
Estudio de tiempos hardware

- Requerimientos de tiempo en uP y memorias.
 - Tiempos de setup, hold y anchos de pulso.
 - Para todos los chips.
 - Para todos los ciclos M.
- Varios grados de libertad:
 - fck, modelo uP, modelo memoria, inserción de Tw.
 - Performance vs. Consumo vs. Costo
- Diferentes análisis según restricciones
 - uP y fck fijo, 0 Tw => elegir la memoria
 - uP, fck fijo y chip memoria fijos => cuántos Tw necesito

Sistema

Requerimientos y Retardos

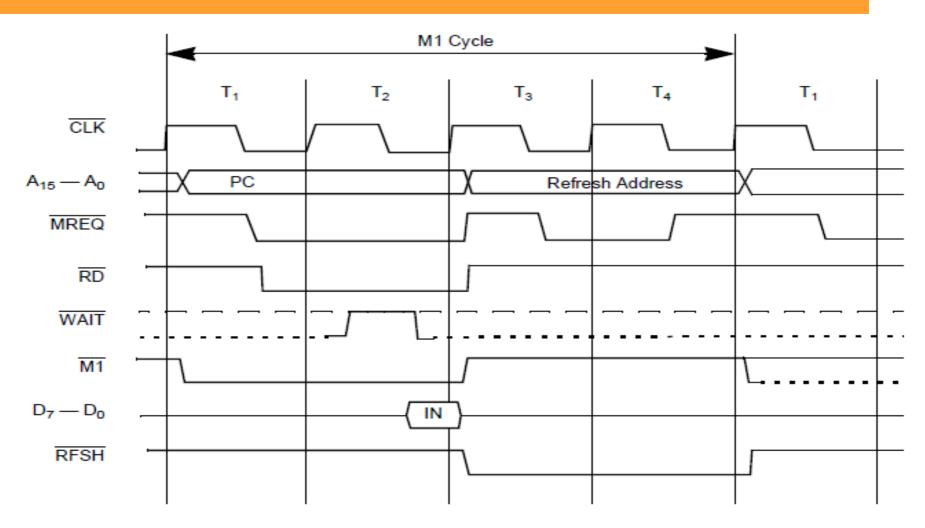
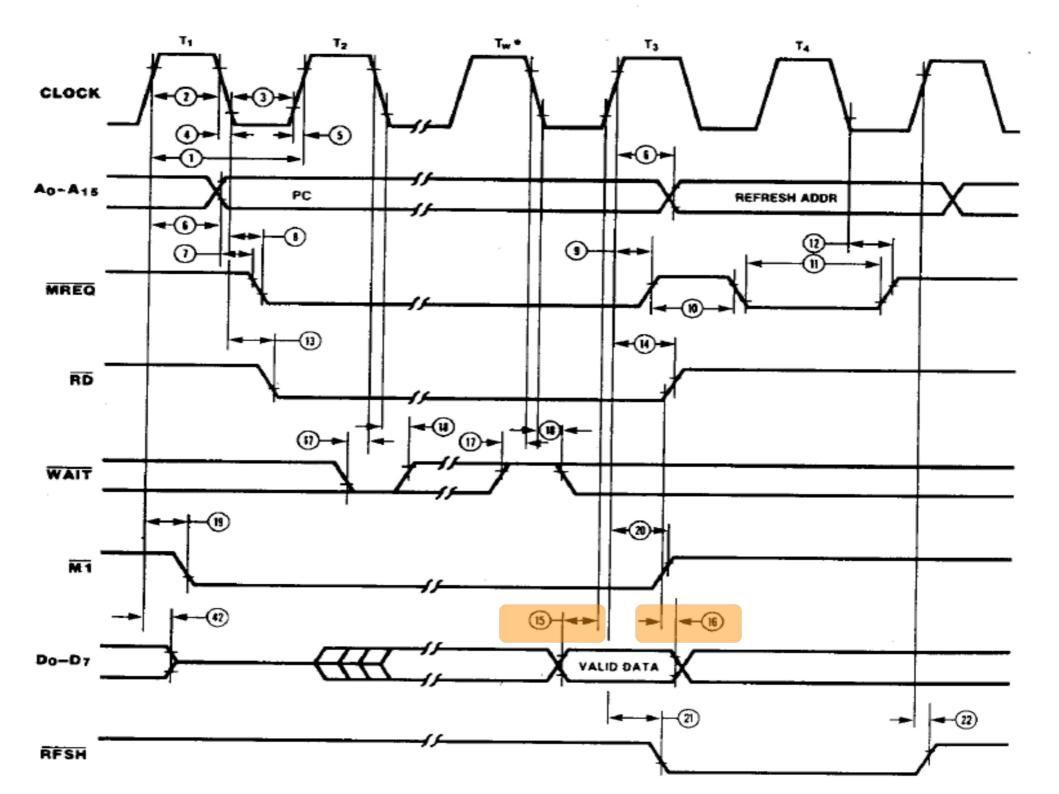
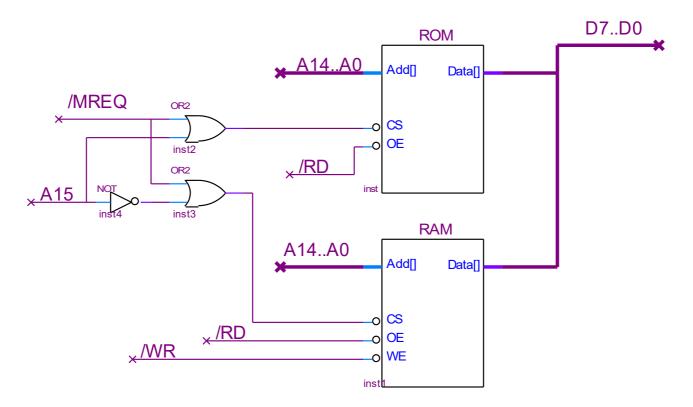
	Symbol	Parameter	Z84C0004		Z84C0006		Z84C0008		Z84C0010		Z84C0020[1]		Unit	A1-4
No				Max		Max		Max		Max		Max	Onk	NOTE
1	TcC	Clock Cycle time	250*	DC	162*	DC	125*	DC	100*	DC	50°	DC	nS	
2	TwCh	Clock Pulse width (high)	110	DC	65	DC	55	DC	40	DC	20	DC	nS	
3	TwCi	Clock Pulse width (low)	110	DC	65	DC	55	DC	40	DC	20	DC	nS	
4	TfC	Clock Fall time		30		20		10	100	10		10	nS	
5	TrC	Clock Rise time		30		20		10		10		10	nS	
6	TdCr(A)	Address vaild from Clock Rise	1	110		90	- 1000	80	_	65		57	nS	[2]
7	TdA(MREQf)	Address valid to /MREQ Fall	65*		35*		20*		5*		-15*		nS	[-]
