PART II

Effect of Preheating

Procedure

In view of the results obtained on full scale hatch corner specimen number 15 by preheating, it was evident that more basic information on the effect of preheating would be desirable. The metallurgy of welds has established the presence of a heat affected zone adjacent to the weld metal, which contains large grains and is harder than either the weld In an effort to obtain some details regarding the effects or parent metal. of preheating on the heat affected zone and the weld metal the following tests were conducted.

1 ssentially Two single pass weld beads, one of 3/16" E-6010 electrode at 135 amps and the other of 3/16" E-6020 electrode at 200 amps, were deposited in sweld 720 on pieces of ship plate (Steel C) 18 in. x 18 in. x 3/4 in. as shown in the best Fig. 29. ' The beads were deposited on one specimen with the plate at a a facted temperature of 70° F and on another after preheating the plate to 400° F A third plate was prepared upon which beads were deposited using E-6010 the largest Mis the Sunday and E-6020 electrodes with the plate at a temperature of 70° F. This from which a plate with the deposited beads was then heated for 8 hours at 1000° F Alle press is similar to the treatment given hatch corner specimen 9. A fourth plate decoder upon which E-6010 and E-6020 beads were deposited was used as a control for Activity of This plate was not subjected to postheat and the beads specimen number 3. Marry 200 mg were deposited with the plate at a temperature of 70° F. will give

Specimens were taken from the center of each of the six weld higher form These specimens were polished, etched and subjected to microbeads. hardness (Knoop, with 500 gm. load) surveys as shown in Fig. 30. In The Same Street the parent and weld metal the hardness impressions were spaced 0.25 mm.

12 m 1 m 2 m 2 m 2 m

apart whereas in the heat affected zone the spacing was reduced to 0.10 mm.

1.1.1.2.1

In addition to the previously mentioned tests two multiple pass fillet welds were made as shown in Fig. 31. The first fillet was made using E-6020 electrode and the second using E-6010 with the plate being allowed to cool between each pass so that all beads were deposited with the specimen at a temperature of 70° F. Specimens were then prepared similar to the others and microhardness surveys of each pass as shown in Fig. 30 were conducted.

Results and Discussion

In Fig. 32 there is presented one of the Knoop hardness surveys with hardness plotted as a function of distance from the weld edge for the preheated and non-preheated E-6010 weld beads. The data in Table VI show clearly the increase in width and the decrease in hardness of the heat affected zone by preheating. The reduction in hardness of the weld metal, although significant, is not as much as in the heat affected zone. The maximum hardness of the heat affected zone for the preheated specimens is practically the same for both the electrodes used. In spite of the fact that the maximum hardness of the heat affected zone for the E-6010 electrode is greater than that for the E-6020 electrode as deposited without preheat, the hardness of the weld bead itself is not influenced by the type of electrode. The results of specimens 3 and 4 show that heating of the weld beads for 8 hours at 1000° F reduces maximum hardness of the heat affected zone and the average hardness of the parent and weld metal. The width of the heat affected zone, of course, was not changed as a result of the heating.

An examination of the microstructures reveals the reasons for some of the results presented in Table VI. Referring to Figs. 33 and 34, the effects of the different cooling rates which accompany welding with or without preheating, are apparent. The heat affected zone of the preheated specimen shows evidence of the intermediate transformation products which were able to form during the slower cooling from the Austenitic phase. At a lower magnification (X500) such as in Figs. 55, 36, 37, and 38 the presence of more free ferrite in the preheated welds is apparent. The change in width of the heat affected zones as a result of preheating is shown in Figs. 39, 40, 41, and 42. Figs. 43 to 50, inclusive, show the effect of postheating on the microstructure of the weld metal and the heat affected zones for the E-6010 and E-6020 weld beads. The effect is more pronounced for the E-6010 heat affected zone than for the E-6020.

The effect of multiple passes on the maximum hardness of the heat affected zone and the average hardness of the weld is shown in Table VII. The hardness generally increases with each pass as the heat from each succeeding bead reduces the maximum hardness in the heat affected zone of the preceding bead. The initial hardness of the heat affected zone for the first fillet weld (E-6020) was reduced in the process of welding the second fillet (E-6010) and in the same manner the average weld hardness was probably reduced.

In analyzing the results obtained there seems to be little doubt that changes brought about in the structure and hardness were attributable to the reduction in the severity of the quenching effect normally produced by the metal surrounding the weld. Although no quantitative data were obtained with regards to the cooling rates present in a non-preheated weld,

observations of the microstructure in Fig. 33 showed that the quenching effect must have been of the order of magnitude of a water quench.

As stated previously, it was not intended to make a complete investigation of the effects of preheat and postheat, but, to investigate some of the effects. From the tests conducted it is apparent that preheating does produce marked changes in the hardness of the weld material and the heat affected zone and increases the width of the latter. It is also evident that postheating at 1000° F for eight hours is not as effective as preheating at 400° F in reducing the hardness of the weld metal and the heat affected zone and does not widen the heat affected zone. Just how much these changes are responsible for the improved performance of preheated and postheated specimens is not yet known. Undoubtedly other effects, such as change in chemical composition and impact properties, also result. Further study of this entire subject, particularly the effects of preheating, is needed:

and the second second

the second se

and the second second

nde Charles en atalem en en sentente agan de la encontra en en en la encontra en tetratetete en alamente en

.

