon in the upper righthand corner. Figure 12-2 shows a
ConversionManagement component used in the CMS that converts blogs to different
formats and provides feeds such as RSS feeds.

<<component>> E

ConversionManagement

Figure 12-2. The basic component symbol showing a ConversionManagement component

In earlier versions of UML, the component symbol was a larger version of the tabbed
rectangle icon, so don’t be surprised if your UML tool still shows that symbol.

A Basic Componentin UML | 187

You can show that a component is actually a subsystem of a very large system by
replacing <<component>> with <<subsystem>>, as shown in Figure 12-3. A subsystem is
a secondary or subordinate system that’s part of a larger system. UML considers a
subsystem a special kind of component and is flexible about how you use this stereo-
type, but it’s best to reserve it for the largest pieces in your overall system, such as a
legacy system that provides data or a workflow engine in the CMS.

<<subsystem>> E

WorkflowEngine

Figure 12-3. You can substitute the <<subsystem>> stereotype to show the largest pieces of your
system

Provided and Required Interfaces of a Component

Components need to be loosely coupled so that they can be changed without forcing
changes on other parts of the system—this is where interfaces come in. Components
interact with each other through provided and required interfaces to control depen-
dencies between components and to make components swappable.

A provided interface of a component is an interface that the component realizes.
Other components and classes interact with a component through its provided
interfaces. A component’s provided interface describes the services provided by the
component.

A required interface of a component is an interface that the component needs to
function. More precisely, the component needs another class or component that real-
izes that interface to function. But to stick with the goal of loose coupling, it accesses
the class or component through the required interface. A required interface declares
the services a component will need.

There are three standard ways to show provided and required interfaces in UML:
ball and socket symbols, stereotype notation, and text listings.

Ball and Socket Notation for Interfaces

You can show a provided interface of a component using the ball symbol introduced
in Chapter 5. A required interface is shown using the counterpart of the ball—the
socket symbol—drawn as a semicircle extending from a line. Write the name of the
interface near the symbols.

Figure 12-4 shows that the ConversionManagement component provides the
FeedProvider and DisplayConverter interfaces and requires the DataSource interface.

The ball and socket notation is the most common way to show a component’s inter-
faces, compared with the following techniques.

188 | Chapter12: Managing and Reusing Your System’s Parts: Component Diagrams

Provided Required
interfaces interface
4

\

1

// FeedProvider E \
o7 <<component>> DataSource \
:’ DisplayConverter ConversionManagement (

Figure 12-4. The ball and socket notation for showing a component’s provided and required
interfaces

Stereotype Notation for Interfaces

You can also show a component’s required and provided interfaces by drawing the
interfaces with the stereotyped class notation (introduced in Chapter 5). If a compo-
nent realizes an interface, draw a realization arrow from the component to the inter-
face. If a component requires an interface, draw a dependency arrow from the
component to the interface, as shown in Figure 12-5.

<<interface>> <<interface>>
FeedProvider DisplayConverter
+ getFeed(String id) : Feed + getView(String id) : View

S mmee . el TS
N " mea. _'_ _____ o g
. PR L T ~~] Realization
E arrow
<<component>>

ConversionManagement

Required and provided interfaces !
are shown using the stereotyped e Dependency
class notation :. ----------- arrow

<<Interface>>
DataSource

+ lookup(String id) : Record

Figure 12-5. The stereotyped class notation, showing operations of the required and provided
interfaces

This notation is helpful if you want to show the operations of interfaces. If not, it’s
best to use the ball and socket notation, since it shows the same information more
compactly.

Provided and Required Interfaces of a Component | 189

Listing Component Interfaces

The most compact way of showing required and provided interfaces is to list them
inside the component. Provided and required interfaces are listed separately, as
shown in Figure 12-6.

<<component>> E

ConversionManagement

<<provided interfaces>>
FeedProvider,
DisplayConverter

<<required interfaces>>
DataSource

<<artifacts>>
conversionManagement jar

Figure 12-6. Listing required and provided interfaces within the component is the most compact
representation

This notation additionally has an <<artifacts>> section listing the artifacts, or physi-
cal files, manifesting this component. Since artifacts are concerned with how your
system is deployed, they are discussed in deployment diagrams (see Chapter 15).
Listing the artifacts within the component is an alternative to the techniques shown
in Chapter 15 for showing that artifacts manifest components.