В	TdCf(MREQf)	Clock Fail to MREQ Fall delay		85		70		60	100	55	200	40	nS	
9	TdCr(MREQr)	Clock Rise to /MREQ Rise delay		85		70		60		55		40	nS	
10	TwMREQh	/MREQ pulse width (High)	110°		65*		45**		30*		10*	-10	nS	[3]
11	TwMREQI	/MREQ pulse width (low)	220°		132*		100*		75*		25*		nS	[3]
12	TdCf(MERQr)	Clock Fall to /MREQ Rise delay		85		70		60		55		40	nS	[-]
13	TdCf(RDf)	Clock Fall to /RD Fall delay		95		80		70		65		40	nS	
14	TdCr(RDr)	Clock Rise to /RD Rise delay		85		70		60		55		40	nS	
15	TsD(Cr)	Data setup time to Clock Rise	35		30		30		25		12		nS	
16	ThD(RDr)	Data hold time after /RD Rise	0	-	0		0		0		0		nS	
17	TsWAIT(Cf)	WAIT setup time to Clock Fall	70		60		50		20		7.5		nS	
18	ThWAIT(Cf)	WAIT hold time after Clock Fall	10		10		10		10		10		nS	
19	TdCr(M1f)	Clock Rise to /M1 Fall delay		100		80		70		65		45	nS	
20	TdCr(M1r)	Clock Rise to /M1 Rise delay		100		80		70		65		45	nS	
	TdCr(RFSHt)	Clock Rise to /RFSH Fall delay		130		110		95		80		60	nS	
	TdCr(RFSHr)	Clock Rise to /RFSH Rise delay		120		100		85		80		60	nS	
23	TdCf(RDr)	Clock Fall to /RD Rise delay		85		70		60		55		40	nS	
		Clock Rise to /RD Fall delay		85		70		60		55		40	nS	
25	TsD(Cf)	Data setup to Clock Fall during												

