
Citation: Alvarez Gebelin, A.; Borretti,

M.; Cohn, C.; Minutti, G. Land Cover

and Land Use in Uruguay Using Land

Cover Classification System

Methodology. Land 2024, 13, 2168.

https://doi.org/10.3390/

land13122168

Academic Editor: Shicheng Li

Received: 18 October 2024

Revised: 29 November 2024

Accepted: 5 December 2024

Published: 13 December 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Land Cover and Land Use in Uruguay Using Land Cover
Classification System Methodology
Ana Alvarez Gebelin * , Martín Borretti *, Carlos Cohn and Guillermo Minutti

Ministerio de Vivienda y Ordenamiento Territorial, Montevideo 11000, Uruguay
* Correspondence: anaalvarez@mvot.gub.uy (A.A.G.); mborretti@mvot.gub.uy (M.B.)

Abstract: Mapping land cover in Uruguay is essential to meet the growing demand for accurate data
to support sustainable development policies and manage natural resources, while also addressing the
United Nations Sustainable Development Goals (SDGs) and other international conventions. In recent
decades, collaboration between the FAO and the Government of Uruguay has led to the development
of key products that strengthen the country’s planning processes, including a detailed, standardized
national land cover database. By using the FAO’s Land Cover Classification System (LCCS), Uruguay
has achieved a multitemporal national land cover database, through a legend specifically adapted
to its national context and with classification accuracy improving from 85% in earlier products to
95% in the most recent ones. The use of LCCS has ensured semantic interoperability and provided
reliable, up-to-date information on land cover distribution and change analysis. This progress has
been supported by the enhancement of national capacities for change analysis, using international
standards, remote sensing, and GIS technologies, integrated with national data. This article reviews
the historical evolution and methodological advancements in the implementation of the LCCS in
Uruguay, emphasizing the improvements in methodology and technology, and their impact on the
sustainable management of the country’s territory.

Keywords: land cover classification system; Uruguay land cover; National Directorate of Territorial
Planning of Uruguay; Sustainable Development Goals

1. Introduction

In Uruguay, land cover data, alongside the assessment and monitoring of its changes,
have become vital tools for understanding and analyzing both natural and human-induced
processes such as climate change and biodiversity loss. These data are crucial for support-
ing land use planning, disaster management, sustainable agriculture, and carbon stock
accounting [1–3].

The country faces increasing pressures from various land uses, especially due to the
expansion and intensification of agricultural and livestock production, as well as urban
sprawl [4]. Additional conflicts arise from activities such as mining, energy generation,
tourism, and industrial development, which compete with efforts to preserve landscapes
and biodiversity [5,6].

The coexistence of diverse land uses requires careful planning and conflict resolution
at multiple scales. To preserve natural resources and combat land degradation Uruguay
implements policies promoting sustainable land management. Crop rotation, conservation
tillage, and promoting forested areas near rivers are some of the key strategies to reduce
erosion and restore soil health. There are now stricter regulations on agricultural practices,
including incentives for sustainable practices that preserve soil quality. These regulations
also promote reforestation and conservation of native species in key areas to improve
biodiversity and reduce erosion. Additionally, to manage urban sprawl, Uruguay is pushing
for compact city planning with mixed-use developments, improved transportation, and
green corridors, so as to reduce the need to extend infrastructure, improve environmental
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impact, and minimize socio-economic disparities. These dual strategies help mitigate
the impact of land degradation and urban sprawl, promoting a more sustainable and
resilient Uruguay. Effective land use planning is therefore essential for enhancing decision-
making processes. Uruguay’s national land cover database has become an important tool in
Integrated Land Use Planning (ILUP), providing the critical information needed to balance
competing land use interests.

Moreover, the LCCS database plays a key role in reporting on several international
frameworks and policies that aim to protect ecosystems, enhance biodiversity, and pro-
mote sustainable land use like Sustainable Development Goal (SDG) indicators and the
United Nations Convention to Combat Desertification (UNCCD). SDG 15 focuses on the
sustainable management of terrestrial ecosystems and emphasizes the need for sustain-
able management of forests, combatting desertification, and halting biodiversity loss, and
SDG 11 (11.3.1 and 11.7.1) addresses sustainable cities and communities [7–9]. Uruguay’s
LCCS directly supports these goals by providing data to monitor and manage land use
sustainably, especially in agriculture and forestry sectors and urban sprawl, to combat
desertification and mitigate climate change impacts.

In 2005, Uruguay embarked on an initiative, supported by the FAO, to assess the coun-
try’s land cover comprehensively. This initiative led to the development of a preliminary
version of the land cover legend for Uruguay based on the FAO’s Land Cover Classification
System (LCCS) [10]. The first national land cover database was developed in 2008, driven
by various state organizations, including the Ministry of Housing, Territorial Planning,
and Environment (MVOTMA), and the Ministry of Livestock, Agriculture, and Fisheries
(MGAP), under the United Nations pilot initiative ‘United in Action’ [11]. Supported by
the National Directorate of Territorial Planning (DINOT), it was updated in subsequent
years, culminating in a multitemporal database that reflects the evolution of land cover in
Uruguay from 2000 onward [11,12].

This paper explores the application of the Land Cover Classification System (LCCS) in
Uruguay, emphasizing its impact on enhancing the quality and accuracy of land cover data.
It also examines how these improved data support more sustainable land use planning and
informed decision-making.

2. Materials and Methods
2.1. FAO Standardized Classification System: LCCS

The creation of Uruguay’s national land cover database followed the methodology
developed by the Food and Agriculture Organization (FAO), specifically the Land Cover
Classification System (LCCS), which was designed by the Global Land Cover Network
(GLCN) of the FAO in collaboration with the United Nations Environment Programme
(UNEP). The LCCS was specifically designed to provide a flexible, hierarchical structure
that can adapt to varying geographic and ecological contexts, facilitating consistent land
cover assessments across regions and scales [1,13].

The LCCS is a comprehensive and standardized classification system designed to meet
the specific requirements of any user and created to map land cover, regardless of the scale
or data sources used for mapping [10]. In this system, land cover is represented by basic
objects rather than categories, called ‘classifiers’, which represent simple physiognomic
features (e.g., trees, shrubs, buildings). Its parametric nature requires each class to be
defined with clear and quantifiable parameters, making the classification process explicit
and objective.

This methodology offers significant advantages over existing methods by providing
well-defined landscape elements based on explicit and quantifiable classification criteria
that minimize ambiguities and prevent overlaps between categories. Studies have demon-
strated the flexibility and consistency of the LCCS in diverse geographic and ecological
contexts, as well as its ability to harmonize land cover data from multiple sources [13,14].
Moreover, the adaptability of the LCCS allows it to be tailored to the specific conditions of
our country while maintaining applicability to global land cover classification initiatives.
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In Uruguay, the application of the LCCS has been instrumental in creating a reliable
and accurate national land cover database. This database supports sustainable land use
planning by providing critical insights into land cover changes, such as shifts in agricultural
land use and forest cover, which are essential for assessing ecosystem health and informing
decision-makers.

2.2. Methodological Stages

The national application of the LCCS methodology in Uruguay can be divided into
two stages based on the processes, analyses, and materials used for classification (Figure 1).
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Figure 1. Timeline for LCCS application in Uruguay and its derived products.

First Stage (2000–2015): During this phase, land cover products were generated for the
years 2000, 2008, 2011, and 2015. This was achieved through a combination of automatic
and semi-automatic classification techniques along with visual interpretation using Landsat
imagery [6,11,12,15].

