Desarrollo de la criptografía Con enfasis en Latino América

Universidad de la Républica
Montevideo, Uruguay
Joachim von zur Gathen
Bonn, Alemania

Criptografía durante los milenios, antes computadores

$-\infty \quad 0 \quad 500 \quad 1000 \quad 1500 \quad 1600 \quad 1700$ simple substitution

- polyalphabetic substitution
key addition
codebook
$\square 1$

transposition
electromechanical machine

Two fundamental cryptographic primitives:

- substitution,
- transposition.

Claude Shannon (1949): confusion and diffusion.
Goal: create enough of them to provide secrecy in communication.
Modern notions of cryptographic primitives: one-way and trapdoor functions.
Modern notions of security: 1970s.
Based on concepts from computational complexity.

Kerckhoffs' Principle

Auguste Kerckhoffs (1883) Principle:
Il faut qu'il [le système] n'exige pas le secret, et qu'il puisse sans inconvénient tomber entre les mains de l'ennemi.
It must not be required to keep the system secret, and it must be able to fall into the hands of the enemy without harm.

Still today, some companies believe in security by secrecy and develop systems in secrecy, which are in due course reverse-engineered and broken.
Famous example of failed security by secrecy: widely deployed KeeLoq system for protecting radio access to cars and garages. After being reverse-engineered, it was broken and the secret key can be recovered in seconds. The system is still in use!

Figure : Taxonomy of classical cryptosystems.

Substitution: some alphabet X. E.g., the 26 -letter English alphabet $A=\{a, b, c, \ldots, x, y, z\}$, or pairs of letters (digrams), so that $X=A^{2}$, or even longer polygrams, or bits $\mathbb{B}=\{0,1\}$, or 128 -bit words $X=\mathbb{B}^{128}$ for AES. In general, X is an arbitrary finite set. Furthermore, we have another alphabet Y, which might equal X or not.

- A (simple) substitution is a bijection $\sigma: A \longrightarrow Y$ from letters to some alphabet Y. Often $Y=A$.
- AES-128 uses two substitutions. The first is the fixed substitution SubBytes which consists of the patched inversion σ on \mathbb{F}_{256} with $\sigma(x)=x^{-1}$ if $x \neq 0$ and $\sigma(0)=0$, followed by a linear map, and is applied individually to each of the 16 blocks. The second one is the key addition $\sigma=$ AddKey: $\{0,1\}^{128} \longrightarrow\{0,1\}^{128}$, where the 128 -bit key (which we here consider as fixed) and the states are added bitwise.
- RSA with public key (N, e) is the substitution $\sigma: \mathbb{Z}_{N} \longrightarrow \mathbb{Z}_{N}$ with $\sigma(x)=x^{e}$.

Table : Letter-to-number conversion in a 26-letter alphabet.

- The Caesar cipher identifies A with \mathbb{Z}_{26} and uses the substitution $\sigma: \mathbb{Z}_{26} \longrightarrow \mathbb{Z}_{26}$ with $\sigma(x)=x+3$. More generally, we might have any key $k \in \mathbb{Z}_{26}$ and use $\sigma_{k}(x)=x+k$. Caesar's Latin alphabet had 24 letters, identifying $\mathrm{I}=\mathrm{J}$ and $\mathrm{U}=\mathrm{V}$. It is not clear from the historical accounts how the cyclic shift is handled. Is $\sigma(\mathrm{Z})=\mathrm{C}$? This is what we would use in a modern sense. The later Augustus cipher σ_{1}, the shift by one letter, uses $\sigma(Z)=A A$. Today's modular arithmetic is younger by 1800 years, basically due to Gauß (1801).

Frequency analysis

Any simple substitution is easy prey to frequency analysis, if only the message is long enough. This cryptanalysis requires as its main tools frequency tables for individual letters, but also for digrams (pairs of letters), trigrams (triples), and short words. Below are are eight lists of letter frequencies in percent.

