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Triangulation

I Let us write again the binocular formulae:

λx = K (RX + T ) λ′x ′ = K ′X

I Write Y T =
(
XT λ λ′

)
:(

KR −x 03
K ′ 03 −x ′

)
Y =

(
KT

03

)
(6 equations↔5 unknowns+1 epipolar constraint)

I We can then recover X .

I Special case: R = Id , T = Be1
I We get:

z(x − KK
′−1x ′) =

(
Bf 0 0

)T
I If also K = K ′,

z = fB/[(x − x ′) · e1] = fB/d

I d is the disparity



Triangulation

Fundamental principle of stereo vision

h w
z

B/H
, z = d ′′

H

f
.

f focal length.

H distance optical center-ground.

B distance between optical centers

(baseline).

Goal
Given two recti�ed images, point correspondences and computation

of their apparent shift (disparity) gives information about relative

depth of the scene.



Recovery of R and T
I Suppose we know K , K ′, and F or E . Recover R and T?
I From E = [T ]×R ,

ETE = RT (TTT − ‖T‖2I )R = (RTT )(RTT )T − ‖RTT‖2I

I If x = RTT , ETEx = 0 and if y · x = 0, ETEy = −‖T‖2y .
I Therefore σ1 = σ2 and σ3 = 0.
I Inversely, from E = Udiag(σ, σ, 0)V T , we can write:

E = σU

0 −1 0

1 0 0

0 0 0

UTU

 0 1 0

−1 0 0

0 0 1

V = σ[T ]×R

I Actually, there are up to 4 solutions:

Source: Hartley-Zisserman (2003)



What is possible without calibration?

I We can recover F , but not E .

I Actually, from

x = PX x ′ = P ′X

we see that we have also:

x = (PH−1)(HX ) x ′ = (P ′H−1)(HX )

I Interpretation: applying a space homography and transforming

the projection matrices (this changes K , K ′, R and T ), we get

exactly the same projections.

I Consequence: in the uncalibrated case, reconstruction can only

be done modulo a 3D space homography.
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Epipolar recti�cation

I It is convenient to get to a situation where epipolar lines are

parallel and at same ordinate in both images.

I As a consequence, epipoles are at horizontal in�nity:

e = e ′ =

1

0

0


I It is always possible to get to that situation by virtual rotation

of cameras (application of homography)

I Image planes coincide and are parallel to baseline.



Epipolar recti�cation

Image 1



Epipolar recti�cation

Image 2



Epipolar recti�cation

Image 1 Recti�ed image 1



Epipolar recti�cation

Image 2 Recti�ed image 2



Epipolar recti�cation

I Fundamental matrix can be written:

F =

1

0

0


×

=

0 0 0

0 0 −1
0 1 0

 thus xTFx ′ = 0⇔ y − y ′ = 0

I Writing matrices P = K
(
I 0

)
and P ′ = K ′

(
I e1

)
:

K =

fx s cx
0 fy cy
0 0 1

 K ′ =

f ′x s ′ c ′x
0 f ′y c ′y
0 0 1



F = K−T [e1]×K
′−1 =

1

fy fy ′

0 0 0

0 0 −fy
0 f ′y c ′y fy − cy f

′
y


I We must have fy = f ′y and cy = c ′y , that is identical second

rows of K and K ′



Epipolar recti�cation
I We are looking for homographies H and H ′ to apply to images

such that

F = HT [e1]×H
′

I That is 9 equations and 16 variables, 7 degrees of freedom

remain: the �rst rows of K and K ′ and the rotation angle

around baseline α
I Invariance through rotation around baseline:1 0 0

0 cosα − sinα
0 sinα cosα

T 0 0 0

0 0 −1
0 1 0

1 0 0

0 cosα − sinα
0 sinα cosα

 = [e1]×

I Several methods exist,

they try to distort as

little as possible the

image

Rectif. of Gluckman-Nayar (2001)



Epipolar recti�cation of Fusiello-Irsara (2008)

I We are looking for H and H ′ as rotations, supposing K = K ′

known:

