PRÁCTICO 5

Superficies paramétricas

- 1. Encontrar la ecuación del plano tangente a la superficie paramétrica $\Phi(u,v) = (u^2, u \sin e^v, \frac{1}{3}u \cos e^v)$ en el punto (13,2,1).
- 2. Determinar en qué puntos son regulares las siguientes superficies paramétricas:

a)
$$x = 2u, y = u^2 + v, z = v^2$$

b)
$$x = u^2 - v^2$$
, $y = u + v$, $z = u^2 + 4v$

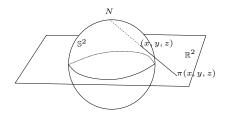
- 3. Dada una esfera de radio 2 centrada en el origen, hallar la ecuación del plano tangente en el punto $(1, 1, \sqrt{2})$ considerando la esfera como:
 - a) una superficie parametrizada por $\Phi(\theta,\phi) = (2\cos\theta\sin\phi, 2\sin\theta\sin\phi, 2\cos\phi)$
 - b) un conjunto de nivel de la función $f(x, y, z) = x^2 + y^2 + z^2$
 - c) la gráfica de $g(x,y) = \sqrt{4 x^2 y^2}$
- 4. Encontrar una expresión para un vector unitario normal a la superficie

$$x = \sin v, \qquad y = u \qquad z = \cos v$$

con $v \in [0, 2\pi]$ y $u \in [-1, 3]$. Identificar la superficie.

5. PROYECCIÓN ESTEREOGRÁFICA

Consideremos la esfera de radio 1 en \mathbb{R}^3 , $\mathbb{S}^2 = \{(x,y,z)/x^2 + y^2 + z^2 = 1\}$, y la función $\pi: \mathbb{S}^2 \setminus \{N\} \longrightarrow \mathbb{R}^2$, donde \mathbb{R}^2 representa el plano xy y N = (0,0,1), definido de la siguiente forma: $\pi(x,y,z)$ es punto donde la recta que une N con (x,y,z), corta al plano xy.



- a) Escribir explicitamente el mapa π .
- b) Verificar que

$$\pi^{-1}(u,v) = \left(\frac{2u}{1+u^2+v^2}, \frac{2v}{1+u^2+v^2}, \frac{u^2+v^2-1}{1+u^2+v^2}\right)$$

es la inversa de π y que es una parametrización de $\mathbb{S}^2\backslash\{N\}.$

- c) ¿Cómo podríamos cubrir toda la esfera con parametrizaciones?
- 6. Sea la función escalar $\varphi(x, y, z) = log(x^2 + y^2)$ definida en el abierto $\Omega = \{(x, y, z) \text{ tal que } x^2 + y^2 \neq 0\}$. Calcular la integral de φ sobre un cilindro (sin tapas) de radio 1 y altura 1.
- 7. Consideremos una placa infinita cargada uniformemente, coincidente con el plano yz de \mathbb{R}^3 , y sea $E(x,y,z)=(\frac{\sigma}{2\epsilon_0},0,0)$ el campo eléctrico generado por la placa en un punto cualquiera del espacio. Si la densidad de carga de la placa σ es constante, calcular el flujo de campo eléctrico a través de las siguientes superficies (recordar que ϵ_0 es constante):

- a) El rectángulo de vértices (0,0,1/2), (1,0,1/2), (0,0,1) y (1,0,1).
- b) El rectángulo de vértices (1,0,0), (1,0,1), (1,1,0) y (1,1,1).
- $c) \ \mathbb{S}^2 \cap \{(x,y,z): x \geq 1\}.$
- d) La esfera de centro (1,1,1) y radio 1/2
- 8. Se considera el recinto limitado por los planos z = y y z = 0, y el cilindro $x^2 + y^2 = a^2$. Hallar el área de la superficie cilíndrica que queda comprendida entre esos dos planos.
- 9. Se considera la lámina helicoidal parametrizada mediante

$$\phi(r,\theta)=(rcos\theta,rsen\theta,\theta),\ \theta\in[0,2\pi],\ r\in[0,2\sqrt{2}].$$

La densidad de masa por unidad de área de la lámina es $\rho(x,y,z) = \sqrt{x^2 + y^2 + 1}$.

- a) Calcular la masa de la lámina.
- b) Hallar el plano tangente a la lámina en el punto $\phi(2,0)$.
- 10. Calcular el área de la parte del paraboloide de ecuación $z=x^2+y^2$ que está debajo del plano z=9
- 11. En cada caso calcular la integral de f sobre la superficie S.
 - a) $f(x,y,z) = x^2 + y^2$, $S = \{(x,y,z) : x^2 + y^2 + z^2 = 4\}$
 - b) f(x,y,z) = z, $S = \{(x,y,z) : z = x^2 + y^2 \le 1\}$
- 12. Probar que el área de la superficie de revolución en \mathbb{R}^3 obtenida a girar la gráfica de una función $z=f(x),\ a\leq x\leq b$ alrededor del eje z es

$$2\pi \int_{a}^{b} u\sqrt{1 + f'(u)^2} du$$