Universidad de la República Facultad de Ingeniería-IMERL

28 de noviembre de 2015

SEGUNDO PARCIAL: CALCULO III

Nº de parcial	Cédula	Apellido y nombre	Salón

Múltiple opción (Total: 30 puntos)

En cada pregunta hay sólo una opción correcta.

Respuesta correcta: 5 puntos, respuesta incorrecta: -1 punto, no respuesta: 0 punto.

Marcar las opciones correctas en el siguiente cuadro.

Ejercicio 1	Ejercicio 2	Ejercicio 3	Ejercicio 4	Ejercicio 5	Ejercicio 6

Ejercicio 1

Sea $X: \mathbb{R}^3 \to \mathbb{R}^3$ de clase C^1 el campo de velocidades de un fluido, tal que su primera componente es nula, y su segunda componente, $B(x,y,z) = 3x^2 + 3y^2 + 9z$. Hallar el flujo del rotor de X a través de la superficie con borde parametrizada por:

$$\begin{cases} x = v \cos u & u \in \left[0, \frac{\pi}{2}\right] \\ y = v \sin u & v \in \left[0, 1\right] \\ z = 2uv\left(\frac{\pi}{2} - u\right)(1 - v) \end{cases}$$

orientada con la normal con tercera componente negativa.

- (A) -2.
- (B) -4.
- (C) 4.
- (D) 0.
- (E) -1.

Ejercicio 2

Sean
$$X = \left(\frac{x + \left(x^2 + y^2 + z^2\right)^{\frac{3}{2}}}{(x^2 + y^2 + z^2)^{\frac{3}{2}}}, \frac{y - \left(x^2 + y^2 + z^2\right)^{\frac{3}{2}}}{(x^2 + y^2 + z^2)^{\frac{3}{2}}}, \frac{z + \left(x^2 + y^2 + z^2\right)^{\frac{3}{2}}}{(x^2 + y^2 + z^2)^{\frac{3}{2}}}\right)$$
 y $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$. Entonces:

- (A) $\iint_S X \neq 0$, pero existe S' superficie cerrada que rodea al origen tal que $\iint_{S'} X = 0$.
- (B) Como $\operatorname{div}(X) = 0$, entonces X tiene potencial vector en su dominio.
- (C) Como $\operatorname{div}(X) \neq 0$, entonces X no tiene potencial vector en su dominio.
- (D) Como $\iint_S X \neq 0,$ entonces X no tiene potencial vector en su dominio.
- (E) Como div(X) = 0, entonces $\iint_S X = 0$.

Ejercicio 3

Sea F un campo vectorial C^2 y r el vector posición. Se consideran las siguientes afirmaciones.

1.
$$\nabla \cdot (F \times r) = r \cdot (\nabla \times F)$$

2.
$$\nabla \cdot F + \nabla \cdot r = \nabla \cdot (\nabla \times (F + r))$$

3.
$$\nabla \times (F \times r) = \nabla \times F + \nabla \times r$$

- (A) Hay más de una afirmación correcta.
- (B) Solamente la afirmación 3 es correcta.
- (C) Solamente la afirmación 2 es correcta.
- (D) Solamente la afirmación 1 es correcta.
- (E) Ninguna afirmación es correcta.

Ejercicio 4

Sean $\omega = y^2 z dx + z \cos(x) dy + \sin(xy) dz$ y $\eta = e^{x+y} dx + y^3 dy$. Entonces:

(A)
$$d\omega \wedge \eta = ((y^2 - x\cos(xy))y^3 + (y\cos(xy) - \cos(x))e^{x+y}) dxdydz$$
.

(B)
$$d\omega \wedge \eta = (y\cos(xy) - \cos(x))e^{x+y} dxdydz$$
.

(C)
$$d\omega \wedge \eta = ((y^2 - y\cos(xy))y^3 + (x\cos(xy) - \cos(x))e^{x+y}) dxdydz$$
.

(D)
$$d\omega \wedge \eta = ((y^2 - x\cos(xy))y^3 + (y\sin(xy) - \cos(x))e^{x+y}) dxdydz$$
.

(E)
$$d\omega \wedge \eta = ((x\cos(xy) - y^2)y^3 + (x\cos(xy) - \cos(x))e^{x+y}) dxdydz$$
.

Ejercicio 5

Se tiene una cañería con sección triangular isósceles. Hallar el módulo del caudal Q del campo de velocidades dado por $\vec{V}=(8y,8z,8x)$ que pasa por la sección que tiene vértices $(\frac{1}{2},0,0), (-\frac{1}{2},0,0)$ y(0,0,1).

(A)
$$|Q| = 3$$
.

(B)
$$|Q| = \frac{4}{3}$$
.

(C)
$$|Q| = \frac{7}{3}$$
.

(D)
$$|Q| = \frac{3}{8}$$
.

(E)
$$|Q| = \frac{7}{8}$$
.

Ejercicio 6

Sea
$$S$$
 una superficie de \mathbb{R}^3 de forma que $S = S_1 \cup S_2$, donde:
$$S_1(u,v) = \begin{cases} x = u \cos v & 0 \le u \le 1 \\ y = u \sin v & 0 \le v < 2\pi \\ z = cu \end{cases}$$
$$S_2(u,v) = \begin{cases} x = u \cos v & 0 \le u \le 1 \\ y = u \sin v & 0 \le v < 2\pi \\ z = c \end{cases}$$

Si se sabe que el flujo entrante de $\vec{Y} = (x, y, z)$ a través de S es 1, entonces:

(A)
$$c = 0$$
.

(B)
$$c = \frac{1}{\pi}$$
.

(C)
$$c = \frac{1}{2\pi}$$
. $c = -\frac{1}{\pi}$.

(D)
$$c = -\frac{1}{2\pi}$$
.

(E)
$$c = \frac{1}{2\pi}$$
.

Ejercicios de desarrollo (Total: 30 puntos)

Ejercicio 1 (10 puntos)

Dado el campo $X(x, y, z) = (-2e^{x-2y} - 2xz, -e^{x-2y}, z^2 - x).$

- 1. Probar que X es solenoidal en \mathbb{R}^3 .
- 2. Hallar un potencial vector para X.

Ejercicio 2 (20 puntos)

- 1. Enunciar y demostrar el teorema de Green.
- 2. Probar que Si $X:D(\subset \mathbb{R}^2)\to \mathbb{R}^2$ es irrotacional en D simplemente conexo, entonces X es de gradientes en D.
- 3. Si $X : \mathbb{R}^2 \{(a,b)\} \to \mathbb{R}^2$ es irrotacional, porbar que la circulación sobre toda circunferencia de centro (0,0) recorrida una sola vez y recorrida en sentido antihorario es constante.
- 4. Hallar la circulación en sentido horario del campo $X(x,y) = \left(\frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2}\right)$ sobre el rectángulo de vértices (-1,-1),(-1,3),(1,-1) y (1,3).