% SWEBQK'

V3.0

Guide to the Software
Engineering Body of Knowledge

Editors

Pierre Bourque
Richard E. (Dick) Fairley

<& IEEE

IEEE@)computer society

CHAPTER 3

SOFTWARE CONSTRUCTION

ACRONYMS
API Application Programming
Interface
COTS Commercial Off-the-Shelf
GUI Graphical User Interface
IDE Integrated Development
Environment
OMG Object Management Group
POSIX Portable Operating System
Interface
TDD Test-Driven Development
UML Unified Modeling Language
INTRODUCTION

The term software construction refers to the
detailed creation of working software through a
combination of coding, verification, unit testing,
integration testing, and debugging.

The Software Construction knowledge area
(KA) is linked to all the other KAs, but it is most
strongly linked to Software Design and Software
Testing because the software construction process
involves significant software design and testing.
The process uses the design output and provides an
input to testing (“design” and “testing” in this case
referring to the activities, not the KAs). Boundar-
ies between design, construction, and testing (if
any) will vary depending on the software life cycle
processes that are used in a project.

Although some detailed design may be per-
formed prior to construction, much design work
is performed during the construction activity.
Thus, the Software Construction KA is closely
linked to the Software Design KA.

Throughout construction, software engineers
both unit test and integration test their work.

3-1

Thus, the Software Construction KA is closely
linked to the Software Testing KA as well.

Software construction typically produces the
highest number of configuration items that need
to be managed in a software project (source files,
documentation, test cases, and so on). Thus, the
Software Construction KA is also closely linked
to the Software Configuration Management KA.

While software quality is important in all the
KAs, code is the ultimate deliverable of a soft-
ware project, and thus the Software Quality KA is
closely linked to the Software Construction KA.

Since software construction requires knowledge
of algorithms and of coding practices, it is closely
related to the Computing Foundations KA, which
is concerned with the computer science founda-
tions that support the design and construction of
software products. It is also related to project man-
agement, insofar as the management of construc-
tion can present considerable challenges.

BREAKDOWN OF TOPICS FOR
SOFTWARE CONSTRUCTION

Figure 3.1 gives a graphical representation of the
top-level decomposition of the breakdown for the
Software Construction KA.

1. Software Construction Fundamentals
Software construction fundamentals include

* minimizing complexity

* anticipating change

* constructing for verification
* reuse

+ standards in construction.

The first four concepts apply to design as well
as to construction. The following sections define

3-2 SWEBOK® Guide V3.0

Software
Construction
Softed e Managing Practical Construction Softwar?
— Construction — i — x " — o — Construction
Construction Considerations Technologies
Fundamentals Tools
Minimiziflg Cg}]struction in | » Construction API Design > Development
Complexity Life Cycle Models Design and Use Environments
|5 Anticipating L Construction E;)nstruction |y Object-Oriented | » GUI Builders
Change Planning nguages Runtime Issues
Constructing for Construction . Parameterization .
Verification Measurement [Coding Ed =2 UnitTesting Tovls

> Reuse

Standards in
Construction

Ly Con;trucnon
Testing

Construction for
Reuse

Construction with
Reuse

> C ons_trucuon
Quality

L Integration

and Generics

Assertions, Design
by Contract, and
Defensive
Programming

Error Handling,
Exception

Tolerance

State-Based and
Table-Driven
Construction
Techniques

Runtime
+—» Configuration and

Grammar-Based
Input Processing

Concurrency
Primitives

—» Middleware

Construction
> Methods for
Distributed
Software

Constructing
> Heterogeneous
Systems

Performance
> Analysis and
Tuning

Test-First

Programming

Profiling,

Handling, and Fault

—» Executable Models

Internationalization

—» Platform Standards

Performance
Analysis, and
Slicing Tools

Figure 3.1. Breakdown of Topics for the Software Construction KA

these concepts and describe how they apply to
construction.

1.1. Minimizing Complexity
[1%]

Most people are limited in their ability to hold
complex structures and information in their
working memories, especially over long peri-
ods of time. This proves to be a major factor
influencing how people convey intent to com-
puters and leads to one of the strongest drives
in software construction: minimizing complex-
ity. The need to reduce complexity applies to
essentially every aspect of software construction
and is particularly critical to testing of software
constructions.

In software construction, reduced complexity
is achieved through emphasizing code creation
that is simple and readable rather than clever. It
is accomplished through making use of standards
(see section 1.5, Standards in Construction),
modular design (see section 3.1, Construction
Design), and numerous other specific techniques
(see section 3.3, Coding). It is also supported by
construction-focused quality techniques (see sec-
tion 3.7, Construction Quality).

1.2. Anticipating Change
[1%]

Most software will change over time, and the
anticipation of change drives many aspects of
software construction; changes in the environ-
ments in which software operates also affect soft-
ware in diverse ways.