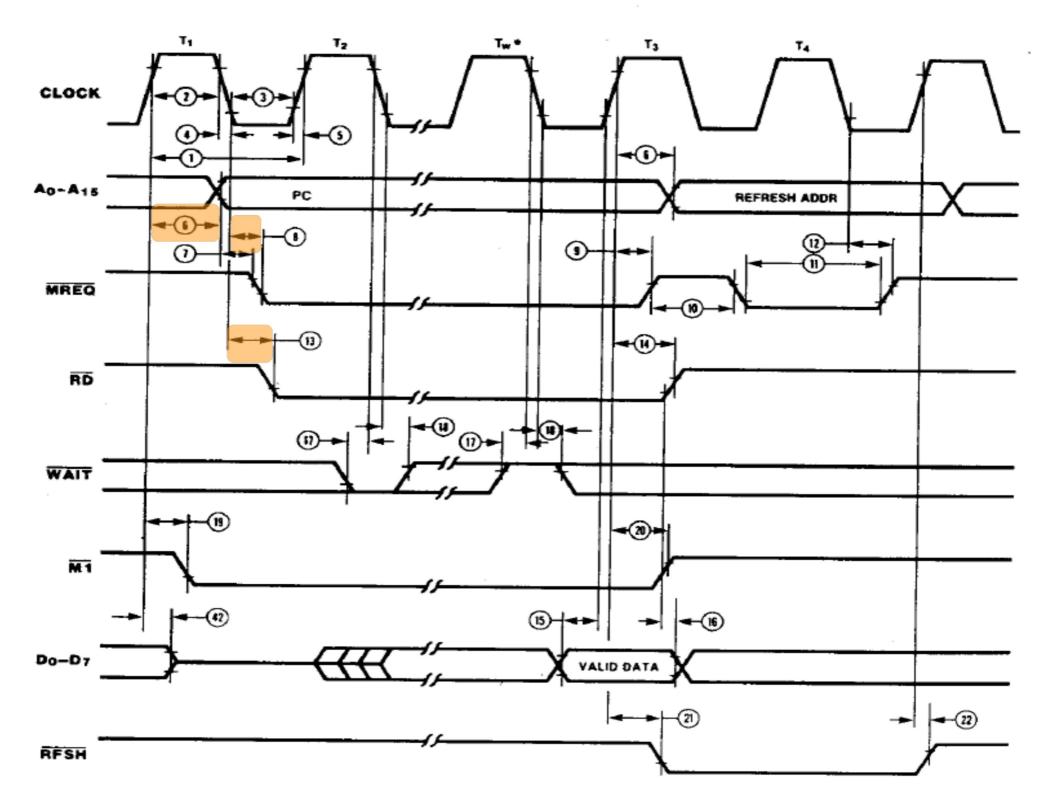
- del Z80 (cartilla)
 - Marcados en diagramas de tiempos "CPU Timing", pag. 24
 - Valores en sección "AC Characteristics", pag. 35
- de memorias y otros chips
 - En las respectivas hojas de datos

Ejemplo: Ciclo M1

- Es una lectura:
 - requerimientos impuestos por Z80
 - t15: Data setup time to Clock ↑ TsD(Cr)
 - t16: Data hold time after RD ↑ ThD(RDr)
- Requerimientos y retardos del Z80
 - Marcados en diagramas "CPU Timing", pag. 24
 - Tabulados en sección "AC Characteristics", pag. 35
- Retardos de memorias y otros chips
 - En la respectiva hoja de datos

Ciclos M1


Figure 5. Instruction Op Code Fetch

Ejemplo 32K ROM + 32K RAM

- Retardo decodificación t_{deco}
 - t_{deco1}: desde /MREQ a CS (ej: retardo OR)
 - t_{deco2}: desde direcciones a CS (ej: retardos NOT + OR)

AC CHARACTERISTICS[†] (Z84C00/CMOS Z80 CPU)

