Primer parcial de Funciones de Variable Compleja.

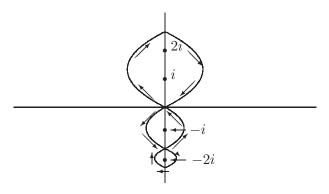
Mayo de 2011.

Apellido y nombre	Cédula de Identidad

Núm. examen

Nota: Cada parte vale 5 puntos, con un máximo de 40. La duración del parcial es de 3 horas.

- 1. a) Encontrar una transformación de Moebius w=f(z) que lleve el semiplano $\{z\in\mathbb{C}:\, Im(z)>0\}$ en el círculo $\{w\in\mathbb{C}:|w-i|<1\}$.
 - b) Sea f(z) la transformación de Moebius dada como respuesta de la parte a). Demostrar que si un complejo z satisface la siguiente ecuación: $(f(z)-i)^{123}=1$, entonces necesariamente Im(z)=0.
 - c) Demostrar que toda transformación w=f(z) holomorfa en un conjunto abierto no vacío $\Omega\subset\mathbb{C}$, y tal que $f'(z)\neq 0$ para todo $z\in\Omega$, es conforme.
- 2. Sea $f(z)=\frac{12}{(z^2+1)(z^2+4)}$ definida para $z\in\mathbb{C}\ \setminus\ \{i,-i,2i.-2i\}$. Sea γ la curva de la figura



- a) Calcular $I=\int_{\gamma}f(z)\,dz.$ Sugerencia: Descomponer f(z) en fracciones simples: f(z)=A/(z-a)+
 - B/(z-b)+C/(z-c)+D/(z-d), e integrar después usando el teorema del índice.
- b) Encontrar el desarrollo en serie de potencias de f(z) centrado en $z_0=0$. Sugerencia: Usar la descomposición de f(z) en fracciones simples. Recordar que $\sum_{n=0}^{\infty} z^n = 1/(1-z) \text{ si } |z| < 1, \text{ y observar que para todo complejo } a \neq 0 \text{ y para todo } z \neq a, \text{ se cumple } 1/(z-a) = (-1/a)(1/(1-(z/a)).$
- c) Calcular $J = \int_{\gamma} f'(z) dz$.

Sea f(z) una función continua para todo $z \in \mathbb{C}$. Sea $\gamma \subset \mathbb{C}$ una curva diferenciable orientada. Sea $w \in \mathbb{C} \setminus \gamma$. Se considera la siguiente integral: $g(w) = \int_{\gamma} \frac{f(z)}{z-w} \, dz$.

- a) Demostrar que g(w) es una función analítica para $w \in \mathbb{C} \ \setminus \ \gamma$.
- b) Demostrar que $g'(w) = \int_{\gamma} \frac{f(z)}{(z-w)^2} dz$.