Side note: Cluny abbey

Applications to virtual tourism, video games, film industry...

Problem 4: 3D model construction (cont.)

Problem 4: 3D model construction (cont.)

Problem 4: 3D model construction (cont.) Two main tasks

• External camera calibration

= determination of pose (i.e., location and orientation) of each camera in a common coordinate system

- [−] requires corresponding points in several images
	- \rightarrow detection and matching of salient points
- Dense 3D reconstruction

= by triangulation, given camera pose (!) not restricted to salient points only

[−] requires matching image patches in several images

Question

Suppose you are given two views of an object.

What can be obstacles to feature detection & matching?

Robustness / repeatability issues

Obstacles to detection and matching :

- [−] change of scale
- [−] change of orientation (rotation)
- [−] change of viewpoint (affine, projective transformations)
- [−] change of illumination
- [−] noise
- [−] clutter & occlusion
- [−] repetitive patterns
- Design of robust similarity measures, detector and descriptors/matchers

Wrap-up: Problems to address

- Similarity measures
	- [−] how to compare image patches?
- Salient point detection
	- [−] what are singular patches?
- Salient point matching
	- [−] how to abstract patches and compare abstraction?
- ... in a robust way

A similar setting: tracking

- Problem: in a **video**
	- [−] maintain a set of correspondences
- Solution 1: naïve approach

- Solution 2: tracking approach
	- limited movement between successive frames
	- next displacement can be anticipated from previous motion
	- [−] in frame 1, detect features
	- [−] in following frames, look for corresponding features (or similar image patches) only where expected

89 N V 7

Common similarity measures

patch P centered on p

- P (or P_p): patch of pixels around given point p in image I
- $-\bm{x}_q = (x, y)$: position of pixel q P in image I
- $u = (u, v)$: displacement of patch P in image I'

− N.B. smaller value \leftrightarrow more similar (0 \leftrightarrow equal)

• Sum of square difference (SSD) [similar \]

$$
-E_{SSD}(P; \mathbf{u}) = \sum_{q} [I'(\mathbf{x}_q + \mathbf{u}) - I(\mathbf{x}_q)]^2
$$

• Cross correlation (CC) [similar λ]

$$
- E_{CC}(P; \mathbf{u}) = \sum_{q} [I'(\mathbf{x}_q + \mathbf{u}) I(\mathbf{x}_q)]
$$

meaningful mainly if normalized (see below)

• Auto-correlation (AC): single image $I = I'$ $-E_{AC}(P; u)$: applies to $E_{SSD}(P; u)$ or $E_{CC}(P; u)$

Auto-correlation surfaces

Szelisky 2010 © Springer Szelisky 2010 © Springer

 $-$ AC surface = P fixed: $E_{AC}(u)$

[−] original image:

red crosses = locations of AC surface computation

(a) (b) (c)

 Q1: Which AC surface corresponds to which cross?

 Q2: Which surface corresponds to a distinctive feature ?

Auto-correlation surfaces

- $-$ AC surface = P fixed: $E_{AC}(u)$
- [−] original image:
	- red crosses = locations of AC surface computation

[−] (a): textured patch, good unique minimum

[−] (b): patch with edge, 1D aperture problem $(\leftrightarrow$ barber-pole illusion)

Two uses of local similarity measures

- Correspondence assessment
	- If a patch P_1 around point p_1 in image I is similar to a patch $P_{_2}$ around point $p_{_2}$ in image \varGamma ', then $p_{_1}$ and $p_{_2}$ are potential matches.
- Saliency for detection
	- [−] A point that is dissimilar to other points in its neighborhood is salient, and thus "detected".