Anticipating change helps software engineers
build extensible software, which means they can
enhance a software product without disrupting
the underlying structure.

Anticipating change is supported by many spe-
cific techniques (see section 3.3, Coding).

1.3. Constructing for Verification

[1%]

Constructing for verification means building
software in such a way that faults can be read-
ily found by the software engineers writing the
software as well as by the testers and users during

Software Construction 3-3

independent testing and operational activities.
Specific techniques that support constructing for
verification include following coding standards to
support code reviews and unit testing, organizing
code to support automated testing, and restrict-
ing the use of complex or hard-to-understand lan-
guage structures, among others.

1.4. Reuse
[2%]

Reuse refers to using existing assets in solving
different problems. In software construction, typ-
ical assets that are reused include libraries, mod-
ules, components, source code, and commercial
off-the-shelf (COTS) assets. Reuse is best prac-
ticed systematically, according to a well-defined,
repeatable process. Systematic reuse can enable
significant software productivity, quality, and
cost improvements.

Reuse has two closely related facets: “construc-
tion for reuse” and “construction with reuse.” The
former means to create reusable software assets,
while the latter means to reuse software assets in
the construction of a new solution. Reuse often
transcends the boundary of projects, which means
reused assets can be constructed in other projects
or organizations.

1.5. Standards in Construction

[1%]

Applying external or internal development stan-
dards during construction helps achieve a proj-
ect’s objectives for efficiency, quality, and cost.
Specifically, the choices of allowable program-
ming language subsets and usage standards are
important aids in achieving higher security.

Standards that directly affect construction
issues include

» communication methods (for example, stan-
dards for document formats and contents)

» programming languages (for example, lan-
guage standards for languages like Java and
C++)

* coding standards (for example, standards for
naming conventions, layout, and indentation)

* platforms (for example, interface standards
for operating system calls)

3-4 SWEBOK® Guide V3.0

* tools (for example, diagrammatic standards
for notations like UML (Unified Modeling
Language)).

Use of external standards. Construction
depends on the use of external standards for con-
struction languages, construction tools, technical
interfaces, and interactions between the Software
Construction KA and other KAs. Standards come
from numerous sources, including hardware and
software interface specifications (such as the
Object Management Group (OMG)) and interna-
tional organizations (such as the IEEE or ISO).

Use of internal standards. Standards may also
be created on an organizational basis at the cor-
porate level or for use on specific projects. These
standards support coordination of group activi-
ties, minimizing complexity, anticipating change,
and constructing for verification.

2. Managing Construction

2.1. Construction in Life Cycle Models
[1%]

Numerous models have been created to develop
software; some emphasize construction more
than others.

Some models are more linear from the con-
struction point of view—such as the waterfall and
staged-delivery life cycle models. These models
treat construction as an activity that occurs only
after significant prerequisite work has been com-
pleted—including detailed requirements work,
extensive design work, and detailed planning.
The more linear approaches tend to emphasize
the activities that precede construction (require-
ments and design) and to create more distinct sep-
arations between activities. In these models, the
main emphasis of construction may be coding.

Other models are more iterative—such as
evolutionary prototyping and agile develop-
ment. These approaches tend to treat construc-
tion as an activity that occurs concurrently with
other software development activities (including
requirements, design, and planning) or that over-
laps them. These approaches tend to mix design,
coding, and testing activities, and they often treat
the combination of activities as construction (see

the Software Management and Software Process
KAs).

Consequently, what is considered to be “con-
struction” depends to some degree on the life
cycle model used. In general, software con-
struction is mostly coding and debugging, but
it also involves construction planning, detailed
design, unit testing, integration testing, and other
activities.

2.2. Construction Planning

[1%]

The choice of construction method is a key aspect
of the construction-planning activity. The choice
of construction method affects the extent to
which construction prerequisites are performed,
the order in which they are performed, and the
degree to which they should be completed before
construction work begins.

The approach to construction affects the proj-
ect team’s ability to reduce complexity, anticipate
change, and construct for verification. Each of
these objectives may also be addressed at the pro-
cess, requirements, and design levels—but they
will be influenced by the choice of construction
method.

Construction planning also defines the order
in which components are created and integrated,
the integration strategy (for example, phased or
incremental integration), the software quality
management processes, the allocation of task
assignments to specific software engineers, and
other tasks, according to the chosen method.

2.3. Construction Measurement

[1%]

Numerous construction activities and artifacts can
be measured—including code developed, code
modified, code reused, code destroyed, code com-
plexity, code inspection statistics, fault-fix and
fault-find rates, effort, and scheduling. These mea-
surements can be useful for purposes of managing
construction, ensuring quality during construction,
and improving the construction process, among
other uses (see the Software Engineering Process
KA for more on measurement).