Second Stage (2019–2022): In the second phase, updated land cover products were
created for 2019/2020 and 2021/2022, using more advanced methodologies. This included
the use of Sentinel 1 and Sentinel 2 satellite data, as well as cloud computing platforms like
Google Earth Engine (GEE) and FAO’s SEPAL [14–19]. Machine learning techniques were
also incorporated to improve the accuracy and speed of the classification process [20].

In both phases, Object-Based Image Analysis (OBIA) was used to classify high-
resolution satellite imagery. OBIA is particularly effective in enhancing classification
accuracy for high-resolution satellite images by grouping pixels into ‘objects’ based on their
spectral, textural, and spatial properties [21]. These objects, which represent contextually
meaningful units, were classified using either visual interpretation or machine learning
algorithms, such as Random Forest [22,23]. This approach leverages spatial context to
reduce the ‘salt-and-pepper’ noise typical in pixel-based classifications, thereby improving
accuracy and providing a more coherent interpretation of satellite imagery [20–23].

Additionally, a range of software tools—including ArcGIS (versions 10.x and Pro),
QGIS (versions 3.x), eCognition (versions 7.x, 8.7, and 10.1), and RStudio (version 1.3.1093
and a subsequent versions)—were used to support the analysis and classification processes.
The integration of these advanced tools and methodologies has enabled Uruguay to develop
a detailed, harmonized national land cover database using the LCCS framework.

2.2.1. First Stage (2000–2015)

The first stage, spanning from 2000 to 2015, focuses on the development of initial LCCS
legends and the creation of land cover maps for 2000, 2008, 2011, and 2015 (Figures 1 and 2).
The primary input for classification during this period was Landsat satellite imagery [11,15].
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LCCS Uruguay 2008

The 2008 land cover map was the first product of the LCCS in Uruguay [6]. This
map was developed through a multi-phase image interpretation approach, using the
FAO’s MAD-CAT (Mapping Device–Change Analysis Tool) software (version 3.0.10). The
software facilitated classification using a variety of techniques (visual, semi-automatic,
and automatic), along with change detection and validation through land cover change
statistics [24].

To generate the map, 14 Landsat 5 TM images from 2007 and 2008 were used, covering
Uruguay’s entire territory. The images were provided by Brazil’s National Institute for
Space Research (INPE) and were selected based on seasonality and cloud cover (less than
20%). The images were segmented using eCognition 7 software, resulting in a shapefile
vector layer consisting of 637,000 polygons nationwide, with each image scene containing
around 60,000 polygons [11].

These polygons were classified according to the first LCCS legend, producing the
first land cover vector layer. This classification was achieved through a combination of
automatic, semi-automatic, and visual interpretation, supported by high-resolution Google
Earth images and input from relevant institutions. Preliminary interpretations were field-
verified, and the classification’s accuracy was assessed.

LCCS Uruguay 2011

For the 2011 land cover map, the 2008 LCCS layer was used as a base, but the images
from 2011 were newly interpreted [11]. The original legend was adapted, reducing the
number of classes from 48 to 17, following FAO’s hierarchical modular dichotomous
approach [1].

A mosaic of 14 Landsat TM images from 2011, downloaded from the United States
Geological Survey (USGS) EarthExplorer portal, was used, with each image selected based
on cloud cover (less than 20%) [25]. The classification was based on the 2008 segmentation,
with the polygons being reclassified and showing changes by using a combination of visual
interpretation and supervised classification of the 2011 images.
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LCCS Uruguay 2000

The 2000 land cover layer was generated retrospectively to analyze land cover changes
over the decade, a period of significant economic and policy-driven transformations
(Figure 2a). Landsat TM images from 2000 were used alongside the 2011 segmentation
as a base. Special attention was given to six dynamic land cover classes: large rainfed
crops, large irrigated crops, forest plantations, artificial water, consolidated urban areas,
and dispersed urban areas [12].

Polygons in these categories showing changes were reclassified, while those without
changes were incorporated from the 2011 layer. Change detection was conducted using
MAD-CAT software (version 3.3.32), along with other GIS tools.

LCCS Uruguay 2015

The 2015 land cover layer was developed using the same methodology as previous it-
erations but benefited from advances in satellite imagery and classification tools (Figure 2b).
Landsat images from 2015 were used to generate new segmentation by re-segmenting
the 2000/2008/2011 layers, using Landsat images from 2015, incorporating three images
per scene from Landsat 5, 7, and 8 sensors, ensuring minimal cloud cover and improved
accuracy [15].

Automatic and semi-automatic classification methods were combined with visual
interpretation to refine the land cover map (Figure 2). The greater availability of satellite
imagery in 2015 allowed for more precise classification, helping to correct errors in earlier
versions [12].

Change Assessment 2000–2011–2015

The LCCS, with its parametric classification approach, facilitated a systematic and
quantifiable assessment of land cover changes (Figures 2 and 3). Change detection involved
a multitemporal analysis of data from 2000, 2011, and 2015, supported by MAD-CAT
tools and GIS processes. The combination of automatic segmentation and change labeling
ensured a fast, objective analysis. The results revealed significant dynamism in forested
areas and rainfed crops, with natural herbaceous areas experiencing the greatest change as
they were replaced by agricultural and forestry expansion.
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Figure 3. Land cover change map of Uruguay (2000–2011) using LCCS methodology. The map
highlights the two main land cover transitions observed in recent decades: (1) the conversion of other
land types to cropland (orange) and (2) the expansion of forest plantations (green). These changes
reflect the significant agricultural and forestry developments in Uruguay during this period.
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2.2.2. Second Stage (2019–2022)

A second stage in the national application of the LCCS methodology commenced with
the mapping of land cover for the 2019/2020 period and has since continued, extending
to the 2021/2022 period [11]. This stage marks a significant shift in both methods and
materials compared to the initial stage (2000–2015).

Description of the New Classification Process

A new mapping procedure was introduced, enhancing the precision and detail of maps
produced for the 2019/2020 and 2021/2022 periods (Figure 4). While the LCCS remains
central, advancements in remote sensing technologies, combined with the integration
of new classification techniques, have enabled greater precision and detail in the maps
generated for the 2019/2020 and 2021/2022 periods (Figure 5).
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Figure 5. (a) Land cover map of Uruguay for 2021/2022, classified using the 14 land cover classes from
the second-stage 7/14/30 legend. At this scale, the main land cover classes that dominate Uruguay’s
landscape can be observed, including grasslands (pale green), croplands (orange), forest plantations
(dark green), native forests (light green), and water bodies (blue). The red square highlights a complex,
diverse region in eastern Uruguay with multiple land uses. (b) A zoomed-in view of a this area,
classified into 30 land cover categories from the second-stage 7/14/30 legend, demonstrating a higher
level of detail. For example, different shades of orange are used to distinguish variations in crop
types, such as winter, summer, and double-cropping systems.
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A. Construction of the LCCS Legend

The new stage of land cover mapping began with the creation of an updated legend
(Figure 4), derived from previous ones but adapted to meet the new requirements and
capabilities offered by modern remote sensing tools. A detailed description of the new
legend is provided in Section 2.3.2.

B. Creation of Sentinel-2 Image Mosaic

For each study period, a cloud-free Sentinel-2 image mosaic was produced using the
SEPAL platform (System for Earth Observation Data Access, Processing, and Analysis for
Land Monitoring). This platform utilizes Google Earth Engine (GEE) to merge images pixel
by pixel, enhancing data quality and ensuring temporal consistency [16–18].

