Resolución del Examen - Métodos Numéricos

Martes 17 de Diciembre de 2019

Problema 1 (30 puntos)

Considere el Problema de Mínimos Cuadrados Lineal (PMCL): $\min_x \|b - Ax\|_2$, con $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $x \in \mathbb{R}^n$ y m > n.

- a) Deduzca el Sistema de Ecuaciones Normales asociado al PMCL.
- b) ¿Cómo resolvería p Ecuaciones Normales asociadas a p PMCL diferentes, asumiendo que A no cambia?. Calcule el número de operaciones respectivo.
- c) i) ¿Qué es la descomposición QR de una matriz $A \in \mathbb{R}^{m \times n}$?
 - ii) Explique cómo se utiliza la descomposición QR para resolver un PMCL.

Resolución:

- a) Ver teórico
- b) Primero calculamos la descomposición de Cholesky para A^tA , $(\frac{n^3}{3}$ operaciones) tenemos entonces L triangular tal que $A^tA = LL^t$.

Tenemos p sistemas de la forma

$$A^t A X = A^t b_i, \ i = 1, \dots, p$$

Sustituyendo obtenemos p sistemas

$$(2) LL^t X = A^t b_i, i = 1, \dots, p$$

Los cuales resolvemos en dos pasos: Primero resolvemos

(3)
$$LY = A^t b_i \left(\frac{n^2}{2} \text{ operaciones}\right)$$

para luego resolver

(4)
$$L^t X = Y; (\frac{n^2}{2} \text{ operaciones})$$

Esto nos da n^2 operaciones por c/u de los p sistemas.

El total entonces es $\frac{n^3}{3} + pn^2$ operaciones.

Observación: En lugar de usar la descomposición de Cholesky se puede usar también la descomposición LU para A^tA . Mas allá de cambios en la cantidad de operaciones, el resto se mantiene igual.

c) Ver teórico.

Problema 2 (35 puntos)

- a) Describa el Método de Newton-Raphson (NR) para estimar la raíz de una ecuación vectorial: $f(X) = \vec{0}$, con $f: \mathbb{R}^n \to \mathbb{R}^n$.
- b) Partiendo de $X_0 = (0,0)$ calcule X_2 aplicando NR a la función:

$$f(x,y) = (x^2 + 2y - 2, x - 2y + 2).$$

c) Se considera la función:

$$g(x,y) = (x^2 + 2y + x - 2, x - y + 2).$$

- i) Verifique que $f(x,y) = (0,0) \Leftrightarrow g(x,y) = (x,y)$.
- ii) Partiendo de $X_0 = (0,0)$ calcule X_2 aplicando el MIG con la función g.
- d) Sea X_{sol} la solución exacta de f(x,y) = (0,0) que no tiene coordenadas negativas. Halle X_{sol} y compare $||X_{sol} - X_2||_2^2$ para los valores de X_2 calculados en (b) y (c).

Resolución:

a) Ver teórico.

b) Como
$$f(x,y) = (x^2 + 2y - 2, x - 2y + 2)$$
, tenemos que $\mathbb{J}_f(x,y) = \begin{pmatrix} 2x & 2 \\ 1 & -2 \end{pmatrix}$

NR queda $X_{k+1} = X_k + p_k$, donde p_k se halla resolviendo el sistema

$$\mathbb{J}_f(X_k)p_k = -f(X_k)$$

por tanto primero hallamos $p_0 = \begin{pmatrix} p_1^0 \\ p_2^0 \end{pmatrix}$ resolviendo el sistema

(6)
$$\mathbb{J}_f(X_0)p_0 = -f(X_0)$$

Dicho sistema es

(7)
$$\begin{pmatrix} 0 & 2 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} p_1^0 \\ p_2^0 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \end{pmatrix}$$