3. Practical Considerations

Construction is an activity in which the software
engineer has to deal with sometimes chaotic and
changing real-world constraints, and he or she
must do so precisely. Due to the influence of real-
world constraints, construction is more driven by
practical considerations than some other KAs,
and software engineering is perhaps most craft-
like in the construction activities.

3.1. Construction Design

[1%]

Some projects allocate considerable design activ-
ity to construction, while others allocate design
to a phase explicitly focused on design. Regard-
less of the exact allocation, some detailed design
work will occur at the construction level, and that
design work tends to be dictated by constraints
imposed by the real-world problem that is being
addressed by the software.

Just as construction workers building a physi-
cal structure must make small-scale modifica-
tions to account for unanticipated gaps in the
builder’s plans, software construction workers
must make modifications on a smaller or larger
scale to flesh out details of the software design
during construction.

The details of the design activity at the construc-
tion level are essentially the same as described in
the Software Design KA, but they are applied on
a smaller scale of algorithms, data structures, and
interfaces.

3.2. Construction Languages
[1%]

Construction languages include all forms of
communication by which a human can specify an
executable problem solution to a problem. Con-
struction languages and their implementations
(for example, compilers) can affect software
quality attributes of performance, reliability, por-
tability, and so forth. They can be serious con-
tributors to security vulnerabilities.

The simplest type of construction language
is a configuration language, in which software
engineers choose from a limited set of pre-
defined options to create new or custom software

Software Construction 3-5

installations. The text-based configuration files
used in both the Windows and Unix operating
systems are examples of this, and the menu-style
selection lists of some program generators consti-
tute another example of a configuration language.

Toolkit languages are used to build applica-
tions out of elements in toolkits (integrated sets
of application-specific reusable parts); they are
more complex than configuration languages.
Toolkit languages may be explicitly defined as
application programming languages, or the appli-
cations may simply be implied by a toolkit’s set
of interfaces.

Scripting languages are commonly used kinds
of application programming languages. In some
scripting languages, scripts are called batch files
Or macros.

Programming languages are the most flexible
type of construction languages. They also contain
the least amount of information about specific
application areas and development processes—
therefore, they require the most training and skill
to use effectively. The choice of programming lan-
guage can have a large effect on the likelihood of
vulnerabilities being introduced during coding—
for example, uncritical usage of C and C++ are
questionable choices from a security viewpoint.

There are three general kinds of notation used
for programming languages, namely

* linguistic (e.g., C/C++, Java)
+ formal (e.g., Event-B)
* visual (e.g., MatLab).

Linguistic notations are distinguished in par-
ticular by the use of textual strings to represent
complex software constructions. The combina-
tion of textual strings into patterns may have a
sentence-like syntax. Properly used, each such
string should have a strong semantic connotation
providing an immediate intuitive understanding
of what will happen when the software construc-
tion is executed.

Formal notations rely less on intuitive, every-
day meanings of words and text strings and more
on definitions backed up by precise, unambigu-
ous, and formal (or mathematical) definitions.
Formal construction notations and formal meth-
ods are at the semantic base of most forms of

3-6 SWEBOK® Guide V3.0

system programming notations, where accuracy,
time behavior, and testability are more important
than ease of mapping into natural language. For-
mal constructions also use precisely defined ways
of combining symbols that avoid the ambiguity
of many natural language constructions.

Visual notations rely much less on the textual
notations of linguistic and formal construction
and instead rely on direct visual interpretation
and placement of visual entities that represent the
underlying software. Visual construction tends to
be somewhat limited by the difficulty of making
“complex” statements using only the arrange-
ment of icons on a display. However, these icons
can be powerful tools in cases where the primary
programming task is simply to build and “adjust”
a visual interface to a program, the detailed
behavior of which has an underlying definition.

3.3. Coding
[1%]

The following considerations apply to the soft-
ware construction coding activity:

* Techniques for creating understandable
source code, including naming conventions
and source code layout;

» Use of classes, enumerated types, variables,
named constants, and other similar entities;

 Use of control structures;

* Handling of error conditions—both antici-
pated and exceptional (input of bad data, for
example);

* Prevention of code-level security breaches
(buffer overflows or array index bounds, for
example);

* Resource usage via use of exclusion mecha-
nisms and discipline in accessing serially
reusable resources (including threads and
database locks);

* Source code organization (into state-
ments, routines, classes, packages, or other
structures);

* Code documentation;

» Code tuning,

3.4. Construction Testing

[1%]

Construction involves two forms of testing,
which are often performed by the software engi-
neer who wrote the code:

 Unit testing
* Integration testing.

The purpose of construction testing is to reduce
the gap between the time when faults are inserted
into the code and the time when those faults are
detected, thereby reducing the cost incurred to
fix them. In some instances, test cases are writ-
ten after code has been written. In other instances,
test cases may be created before code is written.

