# Lógica proposicional: Sintaxis <sub>Lógica</sub>

# Contenidos

• Sintaxis de la lógica proposicional

# Alfabeto $\Sigma_{\mathtt{PROP}}$

# $\overline{\text{Def.1.1.1.}\ \Sigma_{\text{PROP}}}$

El alfabeto del lenguaje de la lógica proposicional  $\Sigma_{\text{PROP}} := P \cup C \cup A$  consiste de

• el conjunto de las letras proposicionales:

$$P := \{p_0, p_1, p_2, \ldots\}$$

el conjunto de los conectivos:

$$\begin{split} C &:= C_0 \cup C_1 \cup C_2 \text{, con} \\ C_0 &:= \left\{\bot\right\}, C_1 := \left\{\neg\right\}, C_2 := \left\{\land, \lor, \rightarrow, \leftrightarrow\right\} \end{split}$$

• el conjunto de símbolos auxiliares:  $A := \{), (\}$ 

### PROP

#### Def.1.1.2. PROP

El lenguaje PROP  $\subseteq \Sigma^*_{\mathtt{PROP}}$  está definido inductivamente por

- i Si  $p \in P$ , entonces  $p \in PROP$
- ii  $\bot \in PROP$
- iii Si  $\alpha \in PROP$ ,  $\beta \in PROP$ , entonces
  - $(\alpha \land \beta) \in PROP$
  - $(\alpha \lor \beta) \in PROP$
  - $(\alpha \to \beta) \in PROP$
  - $\bullet \ (\alpha \leftrightarrow \beta) \in \mathtt{PROP}$
- iv Si  $\alpha \in PROP$ , entonces  $(\neg \alpha) \in PROP$ .

.

### **PROP**

#### Fórmulas Proposicionales

Son las palabras de PROP.

#### Fórmulas Atómicas

Son los elementos del conjunto  $AT = P \cup \{\bot\}$ . Son precisamente las palabras formadas por las reglas básicas (i y ii).

#### Notación: Metavariables

Usamos  $p,q,r,p',\ldots$  para las letras proposicionales. Usamos  $\alpha,\beta,\varphi,\psi,\ldots$  para las formulas proposicionales.

Usamos  $\Gamma, \Delta, \dots$  para los conjuntos de formulas proposicionales.

# Prop: Ejemplos y Contrajemplos de Fórmulas

Algunas palabras de  $\Sigma^*_{ t PROP}$  que están en PROP

- p<sub>0</sub>
- $\bullet$   $(p_1 \rightarrow p_3)$
- 1
- $\bullet \ ((p_1 \to p_2) \lor (\bot \land (\neg p_5)))$

Algunas palabras de  $\Sigma^*_{\mathtt{PROP}}$  que no están en PROP

- $(p_0)$
- $\bullet$   $(p_1 \rightarrow)$
- $\bullet$   $p_1 \rightarrow \bot$

# Teo.1.1.3 PIP para PROP

### Hipótesis

Sea  $\mathcal P$  una propiedad sobre las palabras de PROP que cumple:

- BASE1 Para todo  $p \in P$ , se cumple  $\mathcal{P}(p)$
- BASE2 Se cumple  $\mathcal{P}(\bot)$ 
  - IND1 Para todo  $* \in C_2$  y  $\alpha, \beta \in \texttt{PROP}$  que cumplen  $\mathcal{P}(\alpha)$  y  $\mathcal{P}(\beta)$ , se cumple  $\mathcal{P}((\alpha*\beta))$
  - IND2 Para todo  $\alpha \in \mathtt{PROP}$  que cumple  $\mathcal{P}(\alpha)$ , se cumple  $\mathcal{P}((\neg \alpha))$

#### **Tesis**

 $\mathcal P$  se cumple para todas las palabras de PROP.