C. Segmentation and Generation of Objects/Polygons

The image mosaic was segmented using eCognition software, applying a multi-
resolution algorithm that groups pixels into spectrally and spatially homogeneous objects.
The resulting segmentation was exported in vector format, with the objects represented
as polygons.

D. Data Download and Analysis in Google Earth Engine (GEE)

The data obtained from GEE included spectral and temporal information from Sentinel-
1 (VV and VH polarizations), Sentinel-2 (bands 2, 3, 4, 8, and 11; quarterly NDVI), and
SRTM (Shuttle Radar Topography Mission, providing height and slope data) [17–19,26,27].
These statistics were calculated for each polygon and downloaded for integration with the
vector tables.

E. Classification using Machine Learning

Training polygons were manually defined using the LCCS3 Basic Coder in QGIS and
reviewed in two stages to minimize classification errors. Final classification was carried
out in RStudio using the Random Forest algorithm, which efficiently handles large datasets
and produces a robust model for automatic classification (Figure 5) [20–23,28–30].

F. Accuracy Assessment

An accuracy assessment was performed by generating random sample points, which
were verified through visual interpretation of high-resolution images and Sentinel-2 prod-
ucts, ensuring the reliability and quality of the results.

2.3. Evolution of the LCCS Land Cover Legend in Uruguay

The legend is the core component of the database, as it contains all the information
used to define the land cover classes. Uruguay’s land cover legend was developed to
systematically categorize land cover classes at the national level, ensuring consistency and
standardization throughout the classification process.

By adopting the LCCS’s parametric approach, Uruguay created a land cover map leg-
end specifically adapted to its national context. Each class within the legend clearly defines
landscape elements using explicit, quantifiable parameters. This method avoids ambigui-
ties and overlaps between categories, ensuring consistency and semantic interoperability
across different scales or levels of detail. The legend is adaptable to Uruguay’s specific
needs while also complying with the ISO 19144-2 LCML (Land Cover Meta Language)
standard model, which enhances its ability to integrate with both local and global datasets,
promoting harmonization and interoperability [10–12].

The LCCS legend in Uruguay has evolved in response to the country’s growing
mapping needs and technological capabilities (Figure 1). This evolution also aligns with
global efforts to standardize land cover datasets, as emphasized in international initiatives
like the land cover legend registry (LCLR), which promotes interoperability and supports
the achievement of the UN’s Sustainable Development Goals (SDGs) [7,31,32].
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Two distinct stages mark this evolution, corresponding to the development of different
LCCS products. This process culminated in the Land Cover Reference System (LCRS), the
final standardized product of Uruguay’s national legend.

2.3.1. Initial LCCS Legend: 7/17/46 Classes

During the first phase of the project, an initial land cover legend for Uruguay (Table 1)
was developed using the LCCS methodology and LCCS2 software. In 2005, efforts began
to develop this preliminary legend, adapted to Uruguay’s specific context. This process
involved consulting experts from various disciplines, including technicians from key
government institutions [11].

Building on national data, the interdisciplinary expertise of the project team, and
the preliminary legend developed in 2005, a 46-class legend was first created in 2008.
The project team included experts from the Ministry of Housing and Territorial Planning
(MVOT), Ministry of Environment (MA), and Ministry of Livestock, Agriculture, and
Fisheries (MGAP). FAO’s LCCS2 software was used to build the classification, which
followed two phases: first, a dichotomous phase that identified eight main land cover types;
then, a hierarchical modular phase, where classifiers and their hierarchical arrangement
were adapted to each major land cover type [1].

Table 1. Initial land cover legend of Uruguay (2000–2015).

Groups 17 Classes 46 Classes

A11 Cultivated and Managed Terrestrial Areas

Irrigated Crops > 4—5 ha

Irrigated Crops > 4–5 ha

Sugar Cane

Rice Plantation > 4–5 ha

Sugar Cane or Rice > 4–5 ha

Rainfed Crops > 4—5 ha Rainfed Crops > 4–5 ha

Small Crops < 4—5 ha
Rainfed Crops < 4–5 ha

Irrigated Crops < 4–5 ha

Forest Plantation > 5 ha

Forestry Plantation > 5 ha

Planted Coastal Forest

Eucalyptus Plantation > 5 ha

Pine Forestry Plantation > 5 ha

Shelter and Shade Woods < 5 ha

Urban Park

Fruit Trees Plantation
Citrus Plantation

Fruit Tree Plantation

A12 Natural and Semi—natural Vegetation

Natural Herbaceous

Natural Grassland

Psammophilic Herbaceous

Natural Grassland with Scattered Palm Groves
(1–15%)

Herbaceous with Rocky Outcrop

Shrubs Shrub and Natural Grassland

Native Forest

Native Hill and Ravine Forest

Gallery Native Forest

Native Forest

Natural Park Forest

Palm Groves Palm Groves

A24 Natural and Semi-natural Aquatic or
Regularly Flooded Vegetation Flooded Natural Areas

Permanently Flooded Herbaceous (Marsh)

Seasonally Flooded Herbaceous
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Table 1. Cont.

Groups 17 Classes 46 Classes

B15 Artificial Surfaces and Associated Areas

Urban Equipment

Airports

Airfields

Sports Facilities

Industrial Areas

Port Areas

Urban Area Urban Area

Dispersed Urban Areas

Dispersed Urban and Crops

Dispersed Urban and Natural Grassland

Dispersed Urban and Forestry Plantation

Quarries, Sand Pits, Open-Pit Mines Quarries, Sandpits, Open-Pit Mines

B16 Uncovered or Bare Areas Bare Areas

Beach Sand

Dunes

Consolidated Rock

Bare Soil

B27 Artificial Bodies of Water, Snow, and Ice Artificial Water Bodies
Canals

Lakes, Reservoirs, and Dams

B28 Natural Bodies of Water, Snow, and Ice Natural Water Bodies

Lagoons

Watercourses

Wet Soil and Seasonally Flooded

As new data and products became available, the legend was adjusted to address
emerging needs and limitations in the classification process. Over time, the original 46-class
legend was derived into a simplified 17-class legend, suitable for analyzing land cover
changes over the years 2000 to 2015 [11].

2.3.2. Current LCCS Legend: 7/14/30 Classes

Advancements in geospatial technologies, along with improvements in temporal and
spatial resolution, have enabled the creation of a more detailed and accurate land legend.
In the 2019/2020 and 2021/2022 land cover datasets, the legend is organized into three
levels of detail: macroclasses (7), classes (14), and subclasses (30) (Table 2) [33].

The macroclasses represent the seven main land cover types, aligning with the prede-
fined categories established in the dichotomous phase of the LCCS. These macroclasses
serve as the broadest categories within the system.

Next, the seven macroclasses are further divided into fourteen classes, providing a
level of detail that facilitates direct comparisons with earlier land cover maps produced
using the LCCS. This intermediate level enhances specificity while maintaining consistency
with previous classifications.

Finally, these 14 classes are subdivided into 30 subclasses, offering even finer detail.
This hierarchical structure allows for a more precise evaluation of different land cover types,
improving the monitoring and analysis of land cover changes in Uruguay. The advances in
geospatial technology have significantly improved the spatial and temporal resolution of
land cover assessments, enhancing both the accuracy and reliability of the classification
and expanding the number of distinct classes.
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Table 2. Uruguayan Land Cover Legend (2019/2020–2021/2022).