·. · · ·

and a second provide the second s

• . . .

and the second second

1.1.4

PART III Model Studies

Proceduro

A series of asymmetrical and symmetrical models were constructed and tested in an effort to obtain one model of each type which approximated the Bushnell and Schuyler data as closely as possible. Comparison of the two was then made.

In the asymmetrical model, various factors were altered after each successive test to improve the stress distributions. The following factors were investigated.

a. The location of the line of applied load with respect to the corner of the hatch.

b. the extent of attachment of end tab to coaming,

c. effect of transverse restraint and omission of transverse restraining bars,

d. increased end tab width with corresponding fillet between end tab and specimen edge,

e. increased stiffness of end tabs with heavier center plate. From the results of these changes the model shown in Fig. 51 was constructed and tested.

For the symmetrical design a celluloid model was first built and Stresscoat (brittle coating) was applied to obtain a preliminary indication of the stress distribution. From these results it was apparent that a transverse slot would have to be cut between the end tab and the hatch opening in order to achieve the desired distribution of stress near the corner of the hatch. With this information as a guide several symmetrical specimens were constructed and tested. The factors which were investigated during the tests were

a. length of transverse slot,

b. fillet radius between end tabs and specimen edge,

c. size and stiffness of end tabs.

The specimen design resulting from these preliminary tests is shown in Fig.52, and the resulting model was constructed and tested.

Results

The strain distributions for both tests on the final designs are shown in Fig. 53 along the transverse section AB for the small loading of 6,000 psi nominal stress and for a higher load of 13,750 psi. Figure 54 shows the principal stresses and their directions for the two models under the applied nominal stress of 6,000 psi for both.

An indication of the distortions as the models were loaded to failure is given in Fig. 55. Although the deflections shown are not exactly comparable measurements for the two specimens, they do give an indication that there is less movement in the symmetrical specimen than in the asymmetrical one.

The two specimens after failure are shown in Figs. 56 and 57. For the asymmetrical one the maximum load was 192,800 lbs. which gave a nominal stress computed over the net load carrying section at the hatch corner of 48,500 psi. For the symmetrical specimen the maximum load was 424,000 lbs. which gave a nominal stress of 53,000 psi. However, as can be seen from Figs. 56 and 57, the failure occurred at the slot. It would be necessary to reinforce the ends of the slot for any subsequent tests of this design.

The transverse loading device¹ used on the first quarter scale asymmetrical models did not introduce significant change in the stress ratios near the corner. The subsequent tests were conducted without this bar. An additional reason for leaving off this bar was that the rather heavy bars welded to the sides of the specimen against which the transverse member acted were found to have considerable effect on the stress distribution in the deck.

¹ See Bibliography

CONCLUSIONS

1. Steel C when used in the hatch corner specimen has a transition from cleavage to shear at slightly below 120° F.

2. Using preheat at 400° F is the most effective procedure yet tried both as to strength and energy absorption, being more effective than stress relief at 1000° F for 8 hours or the use of 25-20 electrode. It results in about 30 per cent increase in maximum strength and superior performance of the welds as compared with specimens welded in the usual manner. Preheating does not appear to influence the type of fracture.

- 3. Riveting as used in this particular design gave inferior results in so far as strength is concerned.
- 4. Preheating at 400° F reduces the hardness and increases the width of the heat affected zone and produces a somewhat different microstructure of both the weld and heat affected zones.
- 5. Post heat treatment at 1000° F for 8 hours results in a decreased hardness in both the heat affected zone and the weld metal and a change in the microstructure. This treatment does not result in any change in the width of the heat affected zone.
- 6. The greater stress concentration and the somewhat less distortion for the symmetrical quarter scale model as compared with the asymmetrical one is an indication of a more severe stress condition in the former.

7. In view of this conclusion, it follows that the full scale asymmetrical model used for the main tests may not represent a condition as severe as would exist for a full scale symmetrical specimen or for the ship itself.

the second second second

1 . . .

. . . .

. .

. /

•••

8. Due to the size of the symmetrical quarter scale model resulting from this investigation it is apparent that the space limitations of the available testing equipment prohibit the testing of a full scale symmetrical specimen. In view of this and the lack of time, it was decided that no further work would be done on models by this project.

· . :

Bibliography

- Progress Report on "Cleavage Fracture of Ship Plate as Influenced by Design and Metallurgical Factors (NS-336): Hatch Corner Specimen Tests", OSRD No. 5352, Serial No. M-512, July 21, 1945.
- Final Report on "Cleavage Fracture of Ship Plate as Influenced by Design and Metallurgical Factors (NS-336): Hatch Corner Specimen Tests," OSRD No. 6387, Serial No. M-607, December 4, 1945.
- ³ Report: Structural Tests on the S.S. Philip Schuyler.