La solución es $p_0 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, por tanto $X_1 = X_0 + p_0 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Del mismo modo calculamos $X_2 = X_1 + p_1$, donde p_1 es solución del sistema

$$\mathbb{J}_f(X_1)p_1 = -f(X_1)$$

que en esta ocasión queda

(9)
$$\begin{pmatrix} 0 & 2 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} p_1^1 \\ p_2^1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

La solución es $p_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, de donde $X_2 = X_1$

c) • i)
$$g(x,y) = (x,y) \Leftrightarrow (x^2 + 2y + x - 2, x - y + 2) = (x,y) \Leftrightarrow (x^2 + 2y - 2, x - 2y + 2) = (0,0) \Leftrightarrow f(x,y) = (0,0)$$

• ii) Aplicamos el MIG:

$$(10) X_1 = g(X_0) = (-2, 2)$$

(11)
$$X_2 = g(X_1) = (4+4-2-2, -2-2+2) = (4, -2)$$

(12)

De donde $X_2 = (4, -2)$.

d) La solución exacta de f(x,y) = (0,0) se encuentra resolviendo el sistema

$$(13) x^2 + 2y - 2 = 0$$

$$(14) x - 2y + 2 = 0$$

Si a la segunda ecuación le sumamos la primera, obtenemos $x^2 + x = 0$, de donde x = 0, x = -1. Para x = 0 obtenemos y = 1, por lo que $X_{sol} = (0, 1)$.

Con el X_2 hallado en b) tenemos $||X_{sol} - X_2||_2^2 = 0$.

Con el X_2 hallado en c) tenemos $||X_{sol} - X_2||_2^2 = (0-4)^2 + (1-(-2))^2 = 16 + 9 = 25$.

N-R convergió en 1 paso, mientras que el MIG se aleja de la solución ($||X_{sol} - X_1^{MIG}||_2^2 = (-2)^2 + (1-2)^2 = 5$).

Problema 3 (35 puntos)

a) Describa el Método de Euler "hacia atrás" (EAt) para la resolución de una EDO:

$$y'(x) = f(x, y).$$

- b) Explique su implementación mediante "Predictor-Corrector".
- c) Halle la región de estabilidad de EAt (sin Predictor-Corrector).
- d) Plantee una implementación alternativa de EAt basada en Newton-Raphson.

e) Se considera la EDO asociada a $f(x,y) = x^2y - 2y$. Sea y_{n+1} la estimación obtenida al aplicar EAt. Exprese y_{n+1} en términos de y_n , x_{n+1} y h.

Resolución:

- a) Ver teórico
- b) Ver teórico
- c) Ver teórico
- d) Euler hacia atrás: $y_{n+1} = y_n + hf(x_{n+1}, y_{n+1})$. Podemos plantear la igualdad anterior como $F(y_{n+1}) = y_n + hf(x_{n+1}, y_{n+1}) y_{n+1} = 0$, lo que sugiere resolver

$$F(y) = y_n + hf(x_{n+1}, y) - y = 0$$

Aplicando N-R a F(y) = 0, tenemos $F'(y) = h \frac{\partial f}{\partial y}(x_{n+1}, y) - 1$.

Tenemos entonces $y_{n+1}^{(k+1)}=y_{n+1}^{(k)}-\frac{F(y_{n+1}^{(k)})}{F'(y_{n+1}^{(k)})}$, que iteramos en k hasta satisfacer el criterio de parada.

e) Tenemos $f(x,y)=x^2y-2y$, aplicando Euler hacia atrás tenemos

$$y_{n+1} = y_n + h(x_{n+1}^2 y_{n+1} - 2y_{n+1})$$

Operando (distributiva y sacar y_{n+1} de factor común), tenemos

$$(15) y_{n+1} = y_n + y_{n+1}(hx_{n+1}^2 - 2h)$$

(16)
$$y_{n+1} - y_{n+1}(hx_{n+1}^2 - 2h) = y_n$$

De donde

$$y_{n+1} = \frac{y_n}{1 - hx_{n+1}^2 + 2h}$$