Deciding when to use which notation for required and provided interfaces depends
on what you’re trying to communicate. This question can be answered more fully
when examining components working together.

Showing Components Working Together

If a component has a required interface, then it needs another class or component in
the system to provide it. To show that a component with a required interface
depends on another component that provides it, draw a dependency arrow from the
dependent component’s socket symbol to the providing component’s ball symbol, as
shown in Figure 12-7.

DataSource ___> DataSource <<component>>{|
ConversionManagement C O BlogDataSource

c FeedProvider
<<component>> E
: DisplayConverter

Figure 12-7. The ConversionManagement component requires the DataSource interface, and the
BlogDataSource component provides that interface

As a presentation option for Figure 12-7, your UML tool may let you get away with
snapping the ball and socket together (omitting the dependency arrow), as shown in

190 | Chapter12: Managing and Reusing Your System’s Parts: Component Diagrams

Figure 12-8. This is actually the assembly connector notation, which is introduced
later in this chapter.

C FeedProvider E DataSource E
<<component>> @ <<component>>
DisplayConverter | ConversionManagement A\S BlogDataSource

Figure 12-8. Presentation option that snaps the ball and socket together

You can also omit the interface and draw the dependency relationship directly
between the components, as shown in Figure 12-9.

<<component>> E <<component>> E

ConversionManagement |~ ~"""""7777C > BlogDataSource

Figure 12-9. You can draw dependency arrows directly between components to show a higher level
view

The second notation (omitting the interface, shown in Figure 12-9) is simpler than
the first (including the interface, shown in Figure 12-7), so you may be tempted to
use that as a shorthand, but keep in mind a few factors when choosing how to draw
component dependencies.

Remember that interfaces help components stay loosely coupled, so they are an
important factor in your component architecture. Showing the key components in
your system and their interconnections through interfaces is a great way to describe
the architecture of your system, and this is what the first notation is good at, as
shown in Figure 12-10.

. o E FeedProvider
<component>> C"" O_ DataSource
BroadcastEngine : > <<component>> E .. >0 <<component>>{I
FeedProvider ConversionManagement C BlogDataSource
DataSource
/" DisplayConverter /L
<<component>> E -t
BlogViewer C ; rogger
DisplayConverter \i/
Logger
<<component>>£I
Log4j

Figure 12-10. Focusing on the key components and interfaces in your system

Showing Components Working Together | 191

The second notation is good at showing simplified higher level views of component
dependencies. This can be useful for understanding a system’s configuration man-
agement or deployment concerns because emphasizing component dependencies
and listing the manifesting artifacts allows you to clearly see which components and

related files are required during deployment, as shown in Figure 12-11.

<<component>>
ConversionManagement

<<provided interfaces>>

<<component>>
BroadcastEngine

<<required interfaces>>
FeedProvider

<<artifacts>>
broadcastEngine.jar

FeedProvider
DisplayConverter
<<required interfaces>>
DataSource

<<component>>
BlogViewer

<<required interfaces>>
DisplayConverter

<<artifacts>>
blogViewer.jar

<<artifacts>>
conversionManagement.jar

<.-..---.-

<<component>>
BlogDataSource

<<provided interfaces>>
DataSource

<<provided interfaces>>
Logger

<<artifacts>>
log4j.jar

<<required interfaces>>
Logger

<<artifacts>>
blogdata.jar

Figure 12-11. Focusing on component dependencies and the manifesting artifacts is useful when
you are trying control the configuration or deployment of your system

Classes That Realize a Component

A component often contains and uses other classes to implement its functionality.
Such classes are said to realize a component—they help the component do its job.
You can show realizing classes by drawing them (and their relationships) inside the

component. Figure 12-12 shows that the BlogDataSource component contains the Blog
and Entry classes. It also shows the aggregation relationship between the two classes.

You can also show a component’s realizing classes by drawing them outside the
component with a dependency arrow from the realizing class to the component, as
shown in Figure 12-13.

The final way to show realizing classes is to list them in a <<realizations>> compart-
ment inside the component, as shown in Figure 12-14.