H = KnRK
−1 and H ′ = K ′nR

′K−1

with Kn and K ′n of identical second row, R and R ′

rotationmatrices parameterized by Euler angles and

K =

f 0 w/2
0 f h/2
0 0 1


I Writing R = Rx(θx)Ry (θy )Rz(θz) we must have:

F = (KnRK
−1)T [e1]×(KnR

′K−1) = K−TRT
z R

T
y [e1]×R

′K−1

I We minimize the sum of squares of points to their epipolar line

accoring to the 6 parametesr

(θy , θz , θ
′
x , θ
′
y , θ
′
z , f )
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Disparity map

z =
fB

d

Depth z is inversely proportional to disparity d

(apparent motion, in pixels).

I Disparity map: At each pixel, its apparent motion between left

and right images.

I We already know disparity at feature points, this gives an idea

about min and max motion, which makes the search for

matching points less ambiguous and faster.



Local search

I At each pixel, we consider a context window and we look for

the motion of this window.

I Distance between windows:

d(q) = argmin
d

∑
p∈F

(I (q + p)− I ′(q + de1 + p))2

I Variants to be more robust to illumination changes:
1. Translate intensities by the mean over the window.

I (q + p)→ I (q + p)−
∑
r∈F

I (q + r)/#F

2. Normalize by mean and variance over window.



Distance between patches
Several distances or similarity measures are popular:

I SAD: Sum of Absolute Di�erences

d(q) = argmin
d

∑
p∈F
|I (q + p)− I ′(q + de1 + p)|

I SSD: Sum of Squared Di�erences

d(q) = argmin
d

∑
p∈F

(I (q + p)− I ′(q + de1 + p))2

I CSSD: Centered Sum of Squared Di�erences

d(q) = argmin
d

∑
p∈F

(I (q + p)− ĪF − I ′(q + de1 + p) + Ī ′F )2

I NCC: Normalized Cross-Correlation

d(q) = argmax
d

∑
p∈F (I (q + p)− ĪF )(I ′(q + de1 + p)− Ī ′F )√∑
(I (q + p)− ĪF )2

√∑
(I ′(q + de1 + p)− Ī ′F )2



Problems of local methods

I Implicit hypothesis: all points of window move with same

motion, that is they are in a fronto-parallel plane.

I aperture problem: the context can be too small in certain

regions, lack of information.

I adherence problem: intensity discontinuities in�uence strongly

the estimated disparity and if it corresponds with a depth

discontinuity, we have a tendency to dilate the front object.

I O: aperture problem

I A: adherence problem



Example: seeds expansion

I We rely on best found distances and we put them in a priority

queue (seeds)

I We pop the best seed G from the queue, we compute for

neighbors the best disparity between d(G )− 1, d(G ), and
d(G ) + 1 and we push them in the queue.

Right image
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Conclusion

I We can get back to the canonical situation by epipolar

recti�cation. Limit: when epipoles are in the image, standard

methods are not adapted.

I For disparity map computation, there are many choices:

1. Size and shape of window?
2. Which distance?
3. Filtering of disparity map to reject uncertain disparities?

I You will see next session a global method for disparity

computation

I Very active domain of research, >100 methods tested at

http://vision.middlebury.edu/stereo/

http://vision.middlebury.edu/stereo/


Practical session: Disparity map computation by
propagation of seeds

Objective: Compute the disparity map associated to a pair of

images. We start from high con�dence points (seeds), then expand

by supposing that the disparity map is regular.

I Get initial program from the website.

I Compute disparity map from image 1 to 2 of all points by

highest NCC score.

I Keep only disparity where NCC is su�ciently high (0.9), put

them as seeds in a std::priority_queue.

I While queue is not empty:

1. Pop P, the top of the queue.
2. For each 8-neighbor Q of P having no valid disparity, set dQ

by highest NCC score among dP − 1, dP , and dP + 1.
3. Push Q in queue.


	Triangulation
	Epipolar rectification
	Disparity map
	Conclusion
	Practical session

