An evolutionary algorithm for harmonic music composition

José Pedro Aguerre, Rodrigo Bayá, <u>Renzo Massobrio</u>, and Sergio Nesmachnow

Universidad de la República, Uruguay

Metaheuristics International Conference, Barcelona, 2017

UNIVERSIDAD DE LA REPÚBLICA URUGUAY

Outline

- The harmonic music composition problem
- 2 Related work
- **③** EA for harmonic music composition
- Results and discussion
- Onclusions and future work

The harmonic music composition problem

- Music can be represented as scores.
- A score consists of rests and notes with their octave and duration.
- Notes are C, D, E, F, G, A, B, and their respective sharps. Duration can be whole, half, quarter, etc.
- Other concepts, such as compasses and key and time signatures, are not considered in the problem formulation.

The harmonic music composition problem

- Harmonic music composition is the process of defining a set of notes representing melodies and harmonies.
- A melody is defined as an ordered set of notes.
- Harmony is the union of two or more melodies that generate harmonic intervals.

The harmonic music composition problem

Mathematical formulation

Find a score s_G , given:

- A set of reference scores $S = \{s_1, \dots, s_N\}$, |S| = N;
- A function $f : \{s_G\} \times S \to \mathbb{N}$ that evaluates similarity between two scores.

The goal of the problem is to maximize the objective function *OF*, where $\alpha, \beta \in [0, 1]$ and $\alpha + \beta = 1$.

$$OF = \max\left\{\alpha \times \underbrace{\sum_{s \in S} f(s_G, s)}_{\text{average similarity}} + \beta \times \underbrace{\max_{s \in S} f(s_G, s)}_{\text{closest score}}\right\}$$

Related work

- Studies on automatic music generation date back to the late 1950s.
- Several proposals, including: random numbers, formal grammars, cellular automata, fractals, and evolutionary computation.
- A summary of methods on automatic music composition is presented in Miranda (2001).
- Three main approaches:
 - generate completely random music.
 - construct compositions based on music rules, considering either melodies or harmonies.
 - generate compositions using entry sounds or scores.
- No previous attempts using EA to exploit the similarity between compositions by the same author.

EA for harmonic music composition

- We propose a parallel evolutionary algorithm, following the distributed subpopulations model.
- Solution encoding:
 - A musical score is represented by a string.
 - A note is represented by a set of characters: i) the note ii) "#" if the note is sharp; iii) the octave iv) the duration: w-whole, h-half, q-quartet, i-eighth and s-sixteenth.
 - ► *R* represents a rest, followed by its duration.
 - V represents a new voice.

"Rs E5s A5s C6s B5s E5s B5s D6s C6i E6i G#5i E6i A5s E5s A5s C6s B5s E5s B5s D6s C6i A5i Rq"

Example: extract of Bach's Inventio 13

EA for harmonic music composition

• Fitness function: seven score comparison criteria and two musical aptitude metrics.

EA for harmonic music composition

- Evolutionary operators:
 - Selection. Stochastic universal sampling operator.
 - *Recombination*. Single point list crossover.
 - Mutation. Four operators:
 - random note modification.
 - add or delete note.
 - split or join note.
 - 4 voice order permutation.
 - Migration. Periodically exchanges randomly selected individuals between demes, considering an unidirectional ring topology.
- Evolution strategy: generational gap of populations, with elitism.
- Stopping criterion: stagnation during 10 epochs.

Results and discussion

- Software and hardware platform:
 - EA implemented in Java using the Watchmaker framework.
 - Executions performed on a core i7-3770, 16 GB RAM, and Fedora 19.
- Parameter configuration experiments.
 - Preliminary experiments:
 - ***** Weights: $\alpha = 0.3, \beta = 0.7$.
 - Number of demes: 8.
 - ★ Recombination probability: 0.75.
 - ★ Elite population: 5%.
 - 20 independent executions on a set of 10 scores by Bach and a stopping criterion of 400 generations.
 - * Mutation probability: $\{0.001, 0.005\}$.
 - **★** Generations per epoch: $\{40, 50\}$.
 - ★ Population per deme: {80, 100, 120}.
 - ★ Migrants per epoch: {5, 10}.

Results and discussion

- 3 databases with 5, 10, and 25 scores by Bach.
- 50 independent executions for each instance.

# scores	1/fitness ($\mu{\pm}\sigma$)	time (s) ($\mu \pm \sigma$)	
5	30.1±2.6	454.8±113.4	
10	27.3±2.6	$413.6{\pm}108.9$	
25	27.1±2.9	$378.9 {\pm} 95.5$	

Better musical properties achieved with larger reference databases.

Results and discussion

• Similar results when using other composers as reference, on classical and rock music.

	and the second s			
	Mozart	Beethoven	Chaikovsky	The Beatles
1/fitness ($\mu \pm \sigma$)	31.5±2.6	28.5±2.0	32.1±2.7	30.1±2.5
time (s) ($\mu \pm \sigma$)	414.2±101.1	393.5±99.3	418.31±109.7	390.67±96.4

Conclusions and future work

Conclusions:

- A parallel EA for harmonic music composition was presented.
- Fitness function uses score comparison against a reference database and musical aptitude metrics.
- Better musical attributes are obtained with larger reference databases.
- Accurate results are reported for three different Bach databases and for other classic and rock composers.

Future work:

- Include other musical aptitude criteria.
- Execute in cluster/cloud to deal with larger databases.
- Evaluate other metaheuristics for harmonic music composition.

Conclusions and future work

Conclusions:

- A parallel EA for harmonic music composition was presented.
- Fitness function uses score comparison against a reference database and musical aptitude metrics.
- Better musical attributes are obtained with larger reference databases.
- Accurate results are reported for three different Bach databases and for other classic and rock composers.

Future work:

- Include other musical aptitude criteria.
- Execute in cluster/cloud to deal with larger databases.
- Evaluate other metaheuristics for harmonic music composition.

Thanks for your attention