192 | Chapter12: Managing and Reusing Your System’s Parts: Component Diagrams

<<component>> E

BlogDataSource

o DataSource Blog : Entry Logger :

Figure 12-12. The Blog and Entry classes realize the BlogDataSource component

<<component>> E

BlogDataSource

’ 0
. .
’ -
’ .
. .
’ .

. .
. .
.

B -

Y

Blog —— Entry

Figure 12-13. Alternate view, showing the realizing classes outside with the dependency
relationship

<<component>>
BlogDataSource

<<provided interfaces>>
DataSource

<<required interfaces>>
Logger

<<realizations>>
Blog,
Entry

<<artifacts>>
blogData.jar

Figure 12-14. You can also list the realizing classes inside the component

How do you decide which notation to use to show the classes that realize a compo-
nent? You may be limited by your UML tool, but if you have the choice, many mod-
elers prefer the first notation (drawing the realizing classes inside) rather than
drawing them outside since drawing them inside visually emphasizes that the classes
make up a component to achieve its functionality. Listing the realizing classes may
be helpful if you want something compact, but keep in mind that it can’t show rela-
tionships between the realizing classes, whereas the first two notations can.

(lasses That Realize a Component | 193

Ports and Internal Structure

Chapter 11 introduced ports and internal structure of a class. Components can also
have ports and internal structure.You can use ports to model distinct ways that a
component can be used with related interfaces attached to the port. In Figure 12-15,
the ConversionManagement component has a Formatting and a Data port, each with
their associated interfaces.

FeedProvider DataSource

Formatting

<<component>>
\(onverswnManagement Y,
AN /z
N 7
N /
\ ’

Ports |

Figure 12-15. Ports show unique uses of a component and group “like” interfaces

DisplayConverter Reporting

You can show the internal structure of a component to model its parts, properties,
and connectors (see Chapter 11 for a review of internal structure). Figure 12-16
shows the internal structure of a BlogDataSource component.

<<component>> E

BlogDataSource

C DataSource[] - Blog - Entry] Logger :

Figure 12-16. Showing the internal structure of a component

Components have their own unique constructs when showing ports and internal
structure—called delegation connectors and assembly connectors. These are used to
show how a component’s interfaces match up with its internal parts and how the
internal parts work together.

Delegation Connectors

A component’s provided interface can be realized by one of its internal parts. Simi-
larly, a component’s required interface can be required by one of its parts. In these
cases, you can use delegation connectors to show that internal parts realize or use the
component’s interfaces.

194 | Chapter12: Managing and Reusing Your System’s Parts: Component Diagrams

Delegation connectors are drawn with arrows pointing in the “direction of traffic,”
connecting the port attached to the interface with the internal part. If the part real-
izes a provided interface, then the arrow points from the port to the internal part.

If the part uses a required interface, then the arrow points from the internal part to
the port. Figure 12-17 shows the use of delegation connectors to connect interfaces
with internal parts.

<<component>> E

BlogDataSource

L

~ DataSourceI:I > :Blog : Entry —,9[]&(

\
Delegation Delegation
connector connector

Figure 12-17. Delegation connectors show how interfaces correspond to internal parts: the Blog
class realizes the DataSource interface and the Entry class requires the Logger interface

You can think of the delegation connectors as follows: the port represents an open-
ing into a component through which communications pass, and delegation connec-
tors point in the direction of communication. So, a delegation connector pointing
from a port to an internal part represents messages being passed to the part that will

handle it.

If you’re showing the interfaces of the internal parts, you can connect delegation con-
nectors to the interface instead of directly to the part. This is commonly used when
showing a component that contains other components. Figure 12-19 demonstrates this
notation. The ConversionManagement component has a Controller and a BlogParser
component. The ConversionManagement component provides the FeedProvider inter-
face, but this is actually realized internally by the Controller part.

Assembly Connectors

Assembly connectors show that a component requires an interface that another com-
ponent provides. Assembly connectors snap together the ball and socket symbols
that represent required and provided interfaces.

Figure 12-19 shows the assembly connector notation connecting the Controller
component to the BlogParser component.