# Esquema de recursión primitiva para PROP(informal)

Sea B un conjunto cualquiera. Entonces, para definir una única función  $F: \mathtt{PROP} \to B$  basta un conjunto de ecuaciones como el siguiente:

```
F(p) = ...
  ii F(\perp) = \dots
 iii F((\alpha \wedge \beta)) = \dots F(\alpha) \dots \alpha \dots F(\beta) \dots \beta \dots
 iv F((\alpha \vee \beta)) = \dots F(\alpha) \dots \alpha \dots F(\beta) \dots \beta \dots
  \mathbf{v} \ F((\alpha \rightarrow \beta)) = \dots F(\alpha) \dots \alpha \dots F(\beta) \dots \beta \dots
 vi F((\alpha \leftrightarrow \beta)) = \dots F(\alpha) \dots \alpha \dots F(\beta) \dots \beta \dots
vii F((\neg \alpha)) = \dots F(\alpha) \dots \alpha \dots
```

# Formalización del ERP para PROP

### ERP para PROP: Tesis

Existe una única función  $F: \mathtt{PROP} \to B$  tal que

- i  $F(\alpha) = H_{\mathrm{AT}}(\alpha)$ , con  $\alpha \in \mathrm{AT}$
- ii  $F((\alpha*\beta)) = H_*(\alpha, F(\alpha), \beta, F(\beta)) \text{, con } \\ * \in C_2$
- iii  $F((\neg \alpha)) = H_{\neg}(\alpha, F(\alpha))$

ç

### $LARGO: PROP \rightarrow \mathbb{N}$

#### Versión 1

- i LARGO $(\varphi)=1$ , para cada  $\varphi\in {
  m AT}$
- ii  $LARGO((\alpha * \beta)) = 3 + LARGO(\alpha) + LARGO(\beta)$
- iii  $LARGO((\neg \alpha)) = 3 + LARGO(\alpha)$

Versión 2:  $H_{ ext{AT}}: ext{AT} 
ightarrow \mathbb{N}$ 

$$H_{\mathrm{AT}}(\varphi) := 1$$

Versión 2:  $H_*: \mathtt{PROP} \times \mathbb{N} \times \mathtt{PROP} \times \mathbb{N} \to \mathbb{N}$ 

$$H_*(\varphi, n, \psi, m) := 3 + n + m$$

 $igl[ \mathsf{Version} \ 2 \colon H_{\lnot} : \mathsf{PROP} imes \mathbb{N} o \mathbb{N} igr]$ 

$$H_{\neg}(\varphi, n) := 3 + n$$

# $ext{ATOMS}: ext{PROP} ightarrow 2^{ ext{AT}}$

#### Versión 1

i 
$$ATOMS(\varphi) = {\varphi}$$
, para cada  $\varphi \in AT$ 

ii 
$$ATOMS((\alpha * \beta)) = ATOMS(\alpha) \cup ATOMS(\beta)$$

iii 
$$ATOMS((\neg \alpha)) = ATOMS(\alpha)$$

Versión 2: 
$$H_{\mathrm{AT}}:\mathrm{AT} o 2^{\mathrm{AT}}$$

$$H_{\mathrm{AT}}(\varphi) := \{\varphi\}$$

Versión 2: 
$$H_*: \mathtt{PROP} imes 2^{\mathrm{AT}} imes \mathtt{PROP} imes 2^{\mathrm{AT}} o 2^{\mathrm{AT}}$$

$$H_*(\varphi,A,\psi,B):=A\cup B$$

Versión 2: 
$$H_{\neg}: \mathtt{PROP} imes 2^{\mathrm{AT}} o 2^{\mathrm{AT}}$$

$$H_{\neg}(\varphi, A) := A$$

# Árboles etiquetados y ordenados

### $\mathcal{T}(\mathcal{L})$

Consideramos conocido el lenguaje  $\mathcal{T}(\mathcal{L})$  de los árboles etiquetados con palabras de algún lenguaje  $\mathcal{L}$ .

### **Propiedades**

- Cada nodo tiene a lo más un padre. Si no tiene padre, es *la raíz* del árbol.
- Cada nodo tiene un primer hijo, un segundo hijo, etc... ordenados de izquierda a derecha.
   Si no tiene hijos, es una hoja del árbol.
- A cada nodo se le etiqueta con una palabra de  $\mathcal{L}$ .