Frequency analysis

letter	COCA	HP	Ch. 15	MM	D	F	E	1
a	8.28	7.94	7.83	8.04	5.26	7.75	12.25	10.71
b	1.54	1.59	1.53	1.54	1.85	0.99	1.48	0.74
c	3.18	1.99	2.91	3.06	3.62	2.67	3.63	5.14
d	3.9	4.96	3.47	3.99	5.05	3.35	5.33	3.73
e	12.17	11.91	12.27	12.51	17.41	16.61	14.01	12.04
f	2.14	2.05	2.70	2.30	1.50	1.08	0.46	1.29
g	2.12	2.57	1.68	1.96	2.94	1.29	1.05	1.82
h	5.03	6.73	4.43	5.49	5.90	0.93	1.22	1.81
i	7.29	6.21	8.80	7.26	8.85	7.33	5.50	10.26
j	0.19	0.11	0.10	0.16	0.15	0.71	0.64	
k	0.82	1.20	0.23	0.67	1.13			0.01
I	4.22	4.36	4.14	4.14	3.75	4.90	5.45	5.78
m	2.53	2.21	2.88	2.53	3.19	3.28	2.73	2.98
n	7.08	6.51	7.49	7.09	10.71	7.61	6.63	6.60
0	7.55	7.80	7.47	7.60	1.93	6.92	9.93	9.55
p	2.08	1.66	2.42	2.00	0.37	2.53	2.17	2.79
q	0.10	0.13	0.29	0.11	0.02	1.47	1.99	0.82
r	6.24	6.46	6.34	6.12	6.65	6.57	6.17	6.44
s	6.79	5.88	6.47	6.54	6.14	7.56	7.68	5.61
t	9.01	8.67	9.17	9.25	5.79	6.54	3.77	5.74
u	2.76	2.91	2.66	2.71	3.86	6.62	4.86	3.60
v	1.03	0.87	1.14	0.99	0.76	2.22	1.09	2.01
w	1.84	2.51	1.54	1.92	2.01			0.02
x	0.20	0.11	0.51	0.19	0.01	0.37	0.02	0.04
y	1.80	2.57	1.40	1.73	0.01	0.22	1.53	0.02
z	0.12	0.08	0.12	0.09	1.15	0.48	0.40	0.45
$\sum f_{i}^{2}$	6.50	6.36	6.65	6.58	7.77	7.55	7.51	7.22

- The Vigenère cipher with an l-letter keyword k uses l Caesar substitutions $\sigma_{0}, \ldots, \sigma_{l-1}$. Alternatively, it can be viewed as a simple substitution $\sigma: A^{l} \longrightarrow A^{l}$ with $\sigma(x)=x+k$, using letter-wise addition in A^{l} with truncation at the end. Example: keyword $k=\mathrm{KEY}$ of length $l=3$, plaintext $x=$ confuse the enemies yields encryption:

$$
\begin{aligned}
x & =\text { CONFUSETHEENEMIES } \\
k^{\prime} & =\text { KEYKEYKEYKEYKEYKE } \\
y & =\text { MSLPYQOXFOILOQGOW }
\end{aligned}
$$

As is common in classical cryptography, blanks, spaces, and punctuation marks are ignored. Thus $\sigma(x)=x+k^{\prime}$, where k^{\prime} is the 17 -letter key obtained from the Vigenère key $k=k e y$ by sufficiently many repetitions with the Procrustes rule of cutting off unneeded key letters at the end.
The attentive reader has noticed that in this short example, we have no fewer than four single-letter additions $\mathrm{e}+\mathrm{k}=0$. This is a general phenomenon, although usually not this frequent, and can be used to break this cryptosystem.