Construction testing typically involves a
subset of the various types of testing, which
are described in the Software Testing KA. For
instance, construction testing does not typically
include system testing, alpha testing, beta testing,
stress testing, configuration testing, usability test-
ing, or other more specialized kinds of testing.

Two standards have been published on the topic
of construction testing: IEEE Standard 829-1998,
IEEFE Standard for Software Test Documentation,
and IEEE Standard 1008-1987, /[EEE Standard
for Software Unit Testing.

(See sections 2.1.1., Unit Testing, and 2.1.2.,
Integration Testing, in the Software Testing KA
for more specialized reference material.)

3.5. Construction for Reuse
[2%]

Construction for reuse creates software that has
the potential to be reused in the future for the
present project or other projects taking a broad-
based, multisystem perspective. Construction for
reuse is usually based on variability analysis and
design. To avoid the problem of code clones, it
is desired to encapsulate reusable code fragments
into well-structured libraries or components.

The tasks related to software construction for
reuse during coding and testing are as follows:

* Variability implementation with mecha-
nisms such as parameterization, conditional
compilation, design patterns, and so forth.

* Variability encapsulation to make the soft-
ware assets easy to configure and customize.

 Testing the variability provided by the reus-
able software assets.

 Description and publication of reusable soft-
ware assets.

3.6. Construction with Reuse
[2%]

Construction with reuse means to create new
software with the reuse of existing software
assets. The most popular method of reuse is to
reuse code from the libraries provided by the lan-
guage, platform, tools being used, or an organiza-
tional repository. Asides from these, the applica-
tions developed today widely make use of many
open-source libraries. Reused and off-the-shelf
software often have the same—or better—quality
requirements as newly developed software (for
example, security level).

The tasks related to software construction with
reuse during coding and testing are as follows:

e The selection of the reusable units, data-
bases, test procedures, or test data.

* The evaluation of code or test reusability.

* The integration of reusable software assets
into the current software.

* The reporting of reuse information on new
code, test procedures, or test data.

3.7. Construction Quality
[1%]

In addition to faults resulting from requirements
and design, faults introduced during construction
can result in serious quality problems—for exam-
ple, security vulnerabilities. This includes not
only faults in security functionality but also faults
elsewhere that allow bypassing of this functional-
ity and other security weaknesses or violations.
Numerous techniques exist to ensure the qual-
ity of code as it is constructed. The primary tech-
niques used for construction quality include

Software Construction 3-7

* unit testing and integration testing (see sec-
tion 3.4, Construction Testing)

* test-first development (see section 2.2 in the
Software Testing KA)

* use of assertions and defensive programming

* debugging

* inspections

* technical reviews, including security-ori-
ented reviews (see section 2.3.2 in the Soft-
ware Quality KA)

* static analysis (see section 2.3 of the Soft-
ware Quality KA)

The specific technique or techniques selected
depend on the nature of the software being con-
structed as well as on the skillset of the software
engineers performing the construction activi-
ties. Programmers should know good practices
and common vulnerabilities—for example, from
widely recognized lists about common vulner-
abilities. Automated static analysis of code for
security weaknesses is available for several com-
mon programming languages and can be used in
security-critical projects.

Construction quality activities are differenti-
ated from other quality activities by their focus.
Construction quality activities focus on code and
artifacts that are closely related to code—such
as detailed design—as opposed to other artifacts
that are less directly connected to the code, such
as requirements, high-level designs, and plans.

3.8. Integration
[1%]

A key activity during construction is the integra-
tion of individually constructed routines, classes,
components, and subsystems into a single sys-
tem. In addition, a particular software system
may need to be integrated with other software or
hardware systems.

Concerns related to construction integration
include planning the sequence in which compo-
nents will be integrated, identifying what hard-
ware is needed, creating scaffolding to support
interim versions of the software, determining
the degree of testing and quality work performed
on components before they are integrated, and

3-8 SWEBOK® Guide V3.0

determining points in the project at which interim
versions of the software are tested.

Programs can be integrated by means of either
the phased or the incremental approach. Phased
integration, also called “big bang” integration,
entails delaying the integration of component
software parts until all parts intended for release
in a version are complete. Incremental integration
is thought to offer many advantages over the tra-
ditional phased integration—for example, easier
error location, improved progress monitoring,
earlier product delivery, and improved customer
relations. In incremental integration, the develop-
ers write and test a program in small pieces and
then combine the pieces one at a time. Additional
test infrastructure, such as stubs, drivers, and
mock objects, are usually needed to enable incre-
mental integration. By building and integrating
one unit at a time (for example, a class or compo-
nent), the construction process can provide early
feedback to developers and customers. Other
advantages of incremental integration include
easier error location, improved progress monitor-
ing, more fully tested units, and so forth.

4. Construction Technologies

4.1. API Design and Use
[3*]

An application programming interface (API) is the
set of signatures that are exported and available to
the users of a library or a framework to write their
applications. Besides signatures, an API should
always include statements about the program’s
effects and/or behaviors (i.e., its semantics).

