Primer Parcial de Función de Variable Compleja. Curso 2012

Montevideo, 2 de mayo de 2012.

Parcial Nro: Apellido: C.I.:

1. Ejercicio

- a) Mostrar que si $z_1, z_2, z_3, w_1, w_2, w_3$ son complejos tales que $z_1 \neq z_2 \neq z_3 \neq z_1$ y $w_1 \neq w_2 \neq w_3 \neq w_1$, entonces existe una transformación de Möebius T tal que $Tz_i = w_i$ con i = 1, 2, 3. Observación: No se pide demostrar la unicidad.
- b) Hallar una transformación de Möebius que lleve el interior del disco unidad \mathbb{D} en el semiplano $\mathrm{Im}(z) < 0$.
- c) Encontrar una función conforme que transforme la región $\{z \in \mathbb{C} : \pi/3 < \text{Arg}(z) < 2\pi/3\}$ en \mathbb{D} .

2. Ejercicio

a) Demostrar que si F es una primitiva de f entonces, para toda curva $\gamma:[a,b]\to\mathbb{C}$

$$\int_{\gamma} f(z)dz = F(\gamma(b)) - F(\gamma(a))$$

- b) Sea $\gamma:[0,\pi]\to\mathbb{C}$ dada por $\gamma(t)=(1+t)^5e^{it}$ y f(z)=1/z. Hallar $\int_{\gamma}f(z)dz$.
- c) Sea Ω una región (abierto y conexo) del plano. Sea $f:\Omega\to\mathbb{C}$ una función continua. Demostrar que si para toda curva cerrada γ en Ω , la integral $\int_{\gamma} f(z)dz=0$, entonces f posee primitiva.

3. Ejercicio

Sea γ el semicírculo $\{z:|z|=1, \operatorname{Im}(z)\geq 0\}$ recorrido en sentido antihorario. Sea $f:\mathbb{C}\to\mathbb{C}$ definida por f(z)=|z| y sea g(z) definida por

$$g(z) = \int_{\gamma} \frac{f(w)}{w - z} dw.$$

- a) Hallar $\int_{\gamma} z^{-n} dz$ para $n = 1, 2, \dots$
- b) Demostrar que f no es holomorfa. Decir cual es el dominio de definición de g y demostrar que es holomorfa. Justifique sus respuestas (puede hacerlo a través de cualquier teorema visto en el teórico).
- c) Hallar el desarrollo de Taylor de g con centro a=0.
- d) Hallar el radio de convergencia del siguiente desarrollo, justificando su respuesta:

$$z + \frac{z^3}{3} + \frac{z^5}{5} + \cdots$$

SOLUCIONES

Solución Ejercicio 1

- a Ver teórico.
- b Usando la parte (a), una posible transformación T que cumpla lo que se pide sería una transformación tal que T(1) = 0, $T(i) = \infty$ y T(-1) = 1. Esta transformación es

$$T(z) = \frac{z-1}{z-i} \left(\frac{1-i}{-2} \right) = \frac{(-1-i)(z-1)}{-2z+2i}$$

Para verificar que el interior de \mathbb{D} se transforma en Im(z) < 0 basta notar que T(0) = (1+i)/2i = (-i+1)/2 cuya parte imaginaria es -1/2 < 0.

c Para hacer esto, primero encontramos una función holomorfa que lleve la región $\pi/3 < \text{Arg}(z) < 2\pi/3$ en Im(z) < 0, una función que hace esto es $f(z) = z^3$. De esa forma, la función holomorfa que transforma la regiÚn $\pi/3 < \text{Arg}(z) < 2\pi/3$ en \mathbb{D} es $g(z) = T^{-1}(z^3)$. Para ver que esta transformación es conforme, calculamos su derivada: $g'(z) = 3z^2/T'(g(z))$ y se cumple que $g'(z) \neq 0$ para ningún punto del dominio. Esto implica que g es conforme.

Una formula explicita para g es

$$g(z) = \frac{-2z^3 - 1 - i}{2z^3 - 1 - i}$$

Solución Ejercicio 2: Las partes a) y c) son teóricas.

Para hacer la parte b), basta encontrar una primitiva de 1/z definida en un dominio que incluya la curva γ y evaluar en los extremos de dicha curva. Una primitiva de 1/z, como vimos en el teórico, es cualquier logaritmo. Un logaritmo que contiene a la curva γ , es, por ejemplo $\log_{(a,b)}$ con $(a,b)=(-\pi/2,3\pi/2)$. Por lo tanto

$$\int_{\gamma} f = \log_{(a,b)}(\gamma(\pi)) - \log_{(a,b)}(\gamma(0)) = \log_{(a,b)}((1+\pi)^{5}(-1)) - \log_{(a,b)}(1) = \ln((1+\pi)^{5}) + \pi i - 0 = 5\ln(1+\pi) + \pi i.$$

Solución Ejercicio 3:

a) Para hallar $\int_{\gamma} z^{-n} dz$ obtendremos una primitiva de z^{-n} . Si n > 1 la primitiva puede ser $z^{-n+1}/(1-n)$. Si n = 1, entonces podemos tomar $\log_{(a,b)}(z)$ con $(a,b) = (-\pi/2, 3\pi/2)$. De esta forma

$$\int_{\gamma} z^{-n} dz = \begin{cases} \log_{(a,b)}(-1) - \log_{(a,b)}(1) & \text{si } n = 1, \\ (-1)^{-n+1}/(1-n) - 1^{-n+1}/(1-n) & \text{si } n > 1. \end{cases} = \begin{cases} \pi i & \text{si } n = 1, \\ 0 & \text{si } n > 1, n \text{ impar.} \\ 2/(n-1) & \text{si } n > 1, n \text{ par.} \end{cases}$$

- b) f no es holomorfa, pues al ser constante en |z|=1 debería serlo siempre (si fuera holomorfa), lo cual es falso $(|1| \neq |2|)$. la función g es holomorfa, por el Lema 2.6 visto en el teórico.
- c) Parar hallar el desarrollo de Taylor de g con centro a=0, basta computar $g^{(n)}(0)$. Para ello, usamos el Lema 2.6, visto en el teórico. Del mismo sabemos que si

$$g_n(z) = \int_{\gamma} \frac{f(w)}{(w-z)^n} dw.$$

entonces $g_n'(z) = ng_{n+1}(z)$. Por lo tanto $g^{(n)}(z) = n!g_{n+1}(z)$, de donde

$$\frac{g^{(n)}(0)}{n!} = \int_{\gamma} \frac{|w|}{w^{n+1}} dw = \int_{\gamma} \frac{1}{w^{n+1}} dw = \begin{cases} \pi i & \text{si } n = 0, \\ 0 & \text{si } n > 0, n \text{ par.} \\ 2/n & \text{si } n > 0, n \text{ impar.} \end{cases}$$

De donde

$$g(z) = \pi i + 2z + 2\frac{z^3}{3} + 2\frac{z^5}{5} + \cdots$$

d) Hallar el radio de convergencia del siguiente desarrollo, justificando su respuesta:

$$z + \frac{z^3}{3} + \frac{z^5}{5} + \cdots$$

La serie converge para |z| < 1 pues la función g(z) es holomorfa y está definida en |z| < 1. Para ver que el radio es exactamente 1, basta ver que no converge para z = 1:

$$1+\frac{1}{3}+\frac{1}{5}+\cdots$$

es divergente, pues si sumara S, entonces S+2S=3S sería la suma de la serie armónica, que sabemos no es convergente.