# $oxed{\mathsf{A}}_{\mathsf{RBOL}}: \mathsf{PROP} o \mathcal{T}(\mathsf{PROP}) \ ext{(version 1)}$

i 
$$\operatorname{\acute{A}RBOL}(\varphi) = lacktriangle \varphi$$
 , para cada  $\varphi \in \operatorname{AT}$ 

ii 
$$\text{Árbol}((\varphi * \psi)) = \varphi$$

iii Árbol
$$((\neg \varphi)) = \varphi$$

# $oxed{Arbol}$ : PROP $ightarrow \mathcal{T}(PROP)$ (versión 2)

$$H_{\mathrm{AT}}:\mathrm{AT}
ightarrow\mathcal{T}(\mathtt{PROP})$$

$$H_{\mathrm{AT}}(\varphi) := \dots$$

$$[H_*: \mathtt{PROP} imes \mathcal{T}(\mathtt{PROP}) imes \mathtt{PROP} imes \mathcal{T}(\mathtt{PROP}) 
ightarrow \mathcal{T}(\mathtt{PROP})]$$

$$H_*(\varphi,t_1,\psi,t_2):=\dots$$

$$H_{\neg}: \mathtt{PROP} \times \mathcal{T}(\mathtt{PROP}) \to \mathcal{T}(\mathtt{PROP})$$

$$H_{\neg}(\varphi,t) := \dots$$

# $RANGO: PROP \rightarrow \mathbb{N}$ (versión 1)

- i  $\operatorname{RANGO}(\varphi) = 0$ , para cada  $\varphi \in \operatorname{AT}$
- ii  $RANGO((\alpha * \beta)) = 1 + \max \{RANGO(\alpha), RANGO(\beta)\}$

iii Rango( $(\neg \alpha)$ ) = 1 + Rango( $\alpha$ )

# $\overline{\mathrm{RANGO}}: \overline{\mathrm{PROP}} \to \mathbb{N}$ (versión 2)

$$H_{\mathrm{AT}}:\mathrm{AT}
ightarrow\mathbb{N}$$

$$H_{\mathrm{AT}}(a) := 0$$

$$H_*: \mathtt{PROP} imes \mathbb{N} imes \mathtt{PROP} imes \mathbb{N} o \mathbb{N}$$

$$H_*(\varphi,n,\psi,m):=1+\max\left\{n,m\right\}$$

$$H_{\neg}: \mathtt{PROP} \times \mathbb{N} \to \mathbb{N}$$

$$H_{\neg}(\varphi, n) := 1 + n$$

## Sustitución.

# 

$$[\_/\_]: PROP \times PROP \times P \rightarrow PROP$$

$$H_{\mathrm{AT}}: \mathrm{AT} \times \mathtt{PROP} \times P o \mathtt{PROP}$$

$$H_{\mathrm{AT}}(\alpha,\varphi,p) := \mathrm{si}\ p = \alpha\ \mathrm{entonces}\ \varphi\ \mathrm{sino}\ \alpha$$

$$H_*: \mathtt{PROP} \times \mathtt{PROP} \times \mathtt{PROP} \times \mathtt{PROP} \times \mathtt{PROP} \times P$$

$$H_*(\alpha,\alpha',\beta,\beta',\varphi,p) := (\alpha'*\beta')$$

$$H_{\neg}: \mathtt{PROP} imes \mathtt{PROP} imes \mathtt{PROP} imes P$$

$$H_{\neg}(\alpha, \alpha', \varphi, p) := (\neg \alpha')$$

## Def.1.1.4.a Secuencia de formación

Una secuencia  $\alpha_0,\alpha_1,\dots\alpha_n$  de palabras de  $\Sigma^*_{\text{PROP}}$  es una secuencia de formación para  $\alpha_n$  si y solamente si para todo  $k\leq n$  se cumple