U. S. Maritime Commission; June, 1945.

TABLE I

Welding Sequence - Hatch Corner Specimens

Units	Position Ele	octrode
A. Place, tack and weld 8 to 2; and 7 to 3 Jig Herizontal Bottom Side Mr.	Horizontal	E-6020
B. Place, tack and weld end tabs to dock plate 1	Flat	n
C. Place, tack and weld end tabs to deck plate 1	"	11
D. Place, tack and wold 4A and 4F to 1	Horizontal	11 17
E Place and tack 5 to 1 and 6	11	11
G. Weld 5 to 1	H .	11
H. Weld 4F to 6	Vertical & Horizontal	E-6010
I. Weld 5 to 6		11
J. Place unit 8 and 2 to 1 and 6: tack 2 to 6		
(outboard) and 2 to 1 (outboard)	Horizontal & Vertical	tt
K. Weld 2 to 6 (outboard)	Vertical	11
L. Weld 2 to 1 (aft & fwd; 2 sides simultaneously)	Horizontal	E-6020
M. Tack and weld 2 to 1 (inboard)	11	tt.
Jig Vertical		
N. Place and tack unit 7 and 3 to 1 and 2	Horizontal & Vertical	E-6010
0. Weld 6 to 2 and 3 to 2; simultaneously	Horizontal	E-6020
P. Weld 6 to 8 (inboard then outboard)	Horizontal & Overhead	E-6010 E-6020
Q. Complete welding 4F and 5 to 6	Overhead, Horizontal	E-6010 E-6020
R. Tack 9 to 6	Horizontal	1 0050
Jig Horizontal. Bottom Side Up		
S. Weld 9 to 8 (bottom)	11	11
T. Weld 3 to 2 (outboard)	Vertical	E-6010
U. Weld 3 to 1	Horizontal	E-6020
V Wold AA to 3	Tranks and a Tranks and a	E-6010
V. Weid HR 60 5	vertical & Horizontal	E-6020
W. Weld 7 to 2	Horizontal & Morizontal	E-6020 E-6010 E-6020
W. Weld 7 to 2 Jig Vertical Position	Horizontal & Horizontal	E-6020 E-6010 E-6020
 W. Weld 7 to 2 Jig Vertical Position X. Tack and weld 3 to 3A (inboard) 	Horizontal & Horizontal Horizontal & Overhead Flat	E-6020 E-6010 E-6020
 W. Weld 7 to 2 <u>Jig Vertical Position</u> X. Tack and weld 3 to 3A (inboard) Jig Horizontal Position. Bottom Side Up 	Horizontal & Horizontal Horizontal & Overhead Flat	E-6020 E-6010 E-6020
 W. Weld 7 to 2 Jig Vertical Position X. Tack and weld 3 to 3A (inboard) Jig Horizontal Position, Bottom Side Up Y. Backchip and weld 3 to 3A (deck to bottom) 	Horizontal & Horizontal Horizontal & Overhead Flat	E-6020 E-6010 E-6020
 Weld 7 to 2 Jig Vertical Position X. Tack and weld 3 to 3A (inboard) Jig Horizontal Position, Bottom Side Up Y. Backchip and weld 3 to 3A (deck to bottom) Jig Horizontal Position, Top Side Up 	Vertical & Horizontal Horizontal &Overhead Flat	E-6020 E-6010 E-6020
 W. Weld 7 to 2 Jig Vertical Position X. Tack and weld 3 to 3A (inboard) Jig Horizontal Position, Bottom Side Up Y. Backchip and weld 3 to 3A (deck to bottom) Jig Horizontal Position, Top Side Up Z. Weld 9 to 8 (top side) 	Vertical & Horizontal Horizontal &Overhead Flat "	E-6020 E-6010 E-6020 "
 Weld 7 to 2 Jig Vortical Position X. Tack and weld 3 to 3A (inboard) Jig Horizontal Position, Bottom Side Up Y. Backchip and weld 3 to 3A (deck to bottom) Jig Horizontal Position, Top Side Up Z. Weld 9 to 8 (top side) Remove Specimen From Jig 	Vertical & Horizontal Horizontal &Overhead Flat "	E-6020 E-6010 E-6020 "
 Weld 7 to 2 Jig Vertical Position X. Tack and weld 3 to 3A (inboard) Jig Horizontal Position, Bottom Side Up Y. Backchip and weld 3 to 3A (deck to bottom) Jig Horizontal Position, Top Side Up Z. Weld 9 to 8 (top side) Remove Specimen From Jig AA. Backchip and weld 3 to 3A (deck to top) 	Vertical & Horizontal Horizontal & Overhead Flat " Vertical	E-6020 E-6010 E-6020 "
 Weld 7 to 2 Jig Vertical Position X. Tack and weld 3 to 3A (inboard) Jig Horizontal Position, Bottom Side Up Y. Backchip and weld 3 to 3A (deck to bottom) Jig Horizontal Position, Top Side Up Z. Weld 9 to 8 (top side) Remove Specimen From Jig AA. Backchip and weld 3 to 3A (deck to top) BB. Weld one pass 3 to 2 	Vertical & Horizontal Horizontal &Overhead Flat " Vertical	E-6020 E-6010 E-6020 " " E-6020 E-6010 E-6010