Assembly connectors are special kinds of connectors that are defined for use when
showing composite structure of components. Notice that Controller and BlogParser

Ports and Internal Structure | 195

<<component>>
ConversionManagement

=l

: FeedProvider [

DisplayConverter

FeedProvider

<<component>>
: Controller

<<component>>
: BlogParser

DataSource

DisplayConverter

A

Parser

4) Parser

DataSource

i

\

1
\
\

Delegation
connector

Figure 12-18. Delegation connectors can also connect interfaces of internal parts with ports

<<component>>
ConversionManagement

=l

DisplayConverter

: FeedProvider [] E :

FeedProvider

<<component>>
: Controller

Parser
O. <<component>>

: BlogParser

DataSource

DisplayConverter

DataSource

—>[}0

Assembly
connector

Figure 12-19. Assembly connectors show components working together through interfaces

use the roleName:className notation introduced in composite structures and help
form the internal structure of ConversionManagement. But assembly connectors are
also sometimes used as a presentation option for component dependency through
interfaces in general, as shown earlier in Figure 12-8.

Black-Box and White-Box Component Views

There are two views of components in UML: a black-box view and a white-box view.
The black-box view shows how a component looks from the outside, including its
required interfaces, its provided interfaces, and how it relates to other components.
A black-box view specifies nothing about the internal implementation of a compo-

196 |

Chapter 12: Managing and Reusing Your System’s Parts: Component Diagrams

nent. The white-box view, on the other hand, shows which classes, interfaces, and
other components help a component achieve its functionality.

In this chapter, you’ve seen both black-box and white-box views. So, what’s the dif-
ference in practical terms? A white-box view is one that shows parts inside a compo-
nent, whereas a black-box view doesn’t, as shown in Figure 12-20.

Example Black-Box Component View Example White-Box Component View
C FeedProvider E
<<component>>
C ConversionManagement <<component>> E
. BlogDataSource
DisplayConverter /L
N\ DataSource

e DataSource Blog : Entry Logger :

DataSource

<<component>> E

BlogDataSource

_O<- -

Figure 12-20. Black-box component views are useful for showing the big picture of the components
in your system, whereas white-box views focus on the inner workings of a component

When modeling your system, it’s best to use black-box views to focus on large-scale
architectural concerns. Black-box views are good at showing the key components in
your system and how they’re connected. White-box views, on the other hand, are use-
ful for showing how a component achieves its functionality through the classes it uses.

Black-box views usually contain more than one component, whereas in a white-box
view, it’s common to focus on the contents of one component.

What's Next?

Now that you know how to model the components in your system, you may want to
look at how your components are deployed to hardware in deployment diagrams.
Deployment diagrams are covered in Chapter 15.

There is heavy overlap between certain topics in component diagrams and compos-
ite structures. The ability to have ports and internal structure is defined for classes in
composite structures. Components inherit this capability and introduce some of
their own features, such as delegation and assembly connectors. Refer back to
Chapter 11 to refresh your memory about a class’s internal structure and ports.

What'sNext? | 197

CHAPTER 15

Modeling Your Deployed System:
Deployment Diagrams

If you’ve been applying the UML techniques shown in earlier chapters of this book,
then you’ve seen all but one view of your system. That missing piece is the physical
view. The physical view is concerned with the physical elements of your system, such
as executable software files and the hardware they run on.

UML deployment diagrams show the physical view of your system, bringing your
software into the real world by showing how software gets assigned to hardware and
how the pieces communicate (see Figure 15-1).

Logical View Process View

Use Case View

Physical View \ Development View

Figure 15-1. Deployment diagrams focus on the Physical View of your system

& w
3 The word system can mean different things to different people; in the
ﬁ.\ context of deployment diagrams, it means the software you create and
e
o the hardware and software that allow your software to run.

Deploying a Simple System

Let’s start by showing a deployment diagram of a very simple system. In this sim-
plest of cases, your software will be delivered as a single executable file that will
reside on one computer.

To show computer hardware, you use a node, as shown in Figure 15-2.

224

<<device>>
Desktop PC

Figure 15-2. Use nodes to represent hardware in your system

This system contains a single piece of hardware—a Desktop PC. It’s labeled with the
stereotype <<device>> to specify that this is a hardware node.

One More Time...Model Levels

It must be about time to bring up modeling at the right level again. In Figure 15-2, the
hardware node is specified as a Desktop PC. It’s entirely up to you how much detail
you want to give node names. You could be very precise with a name such as “64-bit
Processor Intel Workstation,” or very general with a name such as “Generic PC.”