API design should try to make the API easy
to learn and memorize, lead to readable code, be
hard to misuse, be easy to extend, be complete,
and maintain backward compatibility. As the
APIs usually outlast their implementations for
a widely used library or framework, it is desired
that the API be straightforward and kept stable to
facilitate the development and maintenance of the
client applications.

API use involves the processes of select-
ing, learning, testing, integrating, and possibly
extending APIs provided by a library or frame-
work (see section 3.6, Construction with Reuse).

4.2. Object-Oriented Runtime Issues
[1%]

Object-oriented languages support a series of
runtime mechanisms including polymorphism
and reflection. These runtime mechanisms
increase the flexibility and adaptability of object-
oriented programs. Polymorphism is the ability
of a language to support general operations with-
out knowing until runtime what kind of concrete
objects the software will include. Because the
program does not know the exact types of the
objects in advance, the exact behaviour is deter-
mined at runtime (called dynamic binding).

Reflection is the ability of a program to observe
and modify its own structure and behavior at run-
time. Reflection allows inspection of classes,
interfaces, fields, and methods at runtime with-
out knowing their names at compile time. It also
allows instantiation at runtime of new objects and
invocation of methods using parameterized class
and method names.

4.3. Parameterization and Generics
[4%]

Parameterized types, also known as generics
(Ada, Eiffel) and templates (C++), enable the
definition of a type or class without specifying all
the other types it uses. The unspecified types are
supplied as parameters at the point of use. Param-
eterized types provide a third way (in addition to
class inheritance and object composition) to com-
pose behaviors in object-oriented software.

4.4. Assertions, Design by Contract, and Defensive
Programming

[1%]

An assertion is an executable predicate that’s
placed in a program—usually a routine or macro—
that allows runtime checks of the program. Asser-
tions are especially useful in high-reliability pro-
grams. They enable programmers to more quickly
flush out mismatched interface assumptions, errors
that creep in when code is modified, and so on.
Assertions are normally compiled into the code at
development time and are later compiled out of the
code so that they don’t degrade the performance.

Design by contract is a development approach
in which preconditions and postconditions are
included for each routine. When preconditions
and postconditions are used, each routine or
class is said to form a contract with the rest of
the program. Furthermore, a contract provides a
precise specification of the semantics of a routine,
and thus helps the understanding of its behavior.
Design by contract is thought to improve the
quality of software construction.

Defensive programming means to protect a
routine from being broken by invalid inputs.
Common ways to handle invalid inputs include
checking the values of all the input parameters
and deciding how to handle bad inputs. Asser-
tions are often used in defensive programming to
check input values.

4.5. Error Handling, Exception Handling, and
Fault Tolerance

[1%]

The way that errors are handled affects software’s
ability to meet requirements related to correct-
ness, robustness, and other nonfunctional attri-
butes. Assertions are sometimes used to check
for errors. Other error handling techniques—such
as returning a neutral value, substituting the next
piece of valid data, logging a warning message,
returning an error code, or shutting down the soft-
ware—are also used.

Exceptions are used to detect and process
errors or exceptional events. The basic structure
of an exception is that a routine uses throw to
throw a detected exception and an exception han-
dling block will catch the exception in a try-catch
block. The try-catch block may process the erro-
neous condition in the routine or it may return
control to the calling routine. Exception handling
policies should be carefully designed follow-
ing common principles such as including in the
exception message all information that led to the
exception, avoiding empty catch blocks, knowing
the exceptions the library code throws, perhaps
building a centralized exception reporter, and
standardizing the program’s use of exceptions.

Fault tolerance is a collection of techniques
that increase software reliability by detecting
errors and then recovering from them if possible

Software Construction 3-9

or containing their effects if recovery is not pos-
sible. The most common fault tolerance strategies
include backing up and retrying, using auxiliary
code, using voting algorithms, and replacing an
erroneous value with a phony value that will have
a benign effect.

4.6. Executable Models
[5*]

Executable models abstract away the details of
specific programming languages and decisions
about the organization of the software. Different
from traditional software models, a specification
built in an executable modeling language like
xUML (executable UML) can be deployed in
various software environments without change.
An executable-model compiler (transformer) can
turn an executable model into an implementation
using a set of decisions about the target hardware
and software environment. Thus, constructing
executable models can be regarded as a way of
constructing executable software.

Executable models are one foundation support-
ing the Model-Driven Architecture (MDA) initia-
tive of the Object Management Group (OMG). An
executable model is a way to completely specify
a Platform Independent Model (PIM); a PIM is
a model of a solution to a problem that does not
rely on any implementation technologies. Then
a Platform Specific Model (PSM), which is a
model that contains the details of the implemen-
tation, can be produced by weaving together the
PIM and the platform on which it relies.