Giambattista della Porta (1535-1615): cipher disk

Mechanical implementations:

Thomas Jefferson: cipher wheel

- A polyalphabetic substitution applies a fixed sequence of simple substitutions one after the other. When the sequence is exhausted, one starts again with the first one.
- A homophonic substitution works in the same way, only for each letter we do not have just a single possibility, but several ones. We see an example in Tranchedino's codebook from 1463. Its first line (after the heading) gives the 21 letters $\mathrm{A}, \mathrm{b}, \ldots, \mathrm{z}$ of the alphabet, plus the frequent words and, with, and of. Five of the letters get three possible encryptions, the others two. In general, the goal of the multiple possibilities is to even out the disparate frequencies of the various letters. The corresponding σ is now only a relation, not necessarily a function.
The Spanish cipher from around 1590 for Moreo contains the line: Las nullas tendran una raya enzima, exemplo $\overline{19}$. This provides a systematic way of introducing a large number of dummies.

Francesco Tranchedino (1411-1496): Nomenclator

```
M.cceLxus:\
    A.b.c.d.e.f.5.h.1.1.m.n.o.p.g.r.s.t.u.x.5. &.9.& &
    Q-3y=\tilde{0Af}0-0-ty'f
    &
```



```
    Al ae. ad af ag.al am.an ap.ax.as.at. au, Eb, ee.cd
```



```
    vb.uc.ud uf.ug. uL um.un.up.uq.uscuce.ut
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{5}{*}{\begin{tabular}{l}
 \\
 \\

\end{tabular}}} \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline
\end{tabular}
```


Spanish codebook for Moreo, 16th century

Spanish codebook for Moreo, 16th century

```
Cas nullastenchan unaraya trizima escemplo \(\overline{9}\).
```



```
zennum? Tendan vraczu Renuma iot 20
```


Spanish codebook 16th century

Cifra particular [1589-1597].

Spanish codebook 16th century

sede vacante	sim	termino	$\stackrel{6}{6}$
seguridad	som	tiempo	67
seguro	sum	tiento	$\dot{68}$
señor	$\ddot{6}$	tierra	69
señoria	37	tiro	70
servicio	38	trabajo	71
servidor	39	tratado	72
Sicilia	40	trato	73
siempre	41	tregua	74
sitio	42	Tunez	75
socorro	43	Turco	$\dot{7} 6$
soldado	44	Turquia	77
sombra	45		
sossiego	46	V	
sospecha	47	valor	78
sospechoso	48	vasallo	799
suceso	49	Venecia	$\dot{80}$
sueldo	50	Veneciano	81
sustentacion	5	verdad	$\dot{8} \dot{2}$
sustentamiento	52	verdadero	$8 \dot{8}$
sustento	53	Ugonote	84
Suizo	54	victoria	$8 \dot{8}$
Su Beatitud	55	virrey	88
Su Santidad	56	virtud	$\dot{8} 7$
Su Magestad	57	vitualla	$\dot{8} 8$
Su Alteza	58	vizcocho	$\dot{8} \dot{9}$
Su Excelencia	59	Ungaro	$\dot{9} \dot{0}$
Su Senoria	$\underline{60}$	Ungria	91
Su merced	61	voluntad	9
		vuestro	$\stackrel{9}{9} \dot{3}$
T		Vuestra Magestad	$\underline{9} 4$
	$\underline{6} 2$	Vuestra Alteza	9
tampoco	$6 \dot{3}$	Vuestra Excelencia	906
tanto	$\stackrel{9}{4}$	Vuestra Señoria	97
teniente	65	Vuestra merced	$\ddot{9}$

- Nomenclators or codebooks have large alphabets X and Y, with several hundreds (in the 17th century) or thousands (19th century) of elements each. Y has at least as many elements as X does, and the codebook is a simple substitution $\sigma: X \longrightarrow Y$, or a relation if homophones are used, as is often the case. The alphabet X usually comprises letters plus certain frequently occurring items, such as syllables, words, or names that were likely to appear in the correspondence. Their use is recorded from 1377 to the Second World War, where in one German submarine cipher each square of a grid covering the North Atlantic was given its code.
- The basic ingredient of the one-time pad is a substitution σ on single bits, where a (random) key bit k is chosen in \mathbb{B}, and a one-bit message $x \in \mathbb{B}$ is encrypted as $\sigma(x)=x+k$. Longer messages are encrypted by repeating this procedure, with keys chosen anew (independently at random) for each message bit. It is unconditionally secure, but highly impractical. The two-time pad is insecure; VENONA.
- The Playfair cipher is a simple substitution $\sigma: A_{0}^{2} \longrightarrow A_{0}^{2}$ on digrams, where $A_{0}=A \backslash\{\mathrm{j}\}$ is the standard alphabet with the letter j removed.
- In the Enigma, the secret key determines (in a complicated fashion) a sequence of simple substitutions $\sigma_{0}, \sigma_{1}, \ldots$, with $\sigma_{i}: A \longrightarrow A$ for all i.

