Segundo parcial de Lógica

11 de julio 2014

Indicaciones generales

- La duración del parcial es de **tres** (3) horas.
- En esta prueba **no** se permite consultar material alguno.
- Puntaje: **60** puntos.
- Toda respuesta debe estar fundamentada. Pueden usarse los resultados que aparecen en el texto del curso, en esos casos debe describirse con precisión el enunciado que se utiliza.
- Numerar todas las hojas e incluir en cada una su nombre y cédula de identidad, utilizar las hojas de un solo lado, escribir con lápiz, iniciar cada ejercicio en hoja nueva y poner en la primera hoja la cantidad de hojas entregadas.

Ejercicio 1 (15 puntos)

Sea el lenguaje de primer orden con igualdad definido por el tipo de similaridad $\langle 2; 2; 1 \rangle$, con símbolo de predicado P, símbolo de función f y símbolo de constantes c.

Considere la siguiente definición de subtérmino: Se dice que t' es subtérmino de t si se cumple alguna de las siguientes condiciones:

- t' = t.
- t es de la forma $f(t_1, t_2)$ y t' es subtérmino de t_1 o de t_2 .
- a. Dé la definición inductiva del conjunto de términos del lenguaje (TERM).
- b. Dé la definición recursiva de la función $FV: \mathtt{TERM} \to 2^V$ que devuelve las variables de un término del lenguaje.
- c. Demuestre por inducción en TERM que $(\bar{\forall}t\in \text{TERM})((\bar{\forall}t'\in \text{TERM})(t'\text{ es subtérmino de }t\Rightarrow FV(t')\subseteq FV(t))).$
- d. Dé la definición recursiva de la función $FV: \mathtt{FORM} \to 2^V$ que devuelve las variables libres de una fórmula del lenguaje.
- e. ¿Se cumple que $(\bar{\forall}\varphi \in \mathtt{FORM})((\bar{\forall}\psi \in \mathtt{FORM})(\psi \text{ es subfórmula de }\varphi \Rightarrow FV(\psi) \subseteq FV(\varphi)))$? Justifique.

Nota: La noción de subfórmula en FORM es análoga a la definición de subfórmula en PROP donde se agrega la regla:

Las subfórmulas de $(\forall x)\alpha$ son las subfórmulas de α y $(\forall x)\alpha$. Análogamente para $(\exists x)\alpha$

Ejercicio 2 (15 puntos)

Considere un lenguaje de primer orden con igualdad de tipo de similaridad $\langle -; 1; 0 \rangle$ con símbolo de función f.

- a. Considere una estructura $\mathcal{M}_1 = \langle U, F \rangle$ de tipo de similaridad $\langle -; 1; 0 \rangle$. Decimos que F tiene al menos un punto fijo si existe un elemento a de U, tal que F(a) = a. Dar una fórmula de FORM que indique que F tiene al menos un punto fijo.
- b. Considere la siguiente familia de términos:

$$\begin{array}{lll} t_0 & := & x \\ t_{n+1} & := & f(t_n) & \text{con } n \in \mathbb{N} \end{array}$$

- I. Dé una estructura \mathcal{M}_2 tal que $\mathcal{M}_2 \models (\exists x)t_2 = x$ y $\mathcal{M}_2 \not\models (\exists x)t_1 = x$ Justifique su respuesta.
- II. Indique si las siguientes afirmaciones son verdaderas o falsas. Justifique su respuesta.
 - 1. Para todo $k \in \mathbb{N}$ se cumple: $(\exists x)t_0 = x \models (\exists x)t_{k+1} = x$
 - 2. Para todo $k \in \mathbb{N}$ se cumple: $(\exists x)t_1 = t_0 \models (\exists x)t_{k+1} = t_k$

Ejercicio 3 (15 puntos)

Construya derivaciones que prueben los siguiente juicios.

a.
$$(\forall x)P(x,g(x)) \vdash (\forall x)(\exists y)(P(x,y) \land y='g(x))$$

b.
$$(\forall x) \neg (\exists y) (P(x,y) \land \neg y = f(x)) \vdash (\forall x) P(x,g(x)) \rightarrow \neg (\exists x) \neg g(x) = f(x)$$

Ejercicio 4 (15 puntos)

Considere una fórmula $\varphi \in SENT$ y una estructura \mathcal{M} fijas, tales que $\mathcal{M} \models \varphi$.

- a. Indique si las siguientes afirmaciones son verdaderas o falsas. Justifique.
 - I. $Th(\{\mathcal{M}\}) = \{\varphi\}$
 - II. $Cons(\{\varphi\}) \subseteq Th(\{\mathcal{M}\})$
 - III. $Mod(\{\varphi\}) \subseteq Mod(\mathtt{SENT})$
- b. Dar dos conjuntos $\Gamma, \Delta \subseteq SENT$ tales que $\Delta \subset \Gamma$ y $Cons(\Delta) = Cons(\Gamma)$

11 de julio 2014 2