 Weld 7 to 2 Jig Vertical Position X. Tack and weld 3 to 3A (inboard) Jig Herizontal Position, Bottom Side Up Y. Backchip and weld 3 to 3A (deck to bottom) Jig Herizontal Position, Top Side Up Z. Weld 9 to 8 (top side) Remove Specimen From Jig AA. Backchip and weld 3 to 3A (deck to top) BB. Weld one pass 3 to 2 CC. Fill deck corner yoid with weld 	Vertical & Horizontal Horizontal &Overhead Flat " Vertical " Flat	E-6020 E-6020 E-6020 " " E-6020 E-6010 E-6010 E-6020
 W. Weld 7 to 2 Jig Vortical Position Tack and weld 3 to 3A (inboard) Jig Horizontal Position, Bottom Side Up Backchip and weld 3 to 3A (deck to bottom) Jig Horizontal Position, Top Side Up Weld 9 to 8 (top side) Remove Specimen From Jig AA. Backchip and weld 3 to 3A (deck to top) BB. Weld one pass 3 to 2 CC. Fill deck corner void with weld DD. Weld 5 passes 3 to 2	Vertical & Horizontal Horizontal &Overhead Flat " Vertical " Flat Vertical	E-6020 E-6020 E-6020 " " " E-6020 E-6010 E-6020 E-6020 E-6010
 Weld 7 to 2 Jig Vortical Position X. Tack and weld 3 to 3A (inboard) Jig Horizontal Position, Bottom Side Up Y. Backchip and weld 3 to 3A (deck to bottom) Jig Horizontal Position, Top Side Up Z. Weld 9 to 8 (top side) Remove Specimen From Jig AA. Backchip and weld 3 to 3A (deck to top) BB. Weld one pass 3 to 2 CC. Fill deck corner void with weld DD. Weld 5 passes 3 to 2 EE. Weld 2 to 1 and 3 to 1; simultaneously 	Vertical & Horizontal Horizontal &Overhead Flat " Vertical Flat Vertical Horizontal	E-6020 E-6020 E-6020 " " " " E-6020 E-6010 E-6020 E-6020 E-6020
 Weld 7 to 2 Jig Vertical Position X. Tack and weld 3 to 3A (inboard) Jig Horizontal Position, Bottom Side Up Y. Backchip and weld 3 to 3A (deck to bottom) Jig Horizontal Position, Top Side Up Z. Weld 9 to 8 (top side) Remove Specimen From Jig AA. Backchip and weld 3 to 3A (deck to top) BB. Weld one pass 3 to 2 CC. Fill deck corner void with weld DD. Weld 5 passes 3 to 2 EE. Weld 2 to 1 and 3 to 1; simultaneously FF. Place and tack 10 to 1, 2, 3, and weld 1 pass 	Vertical & Horizontal Horizontal &Overhead " Vertical " Flat Vertical Horizontal	E-6020 E-6020 E-6020 " " " E-6020 E-6010 E-6020 E-6020 E-6020 E-6020
 Weld 7 to 2 Jig Vertical Position X. Tack and weld 3 to 3A (inboard) Jig Horizontal Position, Bottom Side Up Y. Backchip and weld 3 to 3A (deck to bottom) Jig Horizontal Position, Top Side Up Z. Weld 9 to 8 (top side) Remove Specimen From Jig AA. Backchip and weld 3 to 3A (deck to top) BB. Weld one pass 3 to 2 CC. Fill deck corner void with weld DD. Weld 5 passes 3 to 2 EE. Weld 2 to 1 and 3 to 1; simultaneously FF. Place and tack 10 to 1, 2, 3, and weld 1 pass GG Complete weld 10 to 1 	Vertical & Horizontal Horizontal &Overhead " Vertical " Flat Vertical Horizontal "	E-6020 E-6020 E-6020 " " " E-6020 E-6010 E-6020 E-6020 " "
 Weld 7 to 2 Jig Vortical Position X. Tack and weld 3 to 3A (inboard) Jig Horizontal Position, Bottom Side Up Y. Backchip and weld 3 to 3A (deck to bottom) Jig Horizontal Position, Top Side Up Z. Weld 9 to 8 (top side) Remove Specimen From Jig AA. Backchip and weld 3 to 3A (deck to top) BB. Weld one pass 3 to 2 CC. Fill deck corner void with weld DD. Weld 5 passes 3 to 2 EE. Weld 2 to 1 and 3 to 1; simultaneously FF. Place and tack 10 to 1, 2, 3, and weld 1 pass GG Complete weld 10 to 2, 3 	Vertical & Horizontal Horizontal &Overhead " Vertical " Flat Vertical Horizontal " "	E-6020 E-6020 E-6010 E-6020 "" " E-6010 E-6010 E-6010 E-6020 E-6020 ""
 W. Weld 7 to 2 Jig Vortical Position Tack and weld 3 to 3A (inboard) Jig Horizontal Position, Bottom Side Up Backchip and weld 3 to 3A (deck to bottom) Jig Horizontal Position, Top Side Up Weld 9 to 8 (top side) Remove Specimen From Jig AA. Backchip and weld 3 to 3A (deck to top) BB. Weld one pass 3 to 2 CC. Fill deck corner void with weld DD. Weld 5 passes 3 to 2 EE. Weld 2 to 1 and 3 to 1; simultaneously FF. Place and tack 10 to 1, 2, 3, and weld 1 pass GG Complete weld 10 to 1 HH. Complete weld 10 to 2, 3 II. Weld 9 to 6	Vertical & Horizontal Horizontal &Overhead Flat Vertical Horizontal " " "	E-6020 E-6020 E-6010 E-6020 "" " E-6010 E-6010 E-6020 E-6020 "" "

