Vision 3D artificielle Session 5: Disparity maps, correlation

Pascal Monasse monasse@imagine.enpc.fr

IMAGINE, École des Ponts ParisTech

http://imagine.enpc.fr/~monasse/Stereo/

Contents

Triangulation

Epipolar rectification

Disparity map

Contents

Triangulation

Epipolar rectification

Disparity map

Triangulation

Let us write again the binocular formulae:

$$\lambda x = K(RX + T) \quad \lambda' x' = K'X$$
• Write $Y^T = (X^T \quad \lambda \quad \lambda'):$

$$\begin{pmatrix} KR & -x \quad 0_3 \\ K' & 0_3 & -x' \end{pmatrix} Y = \begin{pmatrix} KT \\ 0_3 \end{pmatrix}$$

(6 equations↔5 unknowns+1 epipolar constraint)

- We can then recover X.
- Special case: R = Id, $T = Be_1$
- ► We get:

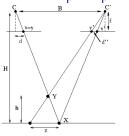
$$z(x - KK'^{-1}x') = \begin{pmatrix} Bf & 0 & 0 \end{pmatrix}^T$$

• If also K = K',

$$z = fB/[(x - x') \cdot e_1] = fB/d$$

d is the disparity

Triangulation



Fundamental principle of stereo vision

$$h \simeq rac{z}{B/H}, \quad z = d'' rac{H}{f}.$$

f focal length.
H distance optical center-ground.
B distance between optical centers
(baseline).

Goal

Given two rectified images, point correspondences and computation of their apparent shift (disparity) gives information about relative depth of the scene.

Recovery of R and T

► Suppose we know K, K', and F or E. Recover R and T?

From
$$E = [T]_{\times}R$$
,
 $E^{T}E = R^{T}(TT^{T} - ||T||^{2}I)R = (R^{T}T)(R^{T}T)^{T} - ||R^{T}T||^{2}I$

• If $x = R^T T$, $E^T E x = 0$ and if $y \cdot x = 0$, $E^T E y = -||T||^2 y$.

• Therefore
$$\sigma_1 = \sigma_2$$
 and $\sigma_3 = 0$.

• Inversely, from $E = Udiag(\sigma, \sigma, 0) V^T$, we can write:

$$E = \sigma U \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} U^{T} U \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} V = \sigma[T]_{\times} R$$

Actually, there are up to 4 solutions:

What is possible without calibration?

- ▶ We can recover *F*, but not *E*.
- Actually, from

$$x = PX \quad x' = P'X$$

we see that we have also:

$$x = (PH^{-1})(HX)$$
 $x' = (P'H^{-1})(HX)$

- Interpretation: applying a space homography and transforming the projection matrices (this changes K, K', R and T), we get exactly the same projections.
- Consequence: in the uncalibrated case, reconstruction can only be done modulo a 3D space homography.

Contents

Triangulation

Epipolar rectification

Disparity map

- It is convenient to get to a situation where epipolar lines are parallel and at same ordinate in both images.
- > As a consequence, epipoles are at horizontal infinity:

$$e=e'=egin{pmatrix}1\\0\\0\end{pmatrix}$$

 It is always possible to get to that situation by virtual rotation of cameras (application of homography)

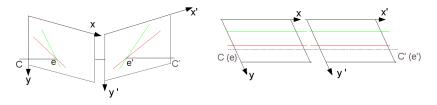


Image planes coincide and are parallel to baseline.

lmage 1

lmage 2

lmage 1

Rectified image 1

Image 2

Rectified image 2

Fundamental matrix can be written:

$$F = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}_{\times} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \text{ thus } x^{T} F x' = 0 \Leftrightarrow y - y' = 0$$

• Writing matrices $P = K \begin{pmatrix} I & 0 \end{pmatrix}$ and $P' = K' \begin{pmatrix} I & e_1 \end{pmatrix}$:

$$K = \begin{pmatrix} f_x & s & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{pmatrix} \quad K' = \begin{pmatrix} f'_x & s' & c'_x \\ 0 & f'_y & c'_y \\ 0 & 0 & 1 \end{pmatrix}$$

$$F = K^{-T}[e_1]_{\times}K'^{-1} = \frac{1}{f_y f_{y'}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -f_y \\ 0 & f'_y & c'_y f_y - c_y f'_y \end{pmatrix}$$

We must have f_y = f'_y and c_y = c'_y, that is identical second rows of K and K'

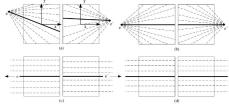
► We are looking for homographies H and H' to apply to images such that

$$F = H^T [e_1]_{ imes} H'$$

- That is 9 equations and 16 variables, 7 degrees of freedom remain: the first rows of K and K' and the rotation angle around baseline α
- Invariance through rotation around baseline:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix}^{T} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix} = [e_{1}]_{\times}$$

 Several methods exist, they try to distort as little as possible the image



Rectif. of Gluckman-Nayar (2001)

Epipolar rectification of Fusiello-Irsara (2008)

► We are looking for H and H' as rotations, supposing K = K' known:

$$H = K_n R K^{-1}$$
 and $H' = K'_n R' K^{-1}$

with K_n and K'_n of identical second row, R and R' rotationmatrices parameterized by Euler angles and

$$K = \begin{pmatrix} f & 0 & w/2 \\ 0 & f & h/2 \\ 0 & 0 & 1 \end{pmatrix}$$

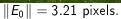
• Writing $R = R_x(\theta_x)R_y(\theta_y)R_z(\theta_z)$ we must have:

$$F = (K_n R K^{-1})^T [e_1]_{\times} (K_n R' K^{-1}) = K^{-T} R_z^T R_y^T [e_1]_{\times} R' K^{-1}$$

We minimize the sum of squares of points to their epipolar line accoring to the 6 parametesr

$$(\theta_y, \theta_z, \theta'_x, \theta'_y, \theta'_z, f)$$

Ruins



 $||E_6|| = 0.12$ pixels.