If you have specific hardware requirements for your system, you're likely to give your
nodes very precise names. If your hardware requirements are undefined or insignifi-
cant, you might have vague node names. As with all other aspects of UML, it is impor-
tant to make sure that you are modeling at the right level for your system.

Now, you need to model the software that runs on the hardware. Figure 15-3 shows
a simple software artifact (see “Deployed Software: Artifacts,” next), which in this
case is just a JAR file named 3dpacman.jar, containing a 3D-Pacman application.

0O

<<artifact>>
3dpacman.jar

Figure 15-3. A physical software file such as a jar file is modeled with an artifact

Finally, you need to put these two pieces together to complete the deployment dia-
gram of your system. Draw the artifact inside the node to show that a software arti-
fact is deployed to a hardware node. Figure 15-4 shows that 3dpacman.jar runs on a
Desktop PC.

<<device>>
Desktop PC

O

<<artifact>>
3dpacman.jar

Figure 15-4. Drawing an artifact inside a node shows that the artifact is deployed to the node

Deploying a Simple System | 225

But is it really complete? Don’t you need to model the Java Virtual Machine (JVM)
because without it, your code wouldn’t execute? What about the operating system;
isn’t that important? The answer, unfortunately, is possibly.

Your deployment diagrams should contain details about your system that are impor-
tant to your audience. If it is important to show the hardware, firmware, operating
system, runtime environments, or even device drivers of your system, then you
should include these in your deployment diagram. As the rest of this chapter will
show, deployment diagram notation can be used to model all of these types of
things. If there’s a feature of your system that’s not important, then it’s not worth
adding it to your diagram since it could easily clutter up or distract from those fea-
tures of your design that are important.

Deployed Software: Artifacts

The previous section showed a sneak preview of some of the notation that can be
used to show the software and hardware in a deployed system. The 3dpacman.jar
software was deployed to a single hardware node. In UML, that JAR file is called an
artifact.

Artifacts are physical files that execute or are used by your software. Common arti-
facts you’ll encounter include:

* Executable files, such as .exe or .jar files

* Library files, such as .dlls (or support .jar files)

* Source files, such as .java or .cpp files

* Configuration files that are used by your software at runtime, commonly in for-

mats such as .xml, .properties, or .txt

An artifact is shown as a rectangle with the stereotype <<artifact>>, or the docu-
ment icon in the upper right hand corner, or both, as shown in Figure 15-5. For the
rest of the book, an artifact will be shown with both the stereotype <<artifact>> and
the document icon.

]

<<artifact>>
3dpacman.jar

<<artifact>>

3dpacman jar 3dpacman.jar

Figure 15-5. Equivalent representations of a 3dpacman.jar artifact

Deploying an Artifact to a Node

An artifact is deployed to a node, which means that the artifact resides on (or is
installed on) the node. Figure 15-6 shows the 3dpacman.jar artifact from the previous
example deployed to a Desktop PC hardware node by drawing the artifact symbol
inside the node.

226 | Chapter15: Modeling Your Deployed System: Deployment Diagrams

<<device>>
Desktop PC

i

<<artifact>>
3dpacman jar

Figure 15-6. The 3dpacman.jar artifact deployed to a Desktop PC node

You can model that an artifact is deployed to a node in two other ways. You can also
draw a dependency arrow from the artifact to the target node with the stereotype
<<deploy>>, as shown in Figure 15-7.

<<device>>
<<artifact>> D] <<deploy>> > Desktop PC

3dpacmanjar [TTTTTTTTTTC

Figure 15-7. An alternate way to model the relationship deployment

When you’re pressed for space, you might want to represent the deployment by sim-
ply listing the artifact’s name inside the target node, as shown in Figure 15-8.

<<device>>
Desktop PC

3dpacman.jar

Figure 15-8. A compact way to show deployment is to write the name of the artifact inside the node

All of these methods show the same deployment relationship, so here are some
guidelines for picking a notation.

Listing the artifacts (without the artifact symbol) can really save space if you have a
lot of artifacts, as in Figure 15-9. Imagine how big the diagram would get if you drew
the artifact symbol for each artifact.