	·	Analysis o	f Steels	• .	
Stecl	% C	% Mn.	% P	% S	% Si.
A*	.23	.47	0.011	0.042	0.02
в*	0.15	0.76	.010	0.030	.04,
C*	0.24	0.49	0.015	0.033	з.
D ·	0.19	0.52	0.01	0.02	0.24
E*	0.23	0.39	0.019	0.032	0.008

۰.

:..

Supplier's analysis

20.

TABLE II

TABLE III

Tensilo and Hardness Properties

Steels for Hatch Corner Specimens

Plate No.	Direc.		Tensi	le Data	(.505 Bars)		Hardness
		Yield (PSI)	Ultimate (PSI)	Broak (PSI)	Elongation (% in 2")	Reduction in Arca (%)	(Rockwell "B")
A -57*	Long. Trans.	35,500 38,100	61,200 60,400	47,400 48,800	39. 5 36.2	59.6 56.3	·
B-1 As rolled	Long. Trans.	35,050 34,000	56,900 57,000	38,600 47,500	40.9 39.6	67.6 58.6	62
B-6 Normalized	Long. Trans.	36.900 36,500	59,500 57,200	$43,400 \\ 43,500$	39.3 38.5	64.0 63.0	.64
C-1	Long. Trans	35,230 35,750	68,700 68,000	55,300 57,050	36.0 33.6	59.6 52.5	71
D-2	Long. Trans.	37,800 40,600	63,700 63,600	46,900 48,600	37.2 36.6	62.8 59.6	68
E-2	Long. Trans.	35,000 35,300	58,900 58,200	45,300 46,200	37.2 35.6	59.6 58.0	
			Tensi	le Data	(Full Thickn	oss)	
A- 57	Long. Trans.	35,100 34,800	61,400 59,800	47,900 49,000	49.2 46.1	58.7 56.3	
B-1 As rolled	Long. T r an s .	31,000 31,400	56,500 56,400	43,700 45,600	53.2 48.7	66.6 58.4	
B-6 Normalizod	Long. Trans.	32,200 32,000	56,900 56,500	41,100 43,400	52.0 51.6	64.0 60.5	
C-1	Long. T r an s .	37,500 34,100	66,500 66,200	53,600 56,600	45.5	56.5 50.4	
D-2	Long. Trans.	35,900 36,100	61,300 60,500	45,800 47,600	$\begin{array}{c} 47.1 \\ 46.4 \end{array}$	62.3 59.2	
E-2	Long. Trans.	31,400 31,000	5 7, 200 56,600	44,500 45,600	49.1 45.5	59.1 58.0	
*		_					

Letter in plate number refers to type of steel.

	1		1	1	T •	- <u></u>		00	 			T		· · · · · · · · · · · · · · · · · · ·
	DEMADUS		SNEAR FAILURE AT COAVER	СТЕЯНОВ ГАЦИНЕ АТ СОЛИВИ (SHEAR M MELDY)	CLEANAGE FAILUAE AT COANDA, VALUES SHOWN ARE FOR GREES & OR MORE DIAMETERS FROM ANYET NOLE	JUBUECTED TO REPEATED CONDINE CLEANAGE FAILUAR AT CORNEL JEE NOTE 6. AT BOTTOM OF TABLE	CLEANAGE FAILURE AT CORNER	NO GAGE REMOVES THEREN. CLEARING FAILURE AT CONVER. NO GAGE REMOVIES THEREN. PARENE PAREN.						22. 30 30 30 30 30 30 30 30 30 30
175	THICKNESS REDUCTION AT FRACTURE	DISTANCE FROM	1 E Z E E W	13 28 23 0 0 0 14 18 21 0 0 0		19 127 2.3 1.7 1.2 05 36 1.4 1.4 1.9 1.0 0.5								
VER TES	STRAINS AT OR NEAR FAILURE MICRO IN IN	CAGES 12B 15B 18L 19H	8,400 6600 1,800 2200	- 11,000 14,000 ageo	0007	005' 004' 008 00/'								TABLE
4TCH CORI	57RAIN RATIOS 1046. 200000 18. 1040 1200000 18. 1040	5 6 7 8 9 10 11 1914	17-62-68- 89-1/67-53-87	11- 12- 23 23- 12- 12- 12- 12- 12- 12- 12- 12- 12- 12	6. 23-82-12-62-0	12 - 25 25 1.7 07- 95 5. 12 - 14 - 14 - 15 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5								1 1 1 1 1 1 1 1 1 1 1 1 1 1
CALE H	FOR TOTAL ENERGY ABJORAED	104 134 AT MAL B.	2 18 2 284,000 484,000	2.9 15 2.9 15 3.0 15 3.0 10	190000	2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2	1358000	0 () () () () () () () () () () () () ()					· · · · · · · · · · · · · · · · · · ·	AAF
FULL S	WCENTRATIONS 000 LB. LOAD 000 LB. LOAD	01650 127 13 147 157 157 174 120 13 148 158 168 174	25 02 44 10 50 55 44 10 50 55 55 55 55 55 55 55 55 55 55 55 55	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		, k.7 k.) 0.3 2.6 /./ ./. 7.3 k.) 0.3 2.6 /./ ./.4 7 /.66 /.7 0.9 2/7 k./ 6.9 0.7								DUBLER, 105E0 Long 105E0 Long
ESULTS,	1255 STRAIN CO SED 52 1,200,	2 12 27 87 17 87 87	7 14 20 21 16 23 22 36 22 27 1.9 2.9 1.9	7 16 11 21 21 21 21 21 21 21 21 21 21 21 21	20 22 23 23 21 18 9 4 57 35	5 20 10 18 11 15 15 86 20 23 15 24 33								ON OF DECK, DU V DECK. V DECK. JUDINAL STRE3 TOM. STOM. SFD UNLESS N SED UNLESS N SED UNLESS N
R	LONGITUDINAL STA CONCENTRATION BA ON 200,000 LB. LOA	5678910171	2021 1.5 24 25	1.6 2.5 2.3 1.5 2.5 1.6 2.5 2.3 1.5 2.5	1.3 2.4 2.4 2.7	8 15 15 15 15 10 V				-	· · ·	· · · · · · · · · · · · · · · · · · ·		CARRYING SECTI COAMING BELON RAGE OF LONGIT RAGE OF LONGIT RAGE OF LONGIT AGEE OF LONGIT COELECTRODE U WELD.
	A PERESS	12 Mg	120 25,600 E	TO 32,600	2 006'02 01	72 24,800	TO 32,300	(AT MAX 2000) 70 20,600						ES: SED ON LOAD SED ON LOAD SED ON AVEI SED ON AVEI OR GAGES 1- SED ON AVEI ON GAGES 1- SOIO É E-GOZ ADIVGS GED DOUBLER
	KINL STEE	NOTEL	U V	5 C 400"PRENEA	5 C RIVETED	U N	C C	9 C AVETED						NO74 1. 1994 1. 1994 1. 1997 1. 1997 1