 V_{cc} =5.0V ± 10%, unless otherwise specified

				*	*									
			Z84C0004		Z840	20006	Z84C0008		Z84C0010		Z84C0020[1]		Unit	Note
No	Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max		
1	TcC	Clock Cycle time	250°	DC	162*	DC	125*	DC	100*	DC	50°	DC	nS	
2	TwCh	Clock Pulse width (high)	110	DC	65	DC	55	DC	40	DC	20	DC	nS	
3	TwCl	Clock Pulse width (low)	110	DC	65	DC	5 5	DC	40	DC	20	DC	nS	
4	TfC	Clock Fall time		30		20		10		10		10	nS	
5	TrC	Clock Rise time		30		20		10		10		10	nS	
6	TdCr(A)	Address vaild from Clock Rise	'	110		90		80		65		57	nS	[2]
7	TdA(MREQf)	Address valid to /MREQ Fall	65*		35*		20*		5*		-15*		пS	
8	TdCf(MREQf)	Clock Fall to MREQ Fall delay		85		70		60		55		40	nS	
9	TdCr(MREQr)	Clock Rise to /MREQ Rise delay		85		70		60		55		40	nS	
10	TwMREQh	/MREQ pulse width (High)	110*		65*		45**		30⁴		10°		nS	[3]
_														
11	TwMREQ!	/MREQ pulse width (low)	220*		132*		100*		75°		25*		nS	[3]
12	TdCf(MERQr)	Clock Fall to MREQ Rise delay		85		70		60		5 5		40	nS	
13	TdCf(RDf)	Clock Fall to /RD Fall delay		95		80		70		65		40	nS	
14	TdCr(RDr)	Clock Rise to /RD Rise delay		8 5		70		60		5 5		40	n\$	
15	TsD(Cr)	Data setup time to Clock Rise	35		30		30		25		12		nS	

Ejemplo: Ciclo M1 Setup

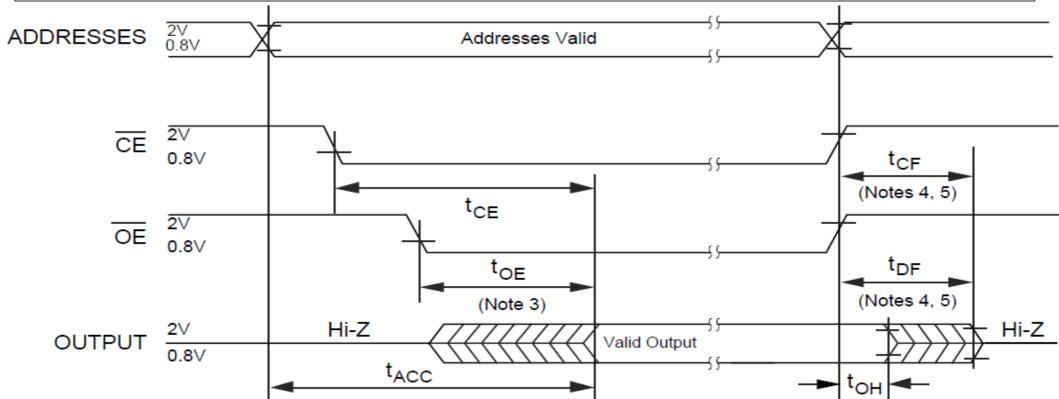
- El tiempo de setup efectivo debe ser mayor que t15 requerido
- (1) Tiempo de acceso desde direcciones

```
T1 + T2 + nTw - t6max - tacc > t15min
```