4.7. State-Based and Table-Driven Construction
Techniques

[1%]

State-based programming, or automata-based
programming, is a programming technology
using finite state machines to describe program
behaviours. The transition graphs of a state
machine are used in all stages of software devel-
opment (specification, implementation, debug-
ging, and documentation). The main idea is to
construct computer programs the same way the
automation of technological processes is done.
State-based programming is usually combined

3-10 SWEBOK® Guide V3.0

with object-oriented programming, forming a
new composite approach called state-based,
object-oriented programming.

A table-driven method is a schema that uses
tables to look up information rather than using
logic statements (such as if and case). Used in
appropriate circumstances, table-driven code
is simpler than complicated logic and easier to
modify. When using table-driven methods, the
programmer addresses two issues: what informa-
tion to store in the table or tables, and how to effi-
ciently access information in the table.

4.8. Runtime Configuration and
Internationalization

[1%]

To achieve more flexibility, a program is often
constructed to support late binding time of its vari-
ables. Runtime configuration is a technique that
binds variable values and program settings when
the program is running, usually by updating and
reading configuration files in a just-in-time mode.
Internationalization is the technical activ-
ity of preparing a program, usually interactive
software, to support multiple locales. The corre-
sponding activity, localization, is the activity of
modifying a program to support a specific local
language. Interactive software may contain doz-
ens or hundreds of prompts, status displays, help
messages, error messages, and so on. The design
and construction processes should accommodate
string and character-set issues including which
character set is to be used, what kinds of strings
are used, how to maintain the strings without
changing the code, and translating the strings into
different languages with minimal impact on the
processing code and the user interface.

4.9. Grammar-Based Input Processing

[1%] [6¥]

Grammar-based input processing involves syntax
analysis, or parsing, of the input token stream. It
involves the creation of a data structure (called a
parse tree or syntax tree) representing the input
data. The inorder traversal of the parse tree usu-
ally gives the expression just parsed. The parser
checks the symbol table for the presence of

programmer-defined variables that populate the
tree. After building the parse tree, the program
uses it as input to the computational processes.

4.10. Concurrency Primitives
[7%]

A synchronization primitive is a programming
abstraction provided by a programming language
or the operating system that facilitates concur-
rency and synchronization. Well-known concur-
rency primitives include semaphores, monitors,
and mutexes.

A semaphore is a protected variable or abstract
data type that provides a simple but useful abstrac-
tion for controlling access to a common resource
by multiple processes or threads in a concurrent
programming environment.

A monitor is an abstract data type that presents
a set of programmer-defined operations that are
executed with mutual exclusion. A monitor con-
tains the declaration of shared variables and pro-
cedures or functions that operate on those vari-
ables. The monitor construct ensures that only
one process at a time is active within the monitor.

A mutex (mutual exclusion) is a synchroniza-
tion primitive that grants exclusive access to a
shared resource by only one process or thread at
a time.

4.11. Middleware
[3%] [6%]

Middleware is a broad classification for soft-
ware that provides services above the operating
system layer yet below the application program
layer. Middleware can provide runtime contain-
ers for software components to provide message
passing, persistence, and a transparent location
across a network. Middleware can be viewed as
a connector between the components that use the
middleware. Modern message-oriented middle-
ware usually provides an Enterprise Service Bus
(ESB), which supports service-oriented interac-
tion and communication between multiple soft-
ware applications.

4.12. Construction Methods for Distributed
Software
[7%]

A distributed system is a collection of physically
separate, possibly heterogencous computer sys-
tems that are networked to provide the users with
access to the various resources that the system
maintains. Construction of distributed software is
distinguished from traditional software construc-
tion by issues such as parallelism, communica-
tion, and fault tolerance.

Distributed programming typically falls into one
of several basic architectural categories: client-
server, 3-tier architecture, n-tier architecture, dis-
tributed objects, loose coupling, or tight coupling
(see section 14.3 of the Computing Foundations
KA and section 3.2 of the Software Design KA).

4.13. Constructing Heterogeneous Systems
[6%]

Heterogeneous systems consist of a variety of
specialized computational units of different types,
such as Digital Signal Processors (DSPs), micro-
controllers, and peripheral processors. These
computational units are independently controlled
and communicate with one another. Embedded
systems are typically heterogeneous systems.

The design of heterogeneous systems may
require the combination of several specification
languages in order to design different parts of
the system—in other words, hardware/software
codesign. The key issues include multilanguage
validation, cosimulation, and interfacing.

During the hardware/software codesign, soft-
ware development and virtual hardware devel-
opment proceed concurrently through stepwise
decomposition. The hardware part is usually
simulated in field programmable gate arrays
(FPGASs) or application-specific integrated cir-
cuits (ASICs). The software part is translated into
a low-level programming language.