Latin American cryptography: Cortés

Hernán Cortés (1485-1547), the Spanish conquistador of Aztec Mexico, wrote to his representative Francisco Nuñez in Spain on 25 June 1532 from Cuernavaca in Mexico. This letter deals with Cortés' financial arrangements-real estate deals involving whole provinces. Most of the text on its last four pages is encrypted, and was presumably decrypted at the time. However, the Archivo de Indias at Sevilla conserves only the original, which resisted several attempts at deciphering. It may well be the first documented cryptography in America.

The Museo Nacional in Mexico published in 1924 in the leading local newspapers a competition to decipher it-an early forerunner of today's crypto challenges. Francisco Monterde García Icazbalceta succeeded, and was presented the prize of 200 pesos in November 1925. The cipher had 1, 2, or 3 symbols (49 in total) for each of the 24 letters, plus II and que. Monterde solved it by frequency analysis, aided by the separation of words. He explains how difficult the first inroads were, and how easy the rest:
El resto fue sencillo: pude leer la carta con facilidad, reemplazando todos los signos por letras; pero había tenido que emplear varias horas de la noche, durante tres meses, para llegar a ese resultado.

Latin American cryptography: Cortés

Latin American cryptography: Cortés

Shown is the last of Cortés' four pages. The first lines of the ciphertext, beginning on line 5, read:
[...] Y quando veais q ay se siente quánto yo lo encarezco, aueis de dezir q pues así lo hazen y me quiren agrauiar q me den por todo lo de Guaxaca los pueblos de Vruapa y Cacapo e Tiripitío y los Matalcingos e Jacona y [word crossed out] Coyuca la grande q son en la c [p] rouincia de Mechoacán c [p]ara q sean mios con yuredic[i]on ceuil y criminal mero misto inperio de la [ge]neral tengo los otros vasollos q nonbré en el preuillejo y por la uisitación q de aca enbian dela prouincia de Mechoacán veran los vezinos q son [son] destos pveblos q apenas son el tercio más q los q tengo en Guaxaca. [...]

Latin American cryptography: Martí

José Julián Martí Pérez (1853-1895) was the Cuban national hero who led the uprising against Spanish colonial occupation in February 1895. He was consul of Uruguay in New York 1879-1892.

Latin American cryptography: Martí

In a letter to his fellow conspirators in Cuba, he used a Vigenère cipher with key word habana $=8,1,2,1,15,1$ and his 28 -letter alphabet $\mathrm{a}=1, \mathrm{~b}, \ldots, \mathrm{l}, \mathrm{II}, \mathrm{m}, \mathrm{n}, \mathrm{n}, \mathrm{o}, \ldots$. We show the first lines of his famous Plan de Alzamiento para Cuba, written on 8 December 1894 in his New York City exile with two fellow revolutionaries:
N.Y. 8 de Dbre. Reunidos aquí, para acomodar á un mismo fin, sin publicidad ni confusión, b.g.ya con un término cierto -las diferentes partes de la labor, hemos decidido, de acuerdo con el enviado especial, apoderado plenamente por el general Gomez-, que con nosotros remite copia firmada y la deja en New York, comunicar á Vds. desde hoy las instrucciones precisas, y ya como finales, por las que se deberán Vds. guiar ahí.