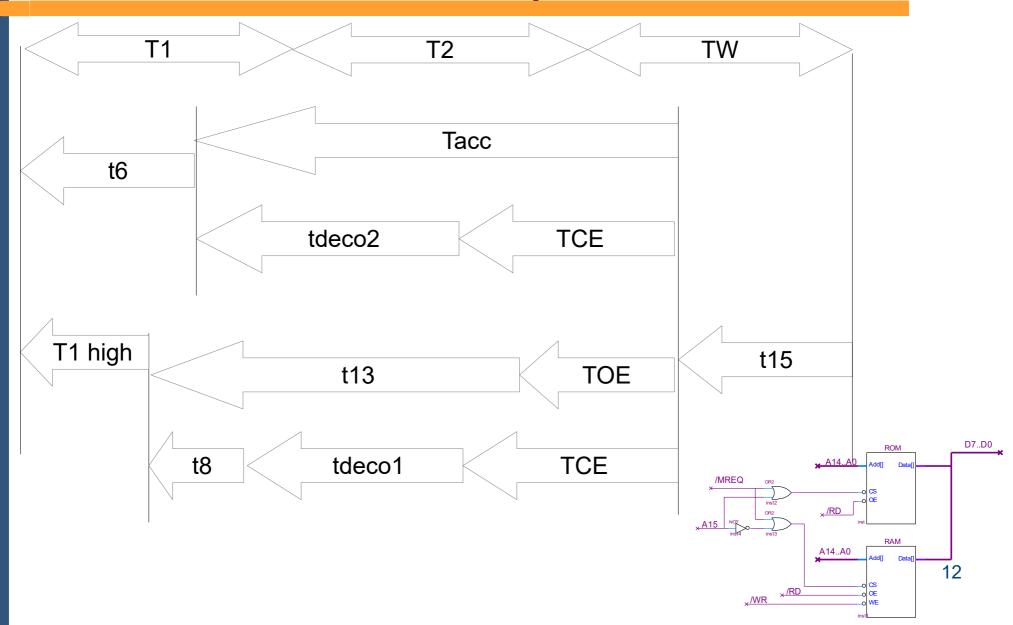
• (2) Tiempo desde OE a datos válidos

```
T1low + T2 + nTw - t13max - toe > t15min
```

- (3) Tiempo desde CE a datos válidos
 - (3.1) por MREQ


```
T1low + T2 + nTw - t8max - tdeco - tce > t15min
```

- (3.2) por direcciones


```
T1 + T2 + nTw - t6max - tdeco - tce > t15min
```

AC Electrical Characteristics Over Operating Range with V_{PP} = V_{CC}

Symbol	Parameter	9	0	1	20	150		200		Units
		Min	Max	Min	Max	Min	Max	Min	Max	
t _{ACC}	Address to Output Delay		90		120		150		200	ns
t _{CE}	CE to Output Delay		90		120		150		200	ns
t _{OE}	OE to Output Delay		50		50		50		50	ns
t _{CF} (Note 2)	CE High to Output Float		30		30		45		55	ns
t _{DF} (Note 2)	OE High to Output Float		35		35		45		55	ns
t _{OH} (Note 2)	Output Hold from Addresses, CE or OE, Whichever Occurred First	0		0		0		0		ns