But be careful; by listing your artifacts, you cannot show dependencies between arti-
facts. If you want to show that an artifact uses another artifact, you have to draw the
artifact symbols and a dependency arrow connecting the artifacts, as shown in
Figure 15-10.

Tying Software to Artifacts

When designing software, you break it up into cohesive groups of functionality,
such as components or packages, which eventually get compiled into one or more
files—or artifacts. In UML-speak, if an artifact is the physical actualization of a

Deployed Software: Artifacts | 227

<<device>>
Server

activation.jar
axis.jar
commons-discovery.jar
commons-logging.jar
jaxrpc.jar
saaj.jar
log4j.jar
wsdl4j.jar
mail jar
xml-apis.jar
xercesimpl.jar

Figure 15-9. Listing artifact names inside a node saves a lot of space compared to drawing an
artifact symbol for each artifact

<<device>>
Server

O

<<artifact>> O

<<artifact>>
myapplicationjar [*~"77""7 >

log4j.jar

Figure 15-10. A deployment notation that uses artifact symbols (instead of listing artifact names)
allows you to show artifact dependencies

component, then the artifact manifests that component. An artifact can manifest not
just components but any packageable element, such as packages and classes.

The manifest relationship is shown with a dependency arrow from the artifact to the
component with the stereotype <<manifest>>, as shown in Figure 15-11.

<<artifact>> D) | ___<<manifest>> __ > <<component>> E
mycomponent.jar MyComponent

Figure 15-11. The artifact mycomponent.jar manifests the component MyComponent

Since artifacts can then be assigned to nodes, the manifest relationship provides the
missing link in modeling how your software components are mapped to hardware.
However, linking a component to an artifact to a node can result in a cluttered dia-
gram, so it’s common to show the manifest relationships separate from the deploy-
ment relationships, even if they’re on the same deployment diagram.

You can also show the manifest relationship in component diagrams

s by listing the artifacts manifesting a component within the compo-
R . .

ol nent symbol, as discussed in Chapter 12.

228 | Chapter15: Modeling Your Deployed System: Deployment Diagrams

If you’re familiar with earlier versions of UML, you may be tempted to model a com-
ponent running on hardware by drawing the component symbol inside the node. As
of UML 2.0, artifacts have nudged components toward a more conceptual interpreta-
tion, and now artifacts represent physical files.

However, many UML tools aren’t fully up to date with the UML 2.0 standard, so
your tool may still use the earlier notation.

What Is a Node?

You've already seen that you can use nodes to show hardware in your deployment
diagram, but nodes don’t have to be hardware. Certain types of software—software
that provides an environment within which other software components can be exe-
cuted—are nodes as well.

A node is a hardware or software resource that can host software or related files. You
can think of a software node as an application context; generally not part of the soft-
ware you developed, but a third-party environment that provides services to your
software.

The following items are reasonably common examples of hardware nodes:

e Server
* Desktop PC
¢ Disk drives

The following items are examples of execution environment nodes:

* Operating system

J2EE container
e Web server

* Application server

Software items such as library files, property files, and executable files
that cannot host software are not nodes—they are artifacts (see
“Deployed Software: Artifacts,” earlier in the chapter).

Hardware and Execution Environment Nodes

A node is drawn as a cube with its type written inside, as shown in Figure 15-12. The
stereotype <<device>> emphasizes that it’s a hardware node.

Figure 15-13 shows an Application Server node. Those familiar with enterprise soft-
ware development will recognize this as a type of execution environment since it’s a
software environment that provides services to your application. The stereotype
<<executionEnvironment>> emphasizes that this node is an execution environment.

Hardware and Execution Environment Nodes | 229

<<device>>
Sun Blade Server

Figure 15-12. A Sun Blade Server hardware node marked with the stereotype <<device>>

<<executionEnvironment>>
Application Server

Figure 15-13. An Application Server node marked with the stereotype <<executionEnvironment>>

Execution environments do not exist on their own—they run on hardware. For
example, an operating system needs computer hardware to run on. You show that an
execution environment resides on a particular device by placing the nodes inside one
another, nesting them as shown in Figure 15-14.

<<device>>
Sun Server

<<executionEnvironment>>
Application Server

Figure 15-14. An Application Server node is shown nested in a Sun Server node, meaning that the
Application Server runs on Sun Server hardware.