Auto-correlation for detection (Moravec 1980)

• Directional variance

$$
-E_{AC}(P; \mathbf{u}) = \sum_{q} [I(\mathbf{x}_q + \mathbf{u}) - I(\mathbf{x}_q)]^2
$$

- \blacksquare patch P: square window (typ. 4x4 to 8x8)
- 4 directions: $u \in U = \{(0,1), (1,0), (1,1), (1,-1)\}\$
- Interest points
	- − s.t. $\min_{\bf u}$ $U(E_{AC}(P; {\bf u}))$ above threshold and local maximum (typ. 8 neighbors)

• Why is called a "corner" detector?

threshold = seuil

Auto-correlation for detection (Moravec 1980)

- Directional variance
	- $-E_{AC}(P; u) = \sum_{q=p} [I(x_q+u)-I(x_q)]^2$
		- patch P : square window (typ. 4x4 to 8x8)
		- 4 directions: $u \in U = \{(0,1), (1,0), (1,1), (1,-1)\}\$
- Interest points
	- − s.t. \min_{u} _U(E_{AC}(P; u)) above threshold and local maximum (typ. 8 neighbors)

B. Edge

Little intensity variation

along edge, large variation perpendicular to edge

[−] "corner" detector

Fair performance, some problems...

threshold = seuil

C. Edge

Large intensity variation

in all directions

D. Edge

Large intensity variation

in all directions

Auto-correlation for detection (Harris-Stephens 1988)

- Pb 1 (in Moravec): discrete set of shifts \rightarrow anisotropic
- Solution: analytic expansion (Taylor, $1st$ order)

$$
I(\mathbf{x}_q + \Delta \mathbf{u}) \approx I(\mathbf{x}_q) + \nabla I(\mathbf{x}_q) \Delta \mathbf{u}
$$

$$
E_{AC}(P; \Delta u) = \sum_{q \in P} [I(x_q + \Delta u) - I(x_q)]^2
$$

\n
$$
\approx \sum_{q \in P} [\nabla I(x_q) \Delta u]^2 = \Delta u^T A_P \Delta u
$$

\n
$$
A_P = \left[\sum_{q \in P} I_x^2(x_q) - \sum_{q \in P} I_x(x_q) I_y(x_q) \right] \text{with} \qquad I_x(x_q) = \frac{\partial I}{\partial x}(x_q)
$$

\n
$$
I_y(x_q) = \frac{\partial I}{\partial y}(x_q)
$$

 A_p : auto-correlation matrix

(cf. second-moment matrix, structure tensor)

Auto-correlation for detection (Harris-Stephens 1988)

- Pb 2: rectangular binary window \rightarrow noisy, anisotropic
- Solution: use smooth circular window, e.g., Gaussian

 \rightarrow insensitive to in-plane rotation

$$
E_{AC}(P; \Delta u) = \sum_{q \in P} w(x_q) [I(x_q + \Delta u) - I(x_q)]^2
$$

\n
$$
\approx \sum_{q \in P} w(x_q) [\nabla I(x_q) \Delta u]^2 = \Delta u^T A_P \Delta u
$$

\n
$$
A_P = \sum_{q \in P} \left(w * \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \right) (x_q)
$$

\ne.g., $w(x_q) = G(x, y; \sigma) = \frac{1}{2 \pi \sigma^2} e^{-\frac{x^2 + y^2}{2 \sigma^2}}$

Auto-correlation for detection (Harris-Stephens 1988)

• Pb 3: $\min_{\mathbf{u}}(E_{AC}(P;\mathbf{u})) \rightarrow$ too many edge responses

- Solution:
	- [−] keep only marked peaks
	- [−] for this, look at local curvature

Szelisky 2010 © Springerszelisky 2010 © Springer

Curvature

curve = courbe curvature = courbure osculating circle = cercle osculateur principal curvature = courbure principale eigenvalue = valeur propre Hessian (matrix) = (matrice) hessienne

• Curvature k of plane curve C at point P

 $= 1/r$ where r radius of osculating circle

• Principal curvatures k_1 and k_2 of surface $S(u,v)$ at P

= max & min value of curvature for different normal planes

[−] sign convention: + if turns in same direction as chosen normal

 $=$ eigenvalues of Hessian of S (shape operator) at P

$$
H(S) = \begin{bmatrix} \frac{\partial^2 S}{\partial u^2} & \frac{\partial^2 S}{\partial u \partial v} \\ \frac{\partial^2 S}{\partial u \partial v} & \frac{\partial^2 S}{\partial v^2} \end{bmatrix}
$$