Macroclass Class Subclass

Cultivated Land Areas

Crops

Rice Crops

Sugar Cane Crops

Winter Crops

Winter and Summer Crops (Double Cropping)

Summer Crops

Small Crops

Agricultural Grassland

Forestry Plantation

Shelter and Shade Plantation

Forest Plantation (Eucalyptus)

Mixed or Unknown Forest Plantation

Forest Plantation (Pine)

New or Harvested Forest Plantation

Fruit Trees Fruit Trees

Natural and Semi-Natural Vegetation

Grassland

Grassland

Grassland with Rocky Outcrop

Wet or Periodically Flooded Grassland

Native Forest
Native Forest

Scattered Native Forest

Palm Groves
Palm Groves

Grassland and Palm Groves

Shrubs Shrubs

Natural and Semi-Natural Aquatic or
Regularly Flooded Vegetation Flooded Natural Area Marshes/Wetlands

Artificial Surfaces and Similar Areas

Artificial Impervious Area Impervious Area

Dispersed Artificial Impervious Area Scattered Impervious Area

Quarry, Sand Pit, Open-pit Mine Quarry, Sandpit, Open-pit Mine

Bare or Exposed Areas Bare Area

Sand

Consolidated Rock

Bare Soil

Artificial Water Bodies, Snow, and Ice Artificial Water Artificial Water Body

Natural Water Bodies, Snow, and Ice Natural Water Natural Water Body

2.3.3. Land Cover Reference System (LCRS)

Lately, DINOT, in collaboration with FAO, has developed a new product, Uruguay‘s
Land Cover Reference System (LCRS), marking a significant evolution from the legends
used in previous land cover products. The LCRS is designed to provide a detailed and
accurate representation of the various land cover types across Uruguay and aims to serve
as a reference for harmonizing the various mappings carried out by multiple national
institutions [33,34].

The LCRS offers several advantages over traditional legends. It provides a higher
level of detail through its multi-tiered classification structure, it is flexible in terms of scale
for different analyses, and its hierarchical design allows for updates and the disaggrega-
tion of categories to better reflect real-world conditions. Moreover, it is compatible with
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Geographic Information Systems (GISs), making it easy to integrate into spatial analysis
platforms and applications [34].

Developed using LCCS 3 software and based on the previous legend, each class within
the system is enriched with additional parametric attributes such as coverage percentage,
height, and water persistence. This results in a dynamic, adaptable land cover database
that can evolve to meet future needs.

The system is initially divided into two main groups: vegetated and non-vegetated
areas. Each branch is then further subdivided based on specific attributes relevant to
Uruguay. For instance, vegetated areas include both natural vegetation (terrestrial and
aquatic) and cultivated or managed vegetation (such as trees and crops), each categorized at
multiple levels (Table 3). In the case of cultivated vegetation, herbaceous crops are detailed
up to level 7, addressing specific needs identified by MGAP.

Table 3. Uruguayan national Land Cover Reference System.

Land Cover Classification Levels

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7

Ve
ge

ta
te

d
A

re
a

N
at

ur
al

an
d

se
m

i-
na

tu
ra

lv
eg

et
at

io
n

Terrestrial

Dominated by trees

Dense natural forest

Native Serrano and
Stream Forest

Gallery Forest

Palm Groves

Dispersed Natural Forest

Native Serrano and
Stream Forest

Gallery Forest

Park Natural Forest

Palms

Dominated by shrubs

Shrubland

Shrubland with Grasses
Open Shrubland

Closed Shrubland

Dominated by
Herbaceous Plants

Grassland/Praries

Grassland with Rocky
Outcrops

Grassland with Palms

Psammophile Vegetation

Natural Vegetation
Temporarily/Seasonally

Waterlogged

Aquatic Dominated by
Herbaceous Plants

Permanent flooded natural
vegetation

C
ul

ti
va

te
d

Ve
ge

ta
ti

on

Forestry
crops

Forest plantation

Timber Plantation

Eucalyptus

Pine

Mixed or Unknown
Plantation

Mixed Plantation

Unknown Plantation

Protection Forest

Shade and Shelter
Forest

Coastal Plantation

Fruit plantations

Small-scale Crops

Citrus

Olive

Other Fruit Trees

Medium and Large-scale
Crops

Citrus

Olive

Other Fruit Trees
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Table 3. Cont.

Land Cover Classification Levels

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7

Herbaceous
Crops

Small-scale Crops

Medium and
Large-scale Crops

Summer Crop

Irrigated

Rice

Sugarcane

Soybean

Corn

Sorghum

Sunflower

Other Crops

Dryland

Soybean

Corn

Sorghum

Sunflower

Other Crops

Winter Crop

Irrigated

Wheat

Barley

Rapeseed

Other Crops

Dryland

Wheat

Barley

Rapeseed

Other Crops

Winter and Summer Crop

Irrigated

Double Cropping

Annual Green
Manure

Dryland
Double Cropping

Annual Green
Manure

Perennial Crop Pastures

N
on

-v
eg

et
at

ed
A

re
a

Te
rr

es
tr

ia
l

Natural
Surface

Bare Areas

Bare Soil

Consolidated Rock

Sand
Dunes

Beach Sand

Artificial
Surface

Non-linear Built Area

Dispersed Urban

Dispersed Urban and
Crops

Dispersed Urban and
Grassland

Dispersed Urban and
Plantations

Dense Urban

Infrastructure

Airport/Aerodrome

Sports Infrastructure

Industrial Areas

Ports

Linear Built Areas

Extraction Sites
Quarries

Mines
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Table 3. Cont.

Land Cover Classification Levels

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7

W
at

er

Water
Courses

Natural Water
Courses

Rivers, Streams, and/or
Gullies

Artificial Water
Courses Canals

Water
Bodies

Natural Water Bodies

Artificial Water
Bodies

The Land Cover Reference System establishes a national framework that aims to
ensure interoperability among existing classifications, facilitates comparisons with cur-
rent classifications by clearly defining classes using objective criteria, and is sufficiently
adaptable to evolve according to future needs.

3. Results: Implementation of LCCS in Uruguay
3.1. National Land Cover Database

As a result of applying the LCCS methodology, Uruguay has developed a detailed
and standardized national land cover database (Figure 6). This database provides reliable
information on land cover distribution, adapted to the country’s specific needs while
ensuring semantic interoperability with international standards. The national database
consists of multiple land cover maps, generated for the years 2000, 2008, 2011, 2015,
2019/2020, and 2021/2022. Each map includes a corresponding legend, structured into
hierarchical levels that categorize land cover types and spatial distribution across Uruguay.
Additionally, the Land Cover Reference System (LCRS) has been created to evolve and
harmonize these legends, providing a unified framework for integrating data from various
national mapping efforts (Figure 6) [1,12,33,34].
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Figure 6. Land cover products using LCCS in Uruguay.

3.1.1. Land Cover Distribution and Temporal Changes

Land cover mapping with LCCS in Uruguay showed that natural herbaceous ar-
eas dominate, covering over 50% of the country, followed by agricultural areas and
forest plantations.

Over the past two decades, the analysis shows significant changes in these classes,
with the most substantial transformations occurring between 2000 and 2015. During this
period, natural herbaceous areas declined by 13% as they were converted primarily into
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rainfed crops and forest plantations [4]. This shift reflects a response to favorable market
conditions and policy incentives that encouraged agricultural and forestry expansion [35].
The changes are most evident in the central-west, northeast, and southeast regions, where
rainfed crops have expanded eastward and forest plantations have increased in the eastern,
northwest, and central-west zones.