It’s not strictly necessary in UML 2.0 to distinguish device nodes from execution envi-
ronment nodes, but it’s a good habit to get into because it can clarify your model.

A n
i)
A

Want more variety? If youre using a profile (discussed in
Appendix B), you can apply node stereotypes that are more relevant to
thé: your domain, such as <<J2EE Container>>. These new node types can
be specified in your profile as a special kind of execution environment.

Showing Node Instances

There are times when your diagram includes two nodes of the same type, but you
want to draw attention to the fact that they are actually different instances. You can
show an instance of a node by using the name : type notation as shown in
Figure 15-15.

<<device>>
svr1 : Sun Blade Server

Figure 15-15. Showing the name and type of a node; an instance of a Sun Blade Server named svr1

230 | Chapter15: Modeling Your Deployed System: Deployment Diagrams

Figure 15-16 shows how two nodes of the same type can be modeled. The nodes in
this example, svri1 and svr2, are assigned different types of traffic from a load bal-
ancer (a common situation in enterprise systems).

read traffic ~| write traffic
~ / \\ -,
~ rd

7 N
<<device>> <<device>>
svr1: Sun Blade Server svr2 : Sun Blade Server

Figure 15-16. One node gets read traffic and the other gets write traffic

Communication Between Nodes

To get its job done, a node may need to communicate with other nodes. For exam-
ple, a client application running on a desktop PC may retrieve data from a server
using TCP/IP.

Communication paths are used to show that nodes communicate with each other at
runtime. A communication path is drawn as a solid line connecting two nodes. The
type of communication is shown by adding a stereotype to the path. Figure 15-17
shows two nodes—a desktop PC and a server—that communicate using TCP/IP.

<<device>> <<TCP/IP>> <<device>>
Desktop PC Server

Figure 15-17. A Desktop PC and Server communicate via TCP/IP

You can also show communication paths between execution environment nodes. For
example, you could model a web server communicating with an EJB container
through RMI, as shown in Figure 15-18. This is more precise than showing an RMI
communication path at the device node level because the execution environment
nodes “speak” RMI. However, some modelers draw the communication paths at the
outermost node level because it can make the diagram less cluttered.

Assigning a stereotype to a communication path can sometimes be tricky. RMI is lay-
ered using a TCP/IP transport layer. So, should you assign an <<RMI>> or a <<TCP/IP>>
stereotype? As a rule of thumb, your communication stereotype should be as high-
level as possible because it communicates more about your system. In this case,
<<RMI>> is the right choice; it is higher level, and it tells the reader that you’re using

Communication Between Nodes | 231

<<device>> <<device>>

Server Server
< <executionEnvironment>> <<RMI>> < <executionEnvironment>>
Web Server EJB Container

Figure 15-18. You can also show communication paths between execution environment nodes

a Java implementation. However, as with all UML modeling, you should tailor the
diagram to your audience.

A n
i)
A

Communication paths show that the nodes are capable of communi-

cating with each other and are not intended to show individual mes-
8 . .

118, sages, such as messages in a sequence diagram.

As of UML 2.0, stereotypes are supposed to be specified in a profile, so in theory,
you should use only the stereotypes that your profile provides. However, even if
you’re not using a profile, your UML tool may allow you to make up any stereotype.
Since stereotypes are a good way to show the types of communication in a system,
feel free to make your own if necessary and if your tool allows. But if you do, try to
keep them consistent. For example, don’t create two stereotypes <<RMI>> and
<<Remote Method Invocation>>, which are the same type of communication.

Deployment Specifications

Installing software is rarely as easy as dropping a file on a machine; often you have to
specify configuration parameters before your software can execute. A deployment
specification is a special artifact specifying how another artifact is deployed to a
node. It provides information that allows another artifact to run successtully in its
environment.

Deployment specifications are drawn as a rectangle with the stereotype <<deployment
spec>>. There are two ways to tie a deployment specification to the deployment it
describes:

* Draw a dependency arrow from the deployment specification to the artifact,
nesting both of these in the target node.

* Attach the deployment specification to the deployment arrow, as shown in
Figure 15-19.