Auto-correlation for detection

(Harris-Stephens 1988)

peak = pic sharp = tranchant, aigu, marqué... ridge = crête

- Pb 3: $\min_{\mathbf{u}}(E_{AC}(P;\mathbf{u})) \rightarrow$ too many edge responses
- Solution: look at local curvature of E_{AC}
	- $-E_{AC}(P; u) \approx u^T A_p u$ for u small (2nd order discarded)

$$
- (H(E_{AC}))(P) \approx A_{P}
$$

- principal curvatures: eigenvalues λ_{0} , λ_{1} of A_{P} $(\rightarrow$ rotational invariance description of A_{p}) (a) λ_{0} , λ_{1} large: E_{AC} sharply peaked \rightarrow corner (b) $\lambda_{_0}$ small, $\lambda_{_1}$ large: $E_{_{AC}}$ ridged shape \rightarrow edge (c) λ_{0} , λ_{1} small: E_{AC} flat \rightarrow +/- constant intensity λ_{1}

 λ_{0}

Eigenvalue-based criteria

• Good features to track (Shi & Tomasi 1994)

larger uncertainty \leftrightarrow smaller eigenvalue λ_{0}

► look for maxima in smaller eigenvalue λ_0

Eigenvalue-based criteria (cont.)

Avoid explicit eigenvalue decomposition (square root)

- \bullet only use determinant and trace of A
- Corner response (Harris-Stephens 1988)

$$
R = \det(A) - \alpha \operatorname{tr}(A)^2 = \lambda_0 \lambda_1 - \alpha (\lambda_0 + \lambda_1)^2
$$

with $\alpha = 0.06$ (common: $0.04 \le \alpha \le 0.15$)

• Corner strength (Brown et al. 2005): harmonic mean

$$
f = \frac{\det(A)}{\text{tr}(A)} = \frac{\lambda_0 \lambda_1}{\lambda_0 + \lambda_1}
$$

 \rightarrow smoother response in the region where $\lambda_0 \approx \lambda_1$

[see also SIFT detector below]

Computations for the so-called "Harris corner detector"

• Compute for each point p and corresponding patch P :

$$
A_P = \sum_{q \in P} \left(w * \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \right) (x_q)
$$

where $I_x(\mathbf{x}_q) = \frac{\partial I}{\partial x} (\mathbf{x}_q)$, $I_y(\mathbf{x}_q) = \frac{\partial I}{\partial y} (\mathbf{x}_q)$

$$
w(\mathbf{x}_q) = G(x, y; \sigma) = \frac{1}{2 \pi \sigma^2} e^{-\frac{x^2 + y^2}{2 \sigma^2}}
$$

then consider criterion based on $det(A)$, $tr(A)$

• Is this computation efficient? How to compute it efficiently?

Differentiating in the presence of noise

Edge not noticeable because of noise

Differentiating in the presence of noise

Efficient Differentiation

• Associativity \rightarrow smaller size masks \rightarrow less computations (similar to clever associativity for efficient matrix multiplication)

Algorithm for the so-called "Harris corner detector"

- For each p of I , compute the derivatives $I_x(\bm{x}_p)$ and $I_y(\bm{x}_p)$
	- convolve operators $d_{x} = [-\frac{1}{2} 0 \frac{1}{2}]$ and $d_{y} = [-\frac{1}{2} 0 \frac{1}{2}]^{T}$ with smoothing "derivation" Gaussian (e.g., $\sigma_{_d}^{}$ = 1) $\bm{\rightarrow}$ derivative masks
	- **-** convolve *I* with the derivative masks $\rightarrow I_x$ and I_y
	- using 1D-convolutions only (1D-Gaussian and 1D-derivation), not 2D-convolutions \rightarrow more efficient [see slides on convolution]
- For each p , compute product of derivatives $I_{\scriptscriptstyle x}$ $\frac{2}{J}$, $I_{x,y}$, I_{y} 2
	- and extra smoothing with an "integration" Gaussian (e.g., $\sigma_{_i} = 2$)
- For each p , consider auto-correlation matrix
	- compute "corner response"
	- response above threshold and local maximum \rightarrow detection
	- possibly: only keep locally significant responses (see ANMS below)