- $\alpha_k \in AT$ , o
- $\bullet \ \alpha_k = (\alpha_i * \alpha_j) \text{, con } * \in C_2, i < k, j < k \text{, o}$
- $\bullet \ \alpha_k = (\neg \alpha_i), \ \text{con} \ i < k.$

## Def.1.1.4.b Subfórmula

Una fórmula  $\varphi \in \mathsf{PROP}$  es subfórmula de  $\alpha \in \mathsf{PROP}$  si y solamente si se cumple

- $\alpha = \varphi$ , o
- $\begin{array}{ll} \bullet \ \alpha = (\varphi_1 * \varphi_2) \text{, con} \\ * \in C_2, \varphi_1 \in \mathtt{PROP}, \varphi_2 \in \mathtt{PROP}, \ \mathsf{y} \ \varphi \ \mathsf{es} \\ \mathsf{subf\'ormula} \ \mathsf{de} \ \varphi_1 \text{, o} \end{array}$
- $\alpha=(\varphi_1*\varphi_2)$ , con  $*\in C_2, \varphi_1\in \mathsf{PROP}, \varphi_2\in \mathsf{PROP}, \ \mathsf{y}\ \varphi \ \mathsf{es}$  subfórmula de  $\varphi_2$ , o
- $\alpha=(\neg\varphi_1)$ , con  $\varphi_1\in {\rm PROP}$ , y  $\varphi$  es subfórmula de  $\varphi_1$ .

# Def.1.1.7 Conjunto de subfórmulas

# $\mathrm{Sub}:\mathtt{PROP} o 2^{\mathtt{PROP}}$ i $\mathrm{Sub}(arphi) = \{arphi\}$ , para cada $arphi \in \mathrm{AT}$

ii 
$$SUB((\alpha * \beta)) = \{(\alpha * \beta)\} \cup SUB(\alpha) \cup SUB(\beta)$$

iii 
$$Sub((\neg \alpha)) = \{(\neg \alpha)\} \cup Sub(\alpha)$$

## Def.1.1.4.b vs Def.1.1.7

#### Teorema

```
(\bar{\forall}\alpha,\varphi\in \mathtt{PROP}) \varphi es subfórmula de \alpha si y solamente si \varphi\in \mathrm{Sub}(\alpha)
```

#### El mismo teorema

```
(\bar{\forall}\alpha\in \mathtt{PROP})\\ \mathtt{SUB}(\alpha) = \{\varphi\in \mathtt{PROP}: \varphi \text{ es subfórmula de }\alpha\}
```

### **Opciones**

```
¿Qué mecanismo de prueba podemos usar?
¿Inducción?
¿Cómo?
```

# Inducción en PROP



### Propiedad a probar

$$\mathcal{P}(\alpha) := (\bar{\forall} \varphi)(\varphi \text{ es subfórmula de } \alpha \Leftrightarrow \varphi \in \operatorname{Sub}(\alpha))$$

#### Caso BASE

**T)**  $\mathcal{P}(\alpha)$  con  $\alpha \in AT$ 

### Dem.

(Directo)

Suponemos

 $\varphi$  es subfórmula de  $\alpha$ 

$$\implies$$
 (Def.1.1.4.b,  $\alpha \in AT$ )

$$\alpha = \varphi$$

$$\Rightarrow$$
 (Def.1.1.7)

$$\varphi \in \mathrm{SUB}(\alpha)$$

(Recíproco) Suponemos

$$\varphi \in \mathrm{SUB}(\alpha)$$

$$\Rightarrow$$
 (...)

$$\alpha = \varphi$$

$$\Rightarrow$$
 (...)

 $\varphi$  es subfórmula de  $\alpha$ 



# Inducción en PROP

$$(\varphi)$$

### Propiedad a probar

$$\mathcal{P}(\alpha) := (\bar{\forall} \varphi)(\varphi \text{ es subfórmula de } \alpha \Leftrightarrow \varphi \in \operatorname{Sub}(\alpha))$$

#### Caso INDUCTIVO. 2

**H)** 
$$\alpha = (\neg \beta)$$
 **T)**  $\mathcal{P}(\beta) \Rightarrow \mathcal{P}(\alpha)$ 

Dem.