								F	RE	SI	JĽ	TS	5,	FL	IL	L	SC	CA	LE H	AT	СН	С	OR	NE	R	T	ES	STS	5			·		23
S-CHING	KIND OF STEEL ASROLLED	THUST THE	NOMINAL STRESS AT , FAILURE (B /IN ²		NGI NCE 20	0,00	DINA ATIK DO L AGE	NL S ON L .B. L S	TRE SASI .OAL	55 50 2	\$7R	A/A 2 /,2	2000	00 1 00 1 GAG	17R 6. 8.	ATIO LOAL	NS'/ D D	FOR	TOTAL ENERGY ABSORBEL PIN TO PIN IN. LB.	ST/R 20 1,20	0,000 0,000 GA	TIOS LB. LB. GES	LOAL LOAL	10: 51 NS: NA 0 A	TRAIN EAR I NICRO GA	AS A FAIL D IN/	T OR URE IN	RE AT F	HICKN DUC FRACT Yo TANCE	ESS TION TURE	/5	REM	ARK	S
Ñ NO	NOTED	₽ •F		5	6	7 8	9/	io ii	18	î9 Ş	5 16 1	71	3L 9L	121 128 13	4T 48	157 161 158 161	T 17H B 17V	81 9H 19V	AT MAX AT LOAD FAIL.	56	78	9 10	11 <u>191</u> 191	17# 17¥ 17¥	8 156	3 <i>1</i> 8L	19h	COR F	ACTURI	EDGE 2 3/4 1	×			
1	A	32	24,200	1.5	1.8 1.	3 2.0	20	1.3 -1.	7 /.9	6.2 / 2.1 /	4 1.8 1.000 8 2.3	1.4 000 1.3	.8 2.0 4.8. 2.9 1.9	2.5 2.4 2. 1.7 4.0 /4.	0.9 7 0.5 -0.1 4-0.1	3.0 1.6	5 -/.6 0.3 2 2 -/.4 0./ 3	5.6 2./ 0.3 6.9 1.3 0.2		-63-3.7 -4.0-2.5	-2.6 -3.3 6.2	4.7 6.7 000 L 1 55 3.4	-3.5 202 -57 322	-48				20 2 32 3	4 1.5 0. 2 2.1 Q	7	CLEAVAC USED F	SE FAII OR DE	LURE, S CK ONLY	TEEL A
2	с	32	23,200	-	/.6 -	-	- -		-	-	- 1.6 - 2.0		- 0.8	 .000		= =				2.8 4.3	(_/.250(0.9 - 200 2.8	-4.2 <u> </u>	-				/6 /. 32 /.	/ 0.2 C 2 0.5 C) — — — —	CLEAVAG INGS UN CULTIES	E FAIL RELIAD IN SWIT	URE.GAO LE DUE TCHING C	SE READ- TO DIFFI- IRCUITS
5	С	68	24,000	1.6	2.0 /.:	2 2.1	2.3/	15 -1.	92.6	10.4 /. 3.4 a	6 2.0 .0 2.0	1.3 i 1.1 i	2.0 2.2 2.0 2.9	4.5 3.0 30 2.0 4.4	0.9	4.7 3.2 3.9 / 5 2.3 - 6.5 2.5	2-2.1 2 5 0.9 2 5 0.4 2	8 9.9 0.5 1 10.6		-8.1-4.2 -7.4-754	-2.6 /2.0- -4.3 /0.8-	/1.0 4 .7 17.1 —	-7.2 2/.7 79.4 -1.3	-2.3 -3.5 360	0 5,00	o —	7000	· 19 1. 34 2	9 <i>1.0 0</i> . 3 0.9 0.	300 100	CLEAVAG OF SHEA EDGES	R AT T ALONG	URE. SL. OP & BC FRACTU	GHT AM'T DTTOM IRE.
10	C MUREX H.T.S.	32	23,600	1.5	2.0 1.	7 2.5	52.11	.6 -1.	925	13.8 /. 4.3 2	5 <i>1</i> .9 2 2.5	18 1.4	2.2 1.9	34 2,6 //5	0.3 05 2./	3.4 /.3 3.5 /./ 12.2 0.	3-2.3 2 /.8 -29 5. 5-02	7 /3 0.3 8 / 7 1.0	180,000 180,000	-7.6 -6.4 -40-5.5	-4.7 7.4	- 7.2	1.3 48 17	-/3 /3	0 880	4400	13, 50 0	19 1. 34 2.	5 0.9 0. 0 /.3 0.	¢ 0 0 5 0.1 0	CLEAVAC IN DOUE LBS. PAS GAGE #	GE FAIL SLER C SSING D 13.	URE. SI CCURED WRECTLY	MALLCRACK AT 400,000 THROUGH
9	C STR.REL. AFT.WELD	72	MAX.STRESS 30,000 29,400	1.5	.8 1.	7 24	2.4 1.	.8 -1.	52.6	8.4 /. 2.6 /.	4 1.8 6 2.0	1.8 2 1.5 3	./ 2.3 3.6 2.0	2.9 2.9 2.0 6.5 7.1	1.1 0.4 0.1	2.9 / 2 3.4 / / 2.3 / 9 5.0 / 0	-/.9 .7 .7 .7 2 .7 2	8 7.9 0.2 2 14.3 0.1		3.7 -7.3 -3.5	-45 4.8 -3.6 /2 -	- 5.7 15 6.3	-3.7 36 -/8 300	-1.1 -2.1		9200	<i>14</i> ,300	19 /.: 34 /.9) /./ 0. /.2 0.	30.2 0.1 7 0.4 0.2	CLEAVAG BETWEE AND DOU MAIN FA	E FAIL N TRAN BLER I NLURE	URE.FI	LLET WELD COAMING PRIOR TO
/3	C 25-20 ELECTR.	32	27,700	1.7	2.0 1.	8 2.7	2.4 /	16 -1.	7 2.7	7.1 1. 0.7 1	6 2.0 9 2.2	1.7 Z 1.5 3	2.3 2.2 3.3 2.4	3.5 - 1.5 - 6.4 7.2	10 10 15 43	35 /6 28 0. 8.7 3.4 6.2 0.7	-22 2.3 2.3 2.3 2.3 2.3 2 7 3.7 5	8 6.7 -/.3 .0 5.3 -3.1	232,000 232,000	-5/ -37 -4/-4.1	-2.9 <i>1</i> 0,4 - -2.8 60 -/	7.2 1.1 4.4 Ю.6	-7.7 -5.2 -24.1-1.7	-/.0 -0.8 94.0	0 8,300	6,200	-	19 0. 34 1.	5 0.3 0. 5 0.6 0.	00	PULLING TAB REP ED. CLEA AT HATC	TAB FAIL AIRED A WAGE H CH COR	LED AT 15 ND SPECI AILURE NER	95,000 LB. MEN RELOAD OCCURED