Image boundary effects

- Padding strategies (aka wrapping mode, texture addressing mode)
	- [−] pad with 0 (or constant), wrap (loop around), clamp (replicate edge pixel), mirror (reflect pixels across edge)

[−] or discard results close to boundary...

Adaptive non-maximal suppression (ANMS)

- Problem: local maxima
	- \rightarrow uneven distribution
	- [−] denser in regions of higher contrast
- Sol.: only keep locally significant responses
	- [−] greater (e.g. 10%+) than all neighbors within given radius r
	- ϵ choose r such that n detections only:

Brown et al. 2005

(a) Strongest 250

(b) Strongest 500

(c) ANMS 250, $r = 24$

 $r_{p}^{}=\min_{q\,\textit{detection}}\parallel\bm{x}_{p}^{}-\bm{x}_{q}^{} \parallel \text{ such that } f\!\!\left(\bm{x}_{p}^{} \right)\leq0.9\,f\!\!\left(\bm{x}_{q}^{} \right)\parallel$

⁽d) ANMS 500, $r = 16$

Brown et al. 2005 © IEEE

et al. 2005

ËË

Adaptive non-maximal suppression (ANMS)

An Algorithm for ANMS

 $r_{\min} = \infty$

ProcessedPoints =

sort detections by decreasing strength

for each detection p , in decreasing strength order

$$
r_p = \min_{q \in \text{ProcessedPoints}} ||x_p - x_q|| \text{ such that } f(x_p) < c \, f(x_q)
$$
\n
$$
= \text{suppression radius w.r.t. } \text{ProcessedPoints}
$$
\nif $r_p < r_{\text{min}} + r_p$

\nadd *p* to *ProcessedPoints*

\nstop when $|ProcessedPoints| = \text{number of requested detections}$

// Quadratic in number of points. (There are subquadratic algorithms.)

Sensitivity to change of scale

What is salient at some scale is not at another scale

Robustness / repeatability issues

- Obstacles to detection and matching :
	- [−] change of scale
	- [−] change of orientation (rotation)
	- [−] change of viewpoint (affine, projective transformations)
	- [−] change of illumination
	- [−] noise
	- [−] clutter & occlusion
	- [−] repetitive patterns

 Design of robust similarity measures, detector and descriptors/matchers

What is the expected repeatability of Harris corner ?

Some repeatability measures

- Setting (Schmid et al. 2000, Mikolajczyk & Schmid 2001, 2002)
	- [−] images of planar scenes
	- [−] known homography and scale transformations
- Location error
	- detected points x_a in I , x_b in I'
	- $-I$ and I' related by homography $H: I = H(I')$
	- $\epsilon_{\text{pos}} = ||x_a Hx_b||$ $-$ 1.5 (e.g.) means success
- Scale error
	- [−] scale ratio within given factor, e.g. 1.2, means success

Some repeatability measures (cont.)

- Affinity error
	- \hat{H} local affine approximation of H at point \mathbf{x}_{h}
	- μ_A and μ_B elliptical regions defined by $x^T M x \leq 1$ corresponding to Harris correlation matrices A and B
	- [−] Jaccard distance

$$
\epsilon_{\text{surf}} = 1 - \frac{\mu_A \cap (\hat{H}^T \mu_B \hat{H})}{\mu_A \cup (\hat{H}^T \mu_B \hat{H})}
$$

 μ A

overlap region

 μ B

-
$$
\epsilon_{\text{surf}} < 0.2
$$
 (e.g.) means success