 $\varphi$  es subfórmula de  $\alpha$ 

$$\Rightarrow$$
 (Def.1.1.4.b,  $\alpha = (\neg \beta)$ )

$$\alpha = \varphi$$
 o  $\varphi$  es subfórmula de  $\beta$ 

Caso 1 
$$\alpha = \varphi$$
. Por Def.1.1.7,  $\varphi \in Sub(\alpha)$ .

Caso 2  $\varphi$  es subfórmula de  $\beta$ . Por HI,  $\varphi \in \mathrm{SUB}(\beta)$ . Por Def.1.1.7,  $\varphi \in \mathrm{SUB}(\alpha)$ .



# ¿Qué probamos? ¿Qué falta probar?

- Probamos el caso BASE:  $\mathcal{P}(\alpha)$ , cuando  $\alpha \in \mathrm{AT}$ . Falta justificar la mitad de la prueba.
- Probamos el caso IND2:  $\mathcal{P}(\alpha) \Rightarrow \mathcal{P}((\neg \alpha))$ . Falta probar el recíproco de la propiedad para  $\alpha$ .
- Falta probar el caso IND1:  $\mathcal{P}(\alpha_1) \text{ y } \mathcal{P}(\alpha_2) \Rightarrow \mathcal{P}((\alpha_1 * \alpha_2)).$

Luego de realizar las justificaciones y pruebas faltantes, habremos verificado que se cumple la hipótesis del PIP para  $\mathcal{P}$ , y podremos aplicar el PIP para concluír el teorema.

# Aplicación del PIP

El PIP es el (meta)teorema que justifica  $(\bar{\forall} \alpha \in \mathtt{PROP}) \mathcal{P}(\alpha)$ 

#### Teorema

$$( \bar{\forall} \alpha, \varphi \in \mathtt{PROP})$$
  $\varphi$  es subfórmula de  $\alpha$  si y solamente si  $\varphi \in \mathtt{SUB}(\alpha)$ 

#### Demostración

En las diapositivas anteriores se probó (faltan partes de la prueba) que la propiedad  $\mathcal{P}$  cumple con las hipótesis del PIP de PROP, por lo que se deduce que la propiedad se cumple para todo elemento de PROP.

# PROP y secuencias de formación

#### Teorema 1.1.5

PROP es el conjunto de todas palabras de  $\Sigma_{\text{PROP}}^*$  que tienen secuencia de formación.

#### Corolario

Sea  $\mathcal P$  una propiedad de  $\Sigma^*_{\mathtt{PROP}}$ . Para demostrar que: para todo  $\alpha \in \mathtt{PROP}$  se cumple  $\mathcal P(\alpha)$ 

podemos hacer la prueba:

- ullet por inducción primitiva en lpha
- por inducción en la longitud de la secuencia de formación de  $\alpha$

# Convenciones sintácticas

- Omitimos los paréntesis exteriores de una fórmula, y los que rodean a ¬.
- Los conectivos ∧ y ∨ tienen la misma precedencia.
- Los conectivos → y ↔ tienen la misma precedencia.
- Los conectivos → y ↔ tienen la menor precedencia de todos los conectivos.
- Los conectivos de igual precedencia se asocian a la derecha.

# **Ejemplos**

- $\bullet \ \neg \neg p_1$  abrevia a  $(\neg (\neg p_1))$
- $\bullet \ p_1 \to p_2 \leftrightarrow p_3 \ \text{abrevia a} \ (p_1 \to (p_2 \leftrightarrow p_3))$
- $p_2 \land \bot \lor \lnot (p_3 \to p_1)$  abrevia a  $(p_2 \land (\bot \lor (\lnot (p_3 \to p_1))))$
- $p_1 \to p_2 \land \bot \lor \neg p_3$  abrevia a  $(p_1 \to (p_2 \land (\bot \lor (\neg p_3))))$