//	В	32	MAX.STRES 25,700 25,600	1.6	- 1.	6 22	2.3 /	1.2 -1.	1 2.7	8.9 /. 2.4 z	7 /.9 ./ 2.0	/.7 /.3	2224 5822	4.2 3.3 1.7 8.5 12.6 2.9	0.6	50 /.3 3.8 /.4 9/ -24 9.9 0.2	-/6 /.3 4-/.2 /.5 6	1 -02 .6 44	340,000 522,000		- 4.2	- 2.0 74 -2.6	10.8 -48 11.3 -2.4	-/.2 -0.8/3.50	0 7.900	7,300	5,500	19 1.3 34 3.	1.1 O. 3 25 1.5	0.5 0.3	CLEAVA	SE FAI	LURE.	
8	B	66	MAX STRESS 27,000 26,100	20	232	0 2.9	291	.8 2	7 3.0	/89 2 5.5 2	.0 2.2 .2 2.0	2.0 2 1.4 1	26 2.6	45 38 3.0 6.7 17.9	02 1.0 -14 14	5.3 /.3 4.3 /.3 7.6 -2.0 18.3 -0.1	3-26 183. 2-2.2 1.3 7.	2 /7.3 2 /7.3 5 /.5 5 -0.8		-65-43 -3.0-7.5	-3.3 85 -24 65 -	- 6.0	-64 - 58 -/9	-1.5 -1.7	to 13,200	7,800	15,000	NO A POSSI PART	AEASUA BLE RAR CLEAVAG	EMENT. TSHEAR, 96. SEE	DECK FAIL FROM COR CLEAVAGE	URE EX NER IN S FAILUR	(TENDED SHEAR, TH RE OCCUM	ABOUT 3" IEN SUDDEN RED EXTEND
3	B NORMALIZED	32	MAX.STRES 26,900 23,500	1.4	2.1 1.:	5 2.3	2.1 1.	.6-0	82.5	5.1 l. 1.7 j.	4 2.1 7 2.4	/.5 /.5 4	2.1 2.1 10 2.3	2.6 25 3.1 74 10	00	= =	-1.1 1.2 2 -4.1 2.0 3	6 02 3 40 3 -0.7		- <i>102-</i> 6.7 -3.0-7.4	5.6 4.6 3.0 1	- 3.1 108 5.7	- 23 5.7	-0.9 -2.1				16 2. 34 1.9	9 1.9 1.3 0.8 04	l l	SUDDEN N DROPPED CURED AT	0/SE A1 \$ CLEA 1,400,0 4/\$\$ USE	1600,00 WAGE F# 000 LB. 1 00 DECK	OLB.LOAD VILURE OC- VO TRANS- LAMINATED
4	D NORMALIZEL	32	25,900	1.4	1.7 0.	922	2.0 /	.5-0	8 /.9	- /	4 1.7 8 2.4	1.0 2 1.1 3	20 1.9 14 2.4	2.6 1.7 	0.4	3.0 /.6 - 0.7 3.6 4.2	-1.2 2 1.3 -1.4 3	.3 <u>-</u> 70 4 -		-7.0 -4.8	2.6 5.5	- 8.3		-0.9 -/.3		1		19 1.1 34 2:	2 0.7 0.	0.3 0.2	CLEAVAG	E FAIL	URE	<u>2</u>
7	D NORMALIZED	72													-ur			-1.3													TEST INV DIFFICU	ALID D LTIES.	OUE TO P	VELDING
12	D NORMALIZED	72	MAX.STRED 27,800	1.5	.5 /.'	7 24	- 1	.3 -1.4	# 3.5	14 1. 3.6 <u>1</u> .	5 <i>1.6</i> 8 2.1	1.6 2 1.7 3	.2 - .7 -	3.0 2.8 3.6 5.9 //.	0.9	33/5 3306 4287 7006	-/.8 3. 1.7 3.	6 / 3 -0.4 7 /24 7 -0.5	514,000 (196,000	-5.7 -3.1 -3.4 -2.9	4.8 7.5	- 0.9	-35-29 -/.8-23	-1.1 -46 (A	0 6,700 MAX	4000 LOAC	10,700	SHE SEE I	AR FAI	URE RAPHS	SHEAR F	AILURE	- AT COR	NER.
6	E	32	23,100	15	.7 1.4	42.1	2.0 /.	.4 -1	1.8	5.9 <i>l</i> 0.7 2	4 1.7 0 2.1	1.5 / 1.5 3	.9 2.0 1.7 2.5	26 24 39 59 /20	02	2.9 /.6 2.8 /./ 3.9 2.7 6.9 3.5	1.3 00 2 -/.5 0.7	0 59		69 -35-36	5.4 9.0 -1 3.4 -61	'2.3 — — —	5.8 240-5.0	- <i>1.</i> 6 440	0 5,000	500	9,400	19 0. 34 / 1	300 50.80	00	CLEAVAG	GE FAI	LURE.	
	NOTES I. BASED ON LOAD CARRYING SECTION OF DECK, DOUBLER, LONGITUDINAL COAMING BELOW DECK. 2. BASED ON AVERAGE OF LONGITUDINAL STRESSES FOR GAGES 1-2-3-4 TOP AND BOTTOM. 3. BASED ON AVERAGE OF LONGITUDINAL STRAINS LOAD CARRYING SECTION 4. E-6020 & E-6020 ELECTRODE USED UNLESS NOTED. COMPLETED ON A PROVIDENT OF DECK POUBLES NOTED. A-1 A-1 A-1 A-1 A-1 A-1 A-1 A-1																																	