Although these trends continued beyond 2015, the pace of expansion slowed, re-
flecting shifts in commodity demand. These results align with agricultural census data,
underscoring economic drivers and policy influences on land use and highlighting the
need for balanced resource management [35,36].

3.1.2. Accuracy Improvement

The accuracy of land cover mapping in Uruguay has improved notably from the first
stage (2000–2015) to the second stage (2019/2020 and 2021/2022), with overall accuracy
increasing from approximately 85% to 95% [11,12,21]. However, this enhancement was not
consistent across all classes. In the second stage, the inclusion of more detailed subclasses
increased the complexity of classification, particularly at the subclass level. While broad
categories like grasslands achieved high accuracy, more specialized classes, particularly
those with smaller areas or more heterogeneous characteristics, faced challenges.

The accuracy also varied by the level of analysis. Macroclasses showed higher pre-
cision than subclasses, emphasizing the trade-off between more detailed classifications
and the difficulty of maintaining high accuracy, particularly in areas with mixed land
covers or complex environmental conditions. The increase in the number of subclasses led
to more classification errors, particularly when distinguishing between visually similar
land covers. For instance, differentiating between forest plantations (Eucalyptus, Pine, or
Mixed Plantations) and fruit trees or between grassland and palm groves proved difficult
due to their similar appearance in satellite imagery, especially in regions with heteroge-
neous vegetation. Similarly, the distinction between small crops and pastures or wetlands
and flooded grasslands also presented challenges due to environmental variability and
small-scale presence.

3.2. Official Publications

As an additional outcome of the LCCS implementation, two official publications
were produced: the Mapa de Cobertura del Suelo de Uruguay (Uruguay Land Cover
Map) (2008), which focused on the land cover classification for that year, and the Atlas de
Cobertura del Suelo 2011-Cobertura del Suelo y Cambios 2000/2011 (Land Cover Atlas
2011—Land Cover and Changes 2000/2011) (Figure 7), which documented land cover
data along with detected changes over the 2000–2011 period. These publications served
to communicate Uruguay’s advancements in land cover monitoring and the initial results
of LCCS classification, highlighting both the land cover distribution and change detection
across the country [11,12].

3.3. Online Land Cover Atlas of Uruguay

The Online Land Cover Atlas of Uruguay (Figure 8) is the result of the collaborative
effort, initiated in 2005, between the Uruguayan government and the Food and Agricul-
ture Organization of the United Nations (FAO). Hosted by the Ministry of Housing and
Territorial Planning (MVOT) on the ArcGIS platform, this dynamic and interactive tool
allows continuous consultation, comparison, and updates of land cover data. By main-
taining up-to-date land cover information and conducting multitemporal analysis, the
Atlas provides insights into the dynamics of the territory and enables the projection of
different scenarios across various scales (global, national, departmental, and local). It also
supports the download of geospatial data for specific analyses, offering reliable information
to inform public policies for sustainable development [33].



Land 2024, 13, 2168 15 of 25

Land 2024, 13, x FOR PEER REVIEW 14 of 24 
 

3.2. Official Publications 
As an additional outcome of the LCCS implementation, two official publications 

were produced: the Mapa de Cobertura del Suelo de Uruguay (Uruguay Land Cover Map) 
(2008), which focused on the land cover classification for that year, and the Atlas de Cober-
tura del Suelo 2011-Cobertura del Suelo y Cambios 2000/2011 (Land Cover Atlas 2011—
Land Cover and Changes 2000/2011) (Figure 7), which documented land cover data along 
with detected changes over the 2000–2011 period. These publications served to communi-
cate Uruguay’s advancements in land cover monitoring and the initial results of LCCS 
classification, highlighting both the land cover distribution and change detection across 
the country [11,12]. 

(a) (b) 

Figure 7. Covers of Uruguay’s official land cover publications: (a) Uruguay Land Cover Map (2008) 
(b) Land Cover Atlas 2011—Land Cover and Changes 2000/2011. 

3.3. Online Land Cover Atlas of Uruguay 
The Online Land Cover Atlas of Uruguay (Figure 8) is the result of the collaborative 

effort, initiated in 2005, between the Uruguayan government and the Food and Agricul-
ture Organization of the United Nations (FAO). Hosted by the Ministry of Housing and 
Territorial Planning (MVOT) on the ArcGIS platform, this dynamic and interactive tool 
allows continuous consultation, comparison, and updates of land cover data. By main-
taining up-to-date land cover information and conducting multitemporal analysis, the At-
las provides insights into the dynamics of the territory and enables the projection of dif-
ferent scenarios across various scales (global, national, departmental, and local). It also 
supports the download of geospatial data for specific analyses, offering reliable infor-
mation to inform public policies for sustainable development [33]. 

 
Figure 8. Online Land Cover Atlas of Uruguay.  

Figure 7. Covers of Uruguay’s official land cover publications: (a) Uruguay Land Cover Map (2008)
(b) Land Cover Atlas 2011—Land Cover and Changes 2000/2011.

Land 2024, 13, x FOR PEER REVIEW 14 of 24 
 

3.2. Official Publications 
As an additional outcome of the LCCS implementation, two official publications 

were produced: the Mapa de Cobertura del Suelo de Uruguay (Uruguay Land Cover Map) 
(2008), which focused on the land cover classification for that year, and the Atlas de Cober-
tura del Suelo 2011-Cobertura del Suelo y Cambios 2000/2011 (Land Cover Atlas 2011—
Land Cover and Changes 2000/2011) (Figure 7), which documented land cover data along 
with detected changes over the 2000–2011 period. These publications served to communi-
cate Uruguay’s advancements in land cover monitoring and the initial results of LCCS 
classification, highlighting both the land cover distribution and change detection across 
the country [11,12]. 

(a) (b) 

Figure 7. Covers of Uruguay’s official land cover publications: (a) Uruguay Land Cover Map (2008) 
(b) Land Cover Atlas 2011—Land Cover and Changes 2000/2011. 

3.3. Online Land Cover Atlas of Uruguay 
The Online Land Cover Atlas of Uruguay (Figure 8) is the result of the collaborative 

effort, initiated in 2005, between the Uruguayan government and the Food and Agricul-
ture Organization of the United Nations (FAO). Hosted by the Ministry of Housing and 
Territorial Planning (MVOT) on the ArcGIS platform, this dynamic and interactive tool 
allows continuous consultation, comparison, and updates of land cover data. By main-
taining up-to-date land cover information and conducting multitemporal analysis, the At-
las provides insights into the dynamics of the territory and enables the projection of dif-
ferent scenarios across various scales (global, national, departmental, and local). It also 
supports the download of geospatial data for specific analyses, offering reliable infor-
mation to inform public policies for sustainable development [33]. 

 
Figure 8. Online Land Cover Atlas of Uruguay.  Figure 8. Online Land Cover Atlas of Uruguay.

The main objective of the web Atlas is to provide decision-makers, researchers, aca-
demics, and other stakeholders with updated land cover data, serving as a tool to interpret
territorial dynamics and assess the impact of human activities on the landscape.

In addition, the Atlas serves as a key unifier for various national institutions engaged in
land cover and land use mapping efforts. By centralizing and harmonizing data generated
by these actors, the Atlas helps establish a common framework for analyzing and managing
the country’s natural resources. This unified vision promotes coherent decision-making
and supports sustainable territorial planning.