Latin American cryptography: Martí

Figure : The first lines of Marti's plan for the Cuban uprising

Latin American cryptography: Martí

Martí commits a cardinal sin in cryptography: mixing plaintext and ciphertext. But not even such a blunder could stop Cuban independence. The cleartext was written first, leaving space for the ciphertext which was then inserted by another hand. On line 3, too little, and on line 6, too much space had been left within the plaintext.

	antiquity	$1500 \mathrm{BC}-100 \mathrm{AD}$
	Arab civilization	$800-1400$
	European Middle Ages	$1000-1500$
	Renaissance	$1450-1600$
?eriods	Baroque, salon cryptography	$1600-1850$
	mechanical devices	$1580-1950$
	electromechanical devices	$1920-1950$
	computers	$1943-$ present
	public key systems	$1976-$ present

Table : Cryptographic time periods.

For the second cryptographic primitive, we have a length parameter l. A transposition is simply a bijection (or permutation) on the first l numbers:

$$
\tau:\{0, \ldots, l-1\} \longrightarrow\{0, \ldots, l-1\} .
$$

- AES uses the transposition SHIFTRows which performs certain cyclic shifts on the rows of the state matrix.
- In a single columnar transposition we write the plaintext in r rows of length c and read it off in columns as the ciphertext. Thus $x=$ COLUMN becomes $y=$ CLMOUN $=x_{0} x_{2} x_{4} x_{1} x_{3} x_{5}$ in an $r \times c=3 \times 2$ array:

$$
x=\begin{array}{cc}
\mathrm{C} & \mathrm{O} \\
\mathrm{~L} & \mathrm{U} \\
\mathrm{M} & \mathrm{~N}
\end{array}
$$

The transposition τ and its inverse α are given by

i	0	1	2	3	4	5
$\tau(i)$	0	3	1	4	2	5
$\alpha(i)$	0	2	4	1	3	5

and one checks that $\tau(i)=3 i-5\lfloor i / 2\rfloor$.

- The Spartan skytale is a columnar transposition.

From a transposition τ on l numbers we obtain, for any alphabet A, a substitution $\tau_{A}: A^{l} \longrightarrow A^{l}$ by setting $\tau_{A}(x)=x_{\alpha(0)} x_{\alpha(1)} \cdots x_{\alpha(l-1)}$ for $x \in A^{l}$, where α is the inverse of τ. Thus a transposition of length l yields a simple substitution on l-grams. However, it is profitable to keep the two primitives apart. For one, τ as above is much less "powerful" than a general substitution on A^{l}, and furthermore, τ works for any A and might be called a "scheme" for such substitutions. From a higher point of view, substitutions are semantic objects and transpositions have a syntactical (or combinatorial) nature.

The classical world: Near East and Europe

Tutankhamun, c. 1343-1323 BC

Tutankhamun's tomb: one wall

The usual hieroglyphic writing system of Ancient Egypt employed symbols at three levels: meaning, word, and sound. As an example, the red crown of lower Egypt \mathcal{f} can mean this crown, or be placed after other hieroglyphs spelling this crown letter by letter to categorize them. It is pronounced dšrt or nt, and can also (rarely) stand for the letter n. It is a remarkable achievement-akin to the cryptanalysis of an unknown system in an unknown language-that starting with Jean-François Champollion (1790-1832), egyptologists have learned how to understand and pronounce hieroglyphic texts.

Tutankhamun's second shrine

Tutankhamun's second shrine.
 Detail at top right: Isis, Nephtys, Ra

Tutankhamun's second shrine.
 Detail at top right: Isis, Nephtys, Ra

Inscription in lines 2 and 3 :

Literally: n ms hfrw sa hn
Decipherment: sn m-ha-f = these are around him [for protection]
Substitution and transposition.
Claude Shannon 1949: confusion and diffusion.

Euphrates near Mari, today in Syria

Mari: watch towers, c. 2500 BC

Mari

Polybios' signalling device

The bay of Tisaion

7 km over water to Demetrios, 140 km over land. King Philip V. of Macedonia, 238-179 BC. Second Macedonian war.