Ruins

 $||E_6|| = 0.12$ pixels.

Cake

$\|E_{13}\| = 0.65 \text{ pixels.}$

 $||E_0|| = 17.9$ pixels.

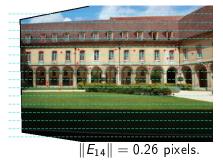
Cake

 $||E_0|| = 17.9$ pixels.

 $||E_{13}|| = 0.65$ pixels.

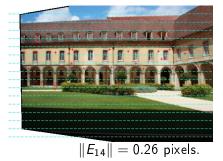
Cluny

$$||E_0|| = 4.87$$
 pixels.



Cluny

$$||E_0|| = 4.87$$
 pixels.



Carcassonne

 $||E_0|| = 15.6$ pixels.

 $||E_4|| = 0.24$ pixels.

Carcassonne

 $||E_0|| = 15.6$ pixels.

 $||E_4|| = 0.24$ pixels.

Books

Books

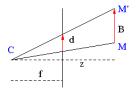
Contents

Triangulation

Epipolar rectification

Disparity map

Disparity map



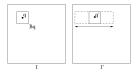
$$z = \frac{fB}{d}$$

Depth z is inversely proportional to disparity d (apparent motion, in pixels).

- Disparity map: At each pixel, its apparent motion between left and right images.
- We already know disparity at feature points, this gives an idea about min and max motion, which makes the search for matching points less ambiguous and faster.

Local search

 At each pixel, we consider a context window and we look for the motion of this window.



Distance between windows:

$$d(q) = \arg\min_d \sum_{p \in F} (I(q+p) - I'(q+de_1+p))^2$$

Variants to be more robust to illumination changes:
 1. Translate intensities by the mean over the window.

$$I(q+p) \rightarrow I(q+p) - \sum_{r \in F} I(q+r)/\#F$$

2. Normalize by mean and variance over window.

Distance between patches

Several distances or similarity measures are popular:

SAD: Sum of Absolute Differences

$$d(q) = rgmin_d \sum_{p \in F} |I(q+p) - I'(q+de_1+p)|$$

SSD: Sum of Squared Differences

$$d(q) = rgmin_d \sum_{p \in F} (I(q+p) - I'(q+de_1+p))^2$$

CSSD: Centered Sum of Squared Differences

$$d(q) = \arg \min_{d} \sum_{p \in F} (I(q + p) - \overline{I}_F - I'(q + de_1 + p) + \overline{I}'_F)^2$$

NCC: Normalized Cross-Correlation

$$d(q) = \arg\max_{d} \frac{\sum_{p \in F} (l(q+p) - \bar{l}_{F})(l'(q+de_{1}+p) - \bar{l}_{F}')}{\sqrt{\sum (l(q+p) - \bar{l}_{F})^{2}} \sqrt{\sum (l'(q+de_{1}+p) - \bar{l}_{F}')^{2}}}$$

Problems of local methods

- Implicit hypothesis: all points of window move with same motion, that is they are in a fronto-parallel plane.
- aperture problem: the context can be too small in certain regions, lack of information.
- adherence problem: intensity discontinuities influence strongly the estimated disparity and if it corresponds with a depth discontinuity, we have a tendency to dilate the front object.

- O: aperture problem
- A: adherence problem

- We rely on best found distances and we put them in a priority queue (seeds)
- We pop the best seed G from the queue, we compute for neighbors the best disparity between d(G) − 1, d(G), and d(G) + 1 and we push them in the queue.

Right image

- We rely on best found distances and we put them in a priority queue (seeds)
- We pop the best seed G from the queue, we compute for neighbors the best disparity between d(G) − 1, d(G), and d(G) + 1 and we push them in the queue.

Left image

- We rely on best found distances and we put them in a priority queue (seeds)
- We pop the best seed G from the queue, we compute for neighbors the best disparity between d(G) − 1, d(G), and d(G) + 1 and we push them in the queue.

Seeds

- We rely on best found distances and we put them in a priority queue (seeds)
- We pop the best seed G from the queue, we compute for neighbors the best disparity between d(G) − 1, d(G), and d(G) + 1 and we push them in the queue.

Seeds expansion

- We rely on best found distances and we put them in a priority queue (seeds)
- We pop the best seed G from the queue, we compute for neighbors the best disparity between d(G) − 1, d(G), and d(G) + 1 and we push them in the queue.

Left image

Conclusion

- We can get back to the canonical situation by epipolar rectification. Limit: when epipoles are in the image, standard methods are not adapted.
- ► For disparity map computation, there are many choices:
 - 1. Size and shape of window?
 - 2. Which distance?
 - 3. Filtering of disparity map to reject uncertain disparities?
- You will see next session a *global* method for disparity computation
- Very active domain of research, >100 methods tested at http://vision.middlebury.edu/stereo/

Practical session: Disparity map computation by propagation of seeds

Objective: Compute the disparity map associated to a pair of images. We start from high confidence points (seeds), then expand by supposing that the disparity map is regular.

- Get initial program from the website.
- Compute disparity map from image 1 to 2 of all points by highest NCC score.
- Keep only disparity where NCC is sufficiently high (0.9), put them as seeds in a std::priority_queue.
- While queue is not empty:
 - 1. Pop P, the top of the queue.
 - 2. For each 8-neighbor Q of P having no valid disparity, set d_Q by highest NCC score among $d_P 1$, d_P , and $d_P + 1$.
 - 3. Push Q in queue.