3.4. Application of LCCS Products in Uruguay

Beyond their primary purpose of monitoring land cover and assessing changes, LCCS
products serve several additional functions. Some notable examples include the use of land
cover data for analyzing territorial dynamics and developing land use plans, as well as for
evaluating progress toward the Sustainable Development Goals (SDGs) [2,7].

3.4.1. Land Use Planning

Land use planning for sustainable development is a strategic process where land use
and natural resources are managed in a balanced manner, considering the current and
future needs of society and the environment [7]. LCCS land cover maps play a crucial
role in this process, as they provide a detailed and accurate representation of land use and
territorial dynamics in a specific area.
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In this context, the land cover database of Uruguay has become a fundamental in-
put for the formulation of national and local land use plans, supporting evidence-based
decision-making. The information it provides offers multitemporal and accurate data on
land cover, helping to identify suitable areas for various land uses, such as urban expansion,
agricultural development, ecological conservation, and other essential activities for sustain-
able development. This contributes to more effective and sustainable land management
practices, such as promoting crops or afforestation in areas that present favorable conditions
for agriculture, while vulnerable or critical zones can be protected to conserve biodiversity.

Uruguay currently has high levels of land use dynamisms (Figure 9) due to its nature of
being a raw materials producer, based on agricultural exploitation: livestock/forestry/crops
/industries/energy/drinking water/urban settlements [4,5].
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Figure 9. Land cover map of Uruguay 2019/2020, showing various land uses and cover types, such
as forestry (green), urban areas (gray), native forest (light green), and croplands (orange). The map
highlights the prevalence of forested areas near urban regions, illustrating the competition for land
between agricultural and forestry activities alongside the demand for urban expansion. The image
focuses on the localities of Guichón and Algorta, located on the border between the departments of
Paysandú and Río Negro in western Uruguay.

Livestock continues to be the most important sector and occupies the largest area.
However, it is losing relative weight because of the growth of other productive activities,
such as, fundamentally, agriculture and forestry, but also energy generation, new kinds of
urban settlements, etc. [3–5].

In addition, urban planning needs settlement classification and growth measurement
to guarantee sustainable urbanization. The integration of Earth Observation data and
geospatial approaches through LCCS data into planning processes ensures that decisions
regarding land use are based on solid and updated information, promoting sustainable
development and optimal resource use, resulting in more effective land management. This
is a key aspect of addressing contemporary challenges such as population growth, climate
change, and the preservation of natural resources. By encouraging optimal and balanced
resource use, it contributes to the creation of more sustainable cities, resilient economies,
and healthy ecosystems.

Therefore, territorial planning supported by LCCS land cover maps allows for in-
formed decision-making oriented toward the long term, with a focus on sustainable devel-
opment that prioritizes sustainability and overall well-being, promoting a balance between
human development and environmental conservation.
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3.4.2. Sustainable Development Goals (SDGs)

LCCS products play a crucial role in monitoring and reporting on Sustainable Devel-
opment Goals (SDGs), particularly for indicators 15.3.1, 11.3.1, and 11.7.1 [7].

SDG 15.3.1

Indicator 15.3.1 measures the proportion of degraded land relative to the total land
area, using three sub-indicators: land cover and land cover change, Soil Organic Carbon
(SOC) stocks, and land productivity. In Uruguay, the sub-indicator land cover and land
cover change has been assessed using products developed with the LCCS methodology,
which were subsequently reclassified into the seven land cover classes defined by the
IPCC (Intergovernmental Panel on Climate Change) for reporting purposes related to
this indicator. These LCCS products provided a baseline for understanding the evolution
of land cover, enabling the country to monitor and report on land degradation while
supporting efforts to achieve the target of SDG 15.3.1 (Figure 10) [13].

Land 2024, 13, x FOR PEER REVIEW 16 of 24 
 

Livestock continues to be the most important sector and occupies the largest area. 
However, it is losing relative weight because of the growth of other productive activities, 
such as, fundamentally, agriculture and forestry, but also energy generation, new kinds 
of urban settlements, etc. [3–5]. 

In addition, urban planning needs settlement classification and growth measurement 
to guarantee sustainable urbanization. The integration of Earth Observation data and ge-
ospatial approaches through LCCS data into planning processes ensures that decisions 
regarding land use are based on solid and updated information, promoting sustainable 
development and optimal resource use, resulting in more effective land management. This 
is a key aspect of addressing contemporary challenges such as population growth, climate 
change, and the preservation of natural resources. By encouraging optimal and balanced 
resource use, it contributes to the creation of more sustainable cities, resilient economies, 
and healthy ecosystems. 

Therefore, territorial planning supported by LCCS land cover maps allows for in-
formed decision-making oriented toward the long term, with a focus on sustainable de-
velopment that prioritizes sustainability and overall well-being, promoting a balance be-
tween human development and environmental conservation. 

3.4.2. Sustainable Development Goals (SDGs) 
LCCS products play a crucial role in monitoring and reporting on Sustainable Devel-

opment Goals (SDGs), particularly for indicators 15.3.1, 11.3.1, and 11.7.1 [7]. 

SDG 15.3.1 
Indicator 15.3.1 measures the proportion of degraded land relative to the total land 

area, using three sub-indicators: land cover and land cover change, Soil Organic Carbon 
(SOC) stocks, and land productivity. In Uruguay, the sub-indicator land cover and land 
cover change has been assessed using products developed with the LCCS methodology, 
which were subsequently reclassified into the seven land cover classes defined by the 
IPCC (Intergovernmental Panel on Climate Change) for reporting purposes related to this 
indicator. These LCCS products provided a baseline for understanding the evolution of 
land cover, enabling the country to monitor and report on land degradation while 
supporting efforts to achieve the target of SDG 15.3.1 (Figure 10) [13]. 

 
 (a) (b) (c) 

Figure 10. SDG 15.3.1—sub-indicator land cover and land cover change. (a) Land cover of Uruguay 
for the year 2000, reclassified using the IPCC’s seven classes: tree covered, grassland, cropland, wet-
land, artificial, other land, and water body; (b) land cover of Uruguay for the year 2015, also catego-
rized using IPCC’s seven classes; and (c) land cover degradation from 2000 to 2015, calculated using 
the Trends.Earth tool [13]. 

Figure 10. SDG 15.3.1—sub-indicator land cover and land cover change. (a) Land cover of Uruguay
for the year 2000, reclassified using the IPCC’s seven classes: tree covered, grassland, cropland,
wetland, artificial, other land, and water body; (b) land cover of Uruguay for the year 2015, also
categorized using IPCC’s seven classes; and (c) land cover degradation from 2000 to 2015, calculated
using the Trends.Earth tool [13].

SDG 11.3.1 and SDG 11.7.1

Indicators 11.3.1 and 11.7.1, part of SDG 11, aim to make ‘cities and human settlements
inclusive, safe, resilient, and sustainable’ (Figure 11). LCCS land cover data have been
instrumental in calculating these indicators [7]. These data enabled DINOT technicians to
analyze urban expansion patterns, identify trends, pinpoint areas of concern, and facilitate
improved land use planning [37].