4.14. Performance Analysis and Tuning
[1%]

Code efficiency—determined by architecture,
detailed design decisions, and data-structure and

Software Construction 3-11

algorithm selection—influences an execution
speed and size. Performance analysis is the inves-
tigation of a program’s behavior using informa-
tion gathered as the program executes, with the
goal of identifying possible hot spots in the pro-
gram to be improved.

Code tuning, which improves performance at
the code level, is the practice of modifying correct
code in ways that make it run more efficiently.
Code tuning usually involves only small-scale
changes that affect a single class, a single routine,
or, more commonly, a few lines of code. A rich
set of code tuning techniques is available, includ-
ing those for tuning logic expressions, loops, data
transformations, expressions, and routines. Using
a low-level language is another common tech-
nique for improving some hot spots in a program.

4.15. Platform Standards
[6*] [7*]

Platform standards enable programmers to
develop portable applications that can be exe-
cuted in compatible environments without
changes. Platform standards usually involve a
set of standard services and APIs that compat-
ible platform implementations must implement.
Typical examples of platform standards are Java
2 Platform Enterprise Edition (J2EE) and the
POSIX standard for operating systems (Portable
Operating System Interface), which represents
a set of standards implemented primarily for
UNIX-based operating systems.

4.16. Test-First Programming
[1%]

Test-first programming (also known as Test-
Driven Development—TDD) is a popular devel-
opment style in which test cases are written prior
to writing any code. Test-first programming can
usually detect defects earlier and correct them
more easily than traditional programming styles.
Furthermore, writing test cases first forces pro-
grammers to think about requirements and design
before coding, thus exposing requirements and
design problems sooner.

3-12 SWEBOK® Guide V3.0

5. Software Construction Tools

5.1. Development Environments

[1%]

A development environment, or integrated devel-
opment environment (IDE), provides compre-
hensive facilities to programmers for software
construction by integrating a set of development
tools. The choices of development environments
can affect the efficiency and quality of software
construction.

In additional to basic code editing functions,
modern IDEs often offer other features like com-
pilation and error detection from within the edi-
tor, integration with source code control, build/
test/debugging tools, compressed or outline
views of programs, automated code transforms,
and support for refactoring.

5.2. GUI Builders
[1%]

A GUI (Graphical User Interface) builder is a
software development tool that enables the devel-
oper to create and maintain GUIs in a WYSI-
WYG (what you see is what you get) mode. A
GUI builder usually includes a visual editor
for the developer to design forms and windows
and manage the layout of the widgets by drag-
ging, dropping, and parameter setting. Some GUI
builders can automatically generate the source
code corresponding to the visual GUI design.

Because current GUI applications usually fol-
low the event-driven style (in which the flow of
the program is determined by events and event
handling), GUI builder tools usually provide
code generation assistants, which automate the
most repetitive tasks required for event handling.
The supporting code connects widgets with the
outgoing and incoming events that trigger the
functions providing the application logic.

Some modern IDEs provide integrated GUI
builders or GUI builder plug-ins. There are also
many standalone GUI builders.

5.3. Unit Testing Tools
[1%] [2%]
Unit testing verifies the functioning of software
modules in isolation from other software elements
that are separately testable (for example, classes,
routines, components). Unit testing is often auto-
mated. Developers can use unit testing tools
and frameworks to extend and create automated
testing environment. With unit testing tools and
frameworks, the developer can code criteria into
the test to verify the unit’s correctness under vari-
ous data sets. Each individual test is implemented
as an object, and a test runner runs all of the tests.
During the test execution, those failed test cases
will be automatically flagged and reported.

5.4. Profiling, Performance Analysis, and
Slicing Tools

[1%]

Performance analysis tools are usually used to
support code tuning. The most common per-
formance analysis tools are profiling tools. An
execution profiling tool monitors the code while
it runs and records how many times each state-
ment is executed or how much time the program
spends on each statement or execution path. Pro-
filing the code while it is running gives insight
into how the program works, where the hot spots
are, and where the developers should focus the
code tuning efforts.

Program slicing involves computation of the
set of program statements (i.e., the program slice)
that may affect the values of specified variables
at some point of interest, which is referred to as
a slicing criterion. Program slicing can be used
for locating the source of errors, program under-
standing, and optimization analysis. Program
slicing tools compute program slices for various
programming languages using static or dynamic
analysis methods.