The deploy.wsdd file, shown in Figure 15-19, is the standard deployment descriptor
file that specifies how a web service is deployed to the Axis web service engine. This
file states which class executes the web service and which methods on the class can
be called. You can list these properties in the deployment specification using the name

232 | Chapter15: Modeling Your Deployed System: Deployment Diagrams

<<executionEnvironment>>
Axis

L] <<deployment spec>>
! deploy.wsdd
<<executionEnvironment>> :
Axis <<deploy>>"
<<deploymentspec>> | > <<artfact>> O <<artfact>> D)
deploy.wsdd inventoryService jar inventoryService jar

Figure 15-19. Equivalent ways of tying a deployment specification to the deployment it describes

: type notation. Figure 15-20 shows the deploy.wsdd deployment specification with
the properties className and allowedMethods.

<<deployment spec>> <<deployment spec>>
deploy.wsdd deploy.wsdd
className : String className : inventory.InventoryService
allowedMethods : String([] allowedMethods : *

Figure 15-20. Showing the properties of a deployment specification: the notation on the right shows
an instance populated with values

The symbol on the right shows an instance of a deployment specification populated
with values. Use this notation if you want to show the actual property values instead
of just the types.

A
i Y

This chapter has only briefly mentioned instances of elements in
deployment diagrams, but you can model instances of nodes, arti-
tho facts, and deployment specifications. In deployment diagrams, many
" modelers don’t bother to specify that an element is an instance if the
intent is clear. However, if you want to specify property values of a
deployment specification (as on the right side of Figure 15-20), then
this is a rare situation where a UML tool may force you to use the
instance notation.

Currently, many UML tools don’t support the deployment specifica-
tion symbol. If yours is one of them, you can attach a note containing
similar information.

You don’t need to list every property in a deployment specification—only properties
you consider important to the deployment. For example, deploy.wsdd may contain
other properties such as allowed roles, but if you’re not using that property or it’s
insignificant (i.e., it’s the same for all your web services), then leave it out.

Deployment Specifications | 233

When to Use a Deployment Diagram

Deployment diagrams are useful at all stages of the design process. When you begin
designing a system, you probably know only basic information about the physical
layout. For example, if you’re building a web application, you may not have decided
which hardware to use and probably don’t know what your software artifacts are
called. But you want to communicate important characteristics of your system, such
as the following;:

* Your architecture includes a web server, application server, and database.

* Clients can access your application through a browser or through a richer GUI
interface.

* The web server is protected with a firewall.
Even at this early stage you can use deployment diagrams to model these characteris-

tics. Figure 15-21 shows a rough sketch of your system. The node names don’t have
to be precise, and you don’t have to specify the communication protocols.

Thin Client Rich Client
Firewall
Web Server Application Server Database

Figure 15-21. A rough sketch of your web application

Deployment diagrams are also useful in later stages of software development.
Figure 15-22 shows a detailed deployment diagram specifying a J2EE implementation
of the system.

Figure 15-22 is more specific about the hardware types, the communication proto-
cols, and the allocation of software artifacts to nodes. A detailed deployment dia-
gram, such as Figure 15-22, could be used be used as a blueprint for how to install
your system.

You can revisit your deployment diagrams throughout the design of your system to
refine the rough initial sketches, adding detail as you decide which technologies,
communication protocols, and software artifacts will be used. These refined deploy-
ment diagrams allow you to express the current view of the physical system layout
with the system’s stakeholders.

234 | Chapter15: Modeling Your Deployed System: Deployment Diagrams

Thin Client

Rich Client
Firewall
<<device>> <<device>>
Sun Server Sun Server
<<executionEnvironment>> <<RMI>> <<executionEnvironment>>
Web Server EJB Container
PetAdoptionStore.war PetAdoptionStore.war
<<JDBC>>

Database

Figure 15-22. You can provide any amount of detail about the physical design of your system

What's Next?

You've finished learning the fundamental UML concepts, but read on to the appen-
dixes for an overview of some advanced modeling techniques. The appendices intro-
duce you to the Object Constraint Language (OCL), which is a rigorous way to show
constraints in your diagrams, and Profiles, which allow you to define and use a cus-
tom UML vocabulary. It’s helpful to review these appendices to get a feel for extra
precision you can add to your model and extra capabilities that result from that pre-
cision. The Object Constraint Language is covered in Appendix A; UML profiles are
described in Appendix B.

What'sNext? | 235