Moreover, the global approach to defining and classifying urban and rural areas, De-
gree of Urbanisation (DEGURBA), is applied in Uruguay by using ‘Urban’ and ‘Dispersed
Urban’ classes derived from land cover data generated with the LCCS (Figure 12) [9]. This
integration of local land cover data with a global methodology allows for a consistent
classification of urban and rural areas, ensuring that the spatial patterns of urbanization
in Uruguay align with internationally recognized standards. This approach facilitates
more accurate comparisons and data analysis both within the country and at a global level,
which is essential for evidence-based policymaking and for measuring progress toward the
Sustainable Development Goals in both urban and rural areas.
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Figure 11. (a) SDG 11.3.1 indicator: Land consumption rate relative to population growth rate by 
department in Uruguay. Yellow tones (<1) represent urban densification, where land consumption 
grows slower than population. Orange tones (>1) indicate urban expansion, where land consump-
tion grows faster than population. Red tones (≤0) highlight urban expansion with population de-
cline, suggesting potentially unsustainable growth. (b) SDG 11.7.1 indicator: Average share of the 
built-up area of cities that is open space for public use. This indicator highlights the differences 
among departments regarding the availability of accessible urban public spaces, with higher values 
representing a greater proportion of open public space in urban areas. 

Figure 11. (a) SDG 11.3.1 indicator: Land consumption rate relative to population growth rate by
department in Uruguay. Yellow tones (<1) represent urban densification, where land consumption
grows slower than population. Orange tones (>1) indicate urban expansion, where land consumption
grows faster than population. Red tones (≤0) highlight urban expansion with population decline,
suggesting potentially unsustainable growth. (b) SDG 11.7.1 indicator: Average share of the built-up
area of cities that is open space for public use. This indicator highlights the differences among depart-
ments regarding the availability of accessible urban public spaces, with higher values representing a
greater proportion of open public space in urban areas.
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Figure 12. Locally adapted settlement classification in Uruguay based on DEGURBA methodology.
The criteria combine population density, built-up area percentages (from LCCS products), population
thresholds, and distance to urban areas.



Land 2024, 13, 2168 19 of 25

4. Discussion
4.1. Critical Evaluation of Land Cover Product Quality
4.1.1. Methodological Improvements in Land Cover Classification

The second stage of land cover classification brought key improvements that sig-
nificantly enhanced both the accuracy and efficiency of the process. One of the most
notable advancements was the transition from Landsat to Sentinel-1 and Sentinel-2 images,
offering higher resolution and improved accuracy. This allowed for more detailed and
continuous analysis, even under adverse weather conditions [9]. Furthermore, the use of
cloud-based platforms such as Google Earth Engine and SEPAL provided efficient access
to, and processing of, large volumes of data, reducing analysis time.

Additionally, the adoption of machine learning techniques, particularly the Random
Forest algorithm, automated classification processes, eliminating subjectivity, improving
reproducibility, and enabling the handling of large datasets more effectively.

4.1.2. Challenges and Limitations in Data Comparison Between Stages

Comparing data from the first and second stages of the project presents a series of
methodological and technical challenges (Table 4).

Table 4. Methodological differences between stages.
M
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2000 2008 2011 2015 2019–2020
Landsat Satellite Images Sentinel 1 (Radar) and 2 Satellite Images

Spatial resolution 30 m 10 m
Temporal
resolution Every 16 days Every 4–5 days

Image availability Limited due to acquisition frequency and the presence of
clouds

Greater availability of images, less affected by the presence of
clouds due to radar’s ability to penetrate clouds

Sensor type Passive sensors (optical and thermal) Passive (optical) and active (radar) sensors
Image acquisition

dates
A single moment in the period, conditioned by image

availability and the presence of clouds
Composites of images from the entire period are used,

allowing better temporal coverage

Classification Highly dependent on the operator’s subjectivity Semi-automatic, reducing dependence on subjectivity and
facilitating reproducibility

Advantages
Information from optical and thermal sensors. Manual

classification allows for the elimination of errors in
spectrally similar classes.

Higher spatial and temporal resolution, with year-round
information. Less dependence on cloud cover due to radar

use. Semi-automatic classification reduces subjectivity

Disadvantages Limited image availability due to acquisition frequency and
the presence of clouds. High subjectivity in classification.

Requires greater processing capacity due to the larger
amount of data

A major challenge arises from differences in spatial and temporal resolution between
the images used, making it difficult to integrate results and ensure temporal continuity of
land cover maps. Sentinel and Landsat imagery offer varying levels of detail, making it
hard to compare maps across different periods. Areas previously classified as homogeneous
with Landsat may now show variability in Sentinel images.

Another challenge lies in the types of sensors employed. During the first stage, only
optical sensors (Landsat) were used, whereas the second stage incorporated both radar
(Sentinel-1) and optical sensors (Sentinel-2). Radar technology helped overcome cloud
cover issues but introduced new data variables, particularly regarding moisture detection.
This variation means that land covers identified by different technologies are not directly
comparable, creating uncertainties in both spatial and temporal analyses.
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Differences in data availability between the stages also pose a significant limitation.
Landsat images, with their lower capture frequency and greater susceptibility to cloud
cover, provided limited data for analysis. In contrast, Sentinel images, with their higher
temporal frequency, offer richer coverage, enabling continuous and more accurate monitor-
ing. This improved temporal granularity could reveal changes that were not detectable in
the first stage.

Despite these methodological differences, comparisons between the two stages are
essential, necessitating harmonization efforts to ensure meaningful analysis. The three-
level legend structure was designed to facilitate such comparisons with previous datasets.
However, variations in methodology and technological advancements between stages still
pose significant challenges.

To enable national-level comparisons, both land cover products were resampled to
a common spatial resolution of 30 m. This resampling process addresses some of the
discrepancies caused by the differences in the native resolutions of Landsat and Sentinel
imagery, such as Sentinel-2’s finer 10 m resolution versus Landsat’s coarser 30 m resolution.
By standardizing the spatial scale, this adjustment helps reduce certain errors, particularly
those linked to varying spatial resolutions. Nevertheless, this approach does not completely
eliminate challenges associated with comparing small, highly variable, or complex land
cover types. For instance, small urban areas or heterogeneous vegetation types remain
prone to misclassification even after resampling, as the resolution may still not adequately
capture their intricate spatial patterns.

Moreover, resampling the data to 30 m sacrifices some of the advantages inherent in
Sentinel’s higher spatial precision. Fine details such as narrow linear features or fragmented
vegetation patches, which are crucial for accurate classification in detailed land use plan-
ning, may be lost. This limitation highlights a trade-off between achieving comparability
and preserving high-resolution detail, which is vital for nuanced analyses.

Additionally, as the classification relies on Object-Based Image Analysis (OBIA), seg-
mentation accuracy becomes another critical factor. Differences in the native resolution of
the input imagery can lead to segmentation discrepancies, complicating direct comparisons
across datasets. To address these issues for classes requiring greater detail, manual methods
such as polygon editing, reclassification, and incorporating supplemental information
were employed to improve the accuracy of comparisons. These efforts underscore the
complexities and methodological rigor involved in harmonizing land cover data while
striving to retain as much spatial and thematic detail as possible.

4.1.3. Challenges in Class Comparison: Two Cases

A notable example of the challenges faced in comparing data between the two stages
is the discrepancies in estimating forested areas and urbanized areas (Figure 13).

In the second stage, products generated with Sentinel images offer higher spatial and
temporal resolution, enabling the identification of details that were previously indistin-
guishable, such as firebreaks, roads, or separation areas between forest plantations. In the
first stage, these areas were grouped under the broad category of ‘forest plantation’ without
differentiation, leading to an overestimation of the effective forested area. Figure 14 shows
the percentages of the total forested area across the different LCCS mappings, where the
2015 mapping indicates a higher forested area compared to the subsequent mappings. How-
ever, this difference is not real but stems from the methodological variations mentioned,
such as the lower resolution of satellite images used in the first stage.