Ejemplo: Ciclo M1 Setup

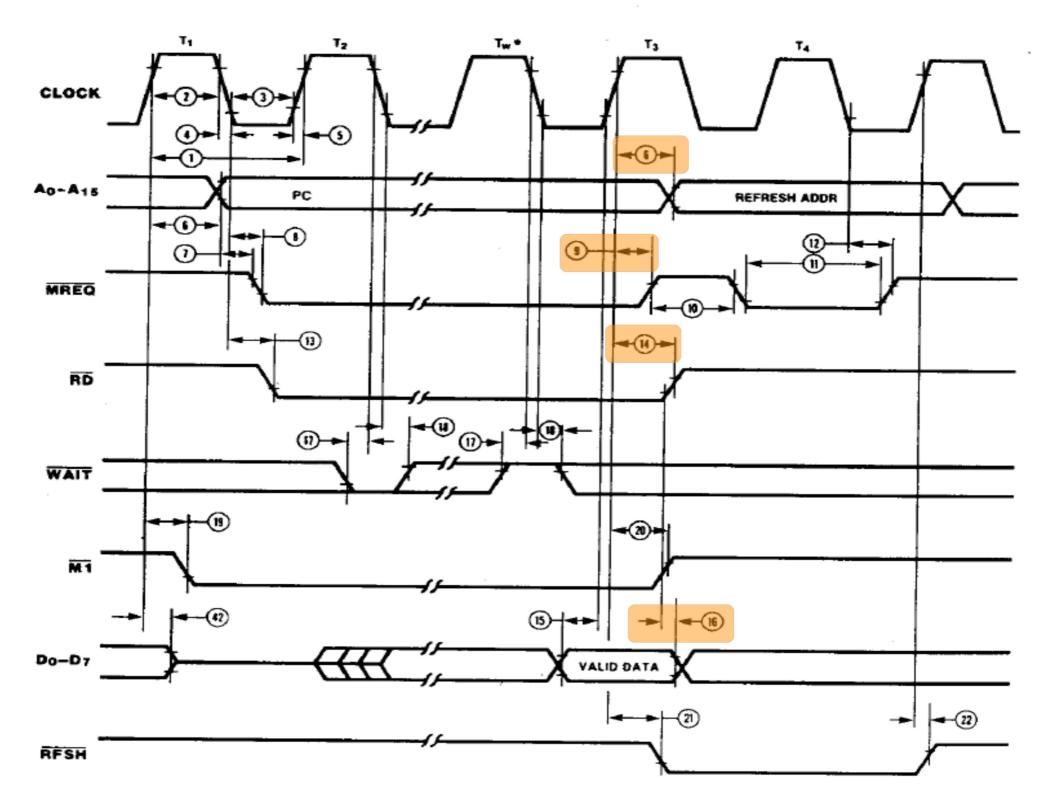
Ejemplo: Ciclo M1 Hold

- t16 requerido desde subida de RD
- Si datos dejan de estar válidos por:
- (1) Cambio en direcciones

```
t6 + Toh_mem - t14 > t16min
```

(2) Cambio en RD

```
Toh > t16min
```


- (3) Cambio en CS
- (3.1) por MREQ

```
t9 + tdeco + Toh - t14 > t16min
```

- (3.2) por direcciones

```
t6 + tdeco + Toh - t14 > t16min
```

Parámetros deben cumplir ecuac., no se arregla insertando Tw.

AC CHARACTERISTICS[†] (Z84C00/CMOS Z80 CPU)

 V_{cc} =5.0V ± 10%, unless otherwise specified

, CC	-0.01 1 1070,	diffess officialise specified												
			Z84C0004				Z84C0008		Z84C0010		Z84C0020[1]		Unit	Not
No	Symbol	Parameter	Min	Max	Min	Мах	Min	Мах	Min	Max	Min	Мах		-
1	TcC	Clock Cycle time	250*	DC	162*	DC	125*	DC	100*	DC	50 *	DC	nS	
2	TwCh	Clock Pulse width (high)	110	DC	65	DC	55	DC	40	DC	20	DC	nS	
3	TwCl	Clock Pulse width (low)	110	DC	65	DC	55	DC	40	DC	20	DC	nS	
4	TfC	Clock Fall time		30		20		10		10		10	nS	
5	TrC	Clock Rise time		30		20		10		10		10	nS	
						•								
6	TdCr(A)	Address vaild from Clock Rise	_	110		90		80		65		57	nS	[2]
7	TdA(MREQf)	Address valid to /MREQ Fall	65*		35*		20*		5*		-15*		nS	
8	TdCf(MREQf)	Clock Fall to MREQ Fall delay		85		70		60		5 5		4 0	nS	
9	TdCr(MREQr)	Clock Rise to /MREQ Rise delay	\star	85		70		60		55		40	nS	
10	TwMREQ h	/MREQ pulse width (High)	110	•	65*		45**		30*		10*		nS	[3]
	<u> </u>			<u> </u>				•						
11	TwMREQ	MREQ pulse width (low)	220	•	132	•	1001	·	75 *		25*		nS	[3]
12	TdCf(MERQr)	Clock Fall to /MREQ Rise delay		85		70		60		5 5		40	nS	
13	TdCf(RDf)	Clock Fall to /RD Fall delay		95		80		70		65		40	nS	
14	TdCr(RDr)	Clock Rise to /RD Rise delay		85		70		60		55		40	nS	
15	TsD(Cr)	Data setup time to Clock Rise	35		30		30		25		12		nS	
16	ThD(RDr)	Data hold time after /RD Rise 💢	0		0		0		0		0		nS	

Ejemplo: Ciclo Escritura Prueba Final 2014 – Ej. 1

- Data Setup (TDS):
- T1L + T2 + nTW + T3H + min {(t12(min) + tor(min)) , t32(min)} t53(max)
 - Mayor o igual al TDS mínimo requerido por la memoria