Software Construction 3-13
MATRIX OF TOPICS VS. REFERENCE MATERIAL
o R
- o) =
< = = X S = &
[—4 (= o~ N S (o\}
g (g\| . v) — E
—_ 2 = —_ = = s
T | Ex | s¢ | sz | &% | 8¢ | &%
SEn | £8 | g2 | x| g | 2% | S8
= =] = = =
Q £) = < = >}
o £ g £ = = Z
2 =) < 2 p— 9]
2 S < 3 E Z
= 7
1. Software
Construction
Fundamentals
c2, c3,
. c7-c9,
tmmine | 347
piextty 28, c31,
c32,c34
1.2. Anticipating c3-c5,
Chanee c24, c31,
& c32, ¢34
c8,
1.3. Constructing for | 20—
Verification c23, c31,
c34
1.4. Reuse clé
1.5. Standards in o4
Construction
2. Managing
Construction
2.1. Construction in c2,c3,
Life Cycle Models c27,¢c29
2.2. Construction c3, c4,
Plannin c2l,
anning 2729
2.3. Construction 025, 28
Measurement
3. Practical
Considerations
3.1. Construction c3, c5,
Design c24
3.2. Construction
c4
Languages
33. Coding c3—cl9,

c25-c26

3-14 SWEBOK® Guide V3.0

McConnell 2004
[1%]

Sommerville 2011
[2%]

Clements et al. 2010
[3%]

Gamma et al. 1994
[47%]

Mellor and Balcer 2002
[5%]

Null and Lobur 2006
[6%]

Silberschatz et al. 2008

[7%]

3.4. Construction
Testing

c22,¢c23

3.5. Construction for
Reuse

clé

3.6. Construction
with Reuse

clé

3.7. Construction
Quality

c8,
c20—c25

3.8. Integration

c29

4. Construction
Technologies

4.1. API Design and
Use

c7

4.2. Object-Oriented
Runtime Issues

c6, c7

43.
Parameterization
and Generics

cl

4.4. Assertions,
Design by Contract,
and Defensive
Programming

c8,¢c9

4.5. Error Handling,
Exception Handling,
and Fault Tolerance

c3, c8

4.6. Executable
Models

cl

47. State-Based
and Table-Driven
Construction
Techniques

cl8

4.8. Runtime
Configuration and
Internationalization

c3, clo

4.9. Grammar-Based
Input Processing

¢S5

c8

Software Construction 3-15
N ®
- = o =
+ = = X S = I~
[—J > o~ N S (g\]
= (g\] . v <5} ['C_'Q
EL | t& | SR | 8% | S& | 3% | 2K
e E b= g = = S
Q) < = >
9 £ g £ = = z
= =) k) < ° = k)
2 O &} > 2 =
= 7
4.10. Concurrency
L c6
Primitives
4.11. Middleware cl c8
4.12. Construction
Methods for c2
Distributed Software
4.13. Constructing
Heterogeneous c9
Systems
4.14. Performance
Analysis and Tuning €25, 26
4.15. Platform
Standards cl0 cl
4.16. Test—Elrst 2
Programming
. Construction Tools
5.1. Development 30
Environments
5.2. GUI Builders c30
5.3. Unit Testing 22 o8
Tools
5.4. Profiling,
Performance
Analysis, and €25, 26
Slicing Tools

3-16 SWEBOK® Guide V3.0

FURTHER READINGS

IEEE Std. 1517-2010 Standard for Information
Technology—System and Software Life

Cycle Processes—Reuse Processes, IEEE,
2010 [8].

This standard specifies the processes, activities,
and tasks to be applied during each phase of the
software life cycle to enable a software product
to be constructed from reusable assets. It covers
the concept of reuse-based development and the
processes of construction for reuse and construc-
tion with reuse.

IEEE Std. 12207-2008 (a.k.a. ISO/IEC
12207:2008) Standard for Systems and
Software Engineering—Software Life Cycle
Processes, IEEE, 2008 [9].

This standard defines a series of software devel-
opment processes, including software construc-
tion process, software integration process, and
software reuse process.

REFERENCES

[1*] S. McConnell, Code Complete, 2nd ed.,
Microsoft Press, 2004.

[2*] I. Sommerville, Software Engineering, 9th
ed., Addison-Wesley, 2011.

[3*] P. Clements et al., Documenting Software
Architectures: Views and Beyond, 2nd ed.,
Pearson Education, 2010.

[4*] E. Gamma et al., Design Patterns: Elements
of Reusable Object-Oriented Software, 1st
ed., Addison-Wesley Professional, 1994.

[5*] S.J. Mellor and M.J. Balcer, Executable
UML: A Foundation for Model-Driven
Architecture, 1st ed., Addison-Wesley,
2002.

[6*] L. Null and J. Lobur, The Essentials of
Computer Organization and Architecture,
2nd ed., Jones and Bartlett Publishers,
2006.

[7*] A. Silberschatz, P.B. Galvin, and G. Gagne,
Operating System Concepts, 8th ed., Wiley,
2008.

[8] IEEE Std. 1517-2010 Standard for
Information Technology—System and
Software Life Cycle Processes—Reuse
Processes, IEEE, 2010.

[9] IEEE Std. 12207-2008 (a.k.a. ISO/IEC
12207:2008) Standard for Systems and
Software Engineering—Software Life Cycle
Processes, IEEE, 2008.

