Lógica Primer Parcial

Mayo 1999

Indicaciones Generales

- La duración del parcial es de tres (3) horas.
- En este parcial **no** se permite consultar material alguno.
- Puntaje: 40 puntos
- Pueden usarse los resultados que aparecen en el texto del curso, en esos casos debe
 - describirse con precisión el enunciado que se utiliza.
- Toda respuesta debe estar fundamentada.
- Numerar todas las hojas e incluir en cada una su nombre y cédula de identidad.
- Utilizar las hojas de un solo lado, escribir con lápiz.
- Iniciar cada ejercicio en hoja nueva.
- Poner en la primera hoja la cantidad de hojas entregadas.

Problemas

Ejercicio 1. (12 pts.)

- (a) Considere el conjunto PROP de las proposiciones. Defina recursivamente la función $\tau:PROP\longrightarrow PROP$ tal que $\tau(\varphi)$ es la proposición que resulta de aplicar en φ las siguientes transformaciones:
 - cada fórmula atómica A de φ se reemplaza por $\bot \to A$,
 - cada ocurrencia del conectivo ∧ se reemplaza por el conectivo ∨, y
 - cada ocurrencia del conectivo \neg en φ se elimina.

Por ejemplo:

$$\begin{array}{lll} \tau(\neg(p_1\leftrightarrow\bot)) & = & (\bot\to p_1)\leftrightarrow (\bot\to\bot) \\ \tau(\neg(p_1\to\bot)\land\neg\neg p_2) & = & ((\bot\to p_1)\to (\bot\to\bot))\lor (\bot\to p_2) \end{array}$$

(b) Demuestre por inducción sobre PROP que para toda $\varphi \in PROP$, para toda valuación $v, v(\tau(\varphi)) = 1$.

Ejercicio 2. (10 pts.)

Sea φ una fórmula de PROP tal que:

para toda
$$\psi \in PROP$$
 se cumple $\models \varphi \rightarrow \psi$.

Indique si las siguientes afirmaciones son verdaderas o falsas. Justifique su respuesta para los casos en que ésta sea afirmativa, y dé un contraejemplo si su respuesta es negativa.

- (a) $\models \varphi$
- (b) $\models \neg \varphi$
- (c) Para toda $\psi \in PROP$, $\models \psi \rightarrow \varphi$
- (d) Para toda $\psi \in PROP$ si $\models \psi \rightarrow \varphi$ entonces $\models \psi \leftrightarrow \bot$.

Ejercicio 3. (8 pts.)

Construya una derivación de $\varphi \land \sigma \rightarrow \psi$, $\varphi \rightarrow \sigma \vdash \neg \psi \rightarrow \neg \varphi$.

Ejercicio 4. (10 pts.)

- 1. Determine cuáles de las siguientes afirmaciones son correctas y cuáles no. En ambos casos justifique su respuesta.
 - (a) El conjunto $\{\neg p_1, \neg p_2, \dots, \neg p_n, \dots\}$ es consistente.
 - (b) Para todo $\Gamma \subseteq PROP$, si Γ es consistente y no es consistente maximal, entonces el conjunto $\{\neg \varphi \mid \varphi \in \Gamma\}$ es inconsistente.
- 2. Demuestre que para todo $\Gamma \subseteq PROP$, si Γ es consistente maximal entonces el conjunto $\{\neg \varphi \mid \varphi \in \Gamma\}$ es inconsistente.