This discrepancy highlights the challenges of relying on data with inconsistent method-
ologies, as it can lead to misinterpretations about land cover changes and their implications.
Accurate and consistent information is crucial for land use planning, especially in regions
with regulations on forest plantation surface areas. Misjudgments based on overestimated
forested areas could result in ineffective or misaligned policies, potentially undermining
sustainable land management and regulatory compliance. The methodological improve-
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ments introduced in the second stage ensure a more reliable foundation for decision-making
and better support the development of informed forest policies.
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Figure 13. Comparison of resolution and precision between land cover maps from the first stage
(2015, Landsat) and the second stage (2021/2022, Sentinel), focusing on urban and forest classes. The
top image illustrates the city of Tranqueras, located in the department of Rivera, Uruguay, as mapped
in 2021/2022. This map showcases higher resolution and improved precision in distinguishing
land cover classes, such as consolidated urban (dark gray), dispersed urban (light gray), and forest
plantation (dark green). The bottom image presents the same area using the 2015 land cover mapping,
which, due to lower resolution, groups smaller features and lacks the detail evident in the Sentinel-
based mapping.
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Similarly, challenges also arise in estimating urban and dispersed urban areas. In the
first stage, the lower spatial resolution of Landsat images led to less accurate classification,
overestimating the extent of dispersed urban areas. The larger and less detailed polygons
generated from Landsat imagery often included undeveloped or vegetated areas in urban
classifications. In contrast, the higher resolution of Sentinel images now allows for distin-
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guishing between consolidated urban areas, peri-urban zones, and dispersed settlements.
This differentiation is vital for land use planning, as it informs the provision of services,
infrastructure, and sustainable urban expansion.

Misinterpretations resulting from a direct comparison between products from the
two stages can lead to misleading conclusions, which could significantly influence land
use policies. These discrepancies, such as overestimating forest cover or underestimat-
ing urban expansion, may ultimately affect strategic decisions in land management and
resource allocation.

4.2. Advantages of the Application of LCCS in Uruguay
4.2.1. Benefits of the LCCS Approach

The adoption of the LCCS methodology in Uruguay has provided numerous benefits
for land cover mapping. The standardized classification system, combined with iterative
improvements, has enabled a more comprehensive understanding of land cover dynamics.
The flexibility of LCCS to use a wide range of satellite data—from Landsat to Sentinel—has
enhanced the accuracy and relevance of land cover maps.

The use of the LCCS methodology, which combines high-resolution satellite data with
advanced classification techniques for national land cover mapping, has demonstrated sig-
nificant benefits. This approach has enhanced the accuracy, detail, and consistency of land
cover data, providing a more comprehensive understanding of territorial dynamics. It has
also facilitated better decision-making in areas such as land use planning, environmental
monitoring, and sustainable development by offering reliable, up-to-date information that
supports informed policy and management actions.

4.2.2. Impact on Policy and Planning

LCCS products have had a significant impact on land use planning and policy formu-
lation in Uruguay. The detailed and accurate land cover information facilitates evidence-
based decision-making for sustainable development. For example, the land cover as-
sessment related to urban expansion contributes to better management of urban sprawl
and supports sustainable city planning by identifying suitable areas for expansion while
preserving green spaces and minimizing environmental impacts. Related to agricultural
development, the LCCS database enables policymakers to oversee the balance between
agricultural growth and environmental conservation. LCCS products help monitor the
expansion of agriculture, assess soil health, and prevent overuse of resources, contributing
to long-term land productivity. Therefore, LCCS products contribute to informed territorial
planning and long-term decision-making with a focus on sustainable development.

Additionally, LCCS data have allowed Uruguay to monitor and report on Sustainable
Development Goals (SDGs), including SDG 15.3.1 (land degradation) and SDG 11 (sustain-
able cities). LCCS products have supported Uruguay’s efforts to achieve its sustainability
targets and address critical challenges by identifying vulnerable ecosystems, improving
natural resource management, and enhancing climate resilience. But, by leveraging LCCS
products, Uruguay not only meets its own national sustainability goals but also strengthens
its position within the international community. The compatibility of LCCS data with global
standards enables Uruguay to share reliable information with international organizations
and to contribute to global sustainability databases.

Overall, Uruguay’s LCCS has proven essential for integrating environmental sustain-
ability into the country’s planning and policy formulation processes, aligning national
development with sustainable land use practices, and fulfilling its commitments to global
sustainability goals.

4.3. Future Applications and Improvements
4.3.1. Emerging Technologies

Advances in remote sensing technologies and classification techniques offer promising
opportunities for the future of land cover mapping. Emerging sensors with superior spatial
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and temporal resolutions, combined with advanced machine learning algorithms, will
enhance the precision and detail of land cover products. The incorporation of data from
hyperspectral imagery and next-generation synthetic aperture radar (SAR) systems could
provide deeper insights into land cover dynamics, further increasing the accuracy and
reliability of future classifications.

4.3.2. Training and Resources

Ongoing training for technicians and professionals is critical to maximize the effec-
tiveness of LCCS-based tools. Training in advanced geospatial techniques, data processing,
and interpretation will help ensure that the products generated meet the highest precision
standards. Strategic investments in training and technological infrastructure will strengthen
the capacity to implement LCCS methodologies effectively, allowing Uruguay to address
emerging challenges in land cover mapping and monitoring.

5. Conclusions

The Online Land Cover Atlas of Uruguay, as the culmination of the LCCS method-
ology application, represents a major achievement in land management and planning.
Advances in classification methodologies and remote sensing technologies have enabled
more accurate and up-to-date data collection, providing a vital tool for informed decision-
making. Interinstitutional collaboration and the integration of multiple state initiatives
have been key to the success of this project, contributing significantly to Uruguay’s
sustainable development.

The transition from Landsat images to Sentinel imagery, combined with advanced clas-
sification techniques such as machine learning, has substantially improved the quality and
accuracy of land cover data. The efforts to create a unified Land Cover Reference System,
embodied in the new Land Cover Atlas, address the challenges of harmonizing different
datasets and methodologies, offering a cohesive framework for future territorial analysis.

However, Uruguay faces challenges in land cover mapping, particularly due to the
lack of coordination among the various institutions conducting their own mapping efforts,
which can lead to inconsistencies and duplication of work. While satellite image technology
is advancing and becoming more accessible, the integration of data from different sources
remains a significant challenge. This is where artificial intelligence (AI) can play a funda-
mental role: machine learning and deep learning techniques can automate the processing
of large data volumes, improving both the speed and accuracy of land cover classification
and enabling more frequent and detailed updates. This could help overcome institutional
fragmentation and provide more robust tools for decision-making in key areas such as
urban planning, agriculture, and biodiversity conservation.

As remote sensing technology and classification methods continue to advance, and
with ongoing professional training, Uruguay will be well positioned to enhance its land
management practices. This will provide more precise and detailed data to guide informed
decision-making in areas such as urban planning, agriculture, and conservation. Addition-
ally, ongoing training for professionals and fostering interinstitutional collaboration will
strengthen the country’s capacity to achieve sustainable development and ensure effective
management of natural resources. By fostering collaboration and aligning with national and
international sustainability frameworks, Uruguay can enhance land management practices,
further its long-term sustainability goals, and improve its environmental stewardship.
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