TABLE VI

Electrode	Spec. No.	Plate Temp. °F	Max.Hardness Heat Affected Zone - Knoop	Av. Weld Hardness Knoop **	Av. Width of Heat Affected Zone - MM	Av. Parent Metal Hard- ness - Knoop
E-6010	1	70	433	239	2.08	178
E-6010	2	400	290	215	3.82	199
E-6020	1	70	368	237	2.97	206
E-6020	2	400	292	206	4.15	175
E-6010*	3	70	284	225	1.80	158
E-6010	4	70	484	256	1.73	184
E-6020*	3	70	232	194	2.92	153
E-6020	4	7 0	298	213	2.85	185

Single Pass Specimens

Plate specimen with deposited beads annealed at 1000° F for 8 hours.

** Several hardness traverses were made in each case. "Max. Hardness" is the maximum value found. "Av. Hardness" is the average of all the values measured in the area specified (from 20 to 60 readings). TABLE VII

Multiple Pass Specimen

Electrode	Order of Passes	Max. I Heat A Zone	Hardness Affected - Knoop	Average Hard Knoop	Weld ness
E-6020	1	:	258	215	i
E-6020	2		298	217	,
E-6020	3	3	328	214	:
E-6010	4	:	271	213	i
E-6010	5	:	508	238	3
E-6010	6		452	235	i

