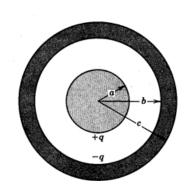
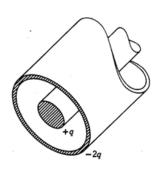
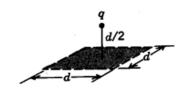

Práctico 2


Curso de Física 3 - Primer semestre 2022

En todos los ejercicios se suponen condiciones electrostáticas


Ejercicio 1 Una red para cazar mariposas está inmersa en un campo eléctrico \vec{E} uniforme como se muestra en la figura. El aro, un círculo de radio a, está alineado perpendicularmente al campo. Halle el flujo eléctrico a través de la red, respecto a la normal hacia afuera de la red.

Ejercicio 2 La figura muestra una esfera conductora uniforme de radio a con una carga total +q. La misma está situada en el centro de una esfera hueca conductora de radio interior b y radio exterior c. La esfera hueca exterior contiene una carga total -q. Determine las características del vector campo eléctrico en las siguientes ubicaciones: a) dentro de la esfera (r < a); b) entre la esfera sólida y la hueca (a < r < b); c) dentro de la esfera hueca (b < r < c); d) afuera de la esfera hueca (r > c). ¿Qué cargas aparecen en las superficies interna y externa de la esfera hueca? Si la esfera de radio a pasa a tener una densidad de carga volumétrica uniforme, ρ , tal que la carga total sigue valiendo +q: e) Halle el campo eléctrico \vec{E} para $r \le a$. f) ¿Cambia el campo eléctrico \vec{E} fuera de la esfera con respecto a la configuración anterior?



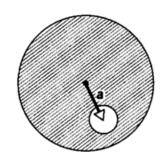
Ejercicio 3 Un cilindro conductor muy largo, de longitud L conteniendo una carga total +q está rodeado por un tubo cilíndrico (también de longitud L) con una carga total -2q, como se muestra en la sección transversal de la figura. Use la ley de Gauss para hallar: a) el campo eléctrico en los puntos afuera del tubo conductor; b) la distribución de la carga en el tubo conductor; c) el campo eléctrico en la región comprendida entre el tubo y el cilindro. Desprecie los efectos de borde. Si la carga del tubo cilíndrico (-2q) se modifica tal que pasa a valer -q, d) ¿Cómo cambian las respuestas a las preguntas anteriores? e) Halle las densidades de carga superficial en esta nueva configuración.

Ejercicio 4 Un conductor aislado de forma arbitraria contiene una carga neta de $+10\mu C$. Dentro del conductor hay una cavidad hueca en la cual hay una carga puntual $q = +3.0\mu C$. Cuál es la carga (a) en la pared de la cavidad y (b) en la superficie externa del conductor?

Ejercicio 5 Una carga puntual +q está a una distancia d/2 de una superficie cuadrada de lado d y está directamente arriba del centro del cuadrado como se muestra en la figura. Halle el flujo eléctrico a través del cuadrado.

Ejercicio 6 Dos placas metálicas grandes están una frente a la otra como en la figura y tienen sobre sus superficies internas una densidad superficial de carga $-\sigma$ y $+\sigma$, respectivamente. Determine el campo eléctrico en los siguientes casos:

- a) a la izquierda de las láminas
- b) entre ellas
- c) a la derecha de las láminas


Ejercicio 7 Dos láminas no conductoras infinitas de carga positiva están una frente a la otra como muestra la figura. Determine el campo eléctrico en los siguientes casos:

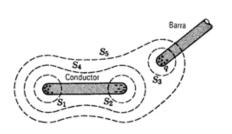
- a) a la izquierda de las láminas
- b) entre ellas
- c) a la derecha de las láminas

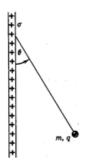
Suponga que ambas láminas tienen la misma densidad superficial de carga σ uniforme.

Ejercicio 8 Una región esférica contiene una densidad volumétrica de carga ρ constante. Sea \vec{r} el vector desde el centro de la esfera hasta un punto general P dentro de la esfera.

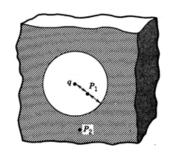
- a) Demuestre que el campo eléctrico en P está dado por $\vec{E} = \frac{\rho \vec{r}}{3\varepsilon_0}$
- b) Una cavidad esférica se crea dentro de la esfera de arriba, como se muestra en la figura. Usando los conceptos de la superposición, demuestre que el campo eléctrico dentro de la cavidad es $\vec{E} = \frac{\rho \vec{a}}{3\varepsilon_o}$ (campo uniforme), donde \vec{a} es el vector que une el centro de la esfera con el centro de la cavidad. Nótese que ambos resultados son independientes de los radios de la esfera y de la cavidad.

Ejercicios Adicionales

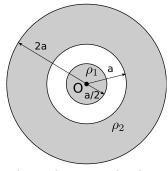

Ejercicio 9 La carga en un conductor aislado, originalmente descargado, se separa al acercársele una barra cargada positivamente, como se muestra en la figura. Calcule el flujo para las cinco superficies gaussianas esquematizadas. Suponga que el módulo de la carga negativa inducida sobre el conductor es igual al módulo de la carga positiva q sobre la barra.


Ejercicio 10 Una esfera pequeña cuya masa m es de 1,12mg contiene una carga q=19,7nC. Culega en el campo gravitatorio de la Tierra de un hilo de seda que forma un ángulo $\theta=27,4^o$ con una lámina grande no conductora y uniformemente cargada como muestra la figura.

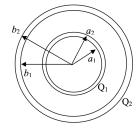
Calcule la densidad de carga uniforme σ para la lámina.


Ejercicio 11 Dada una superficie Gaussiana S, con flujo eléctrico nulo, son ciertas las siguientes afirmaciones?

- a) necesariamente no hay ninguna carga dentro de S
- b) el producto escalar entre el campo eléctrico y la normal a S vale cero en todo punto de S



Ejercicio 12 La figura muestra una carga puntual q=126nC en el centro de una cavidad esférica de 3,66cm de radio en un trozo de metal. Suponga que la cavidad se encuentrea muy lejos del borde del conductor. Use la Ley de Gauss para hallar el campo eléctrico (a) en P_1 , un punto medio entre el centro y la superficie; (b) en el punto P_2 .


Ejercicio 13 (primer parcial FG2 2004) Una esfera de radio a/2, uniformemente cargada con densidad volumétrica de carga ρ_1 se sitúa con su centro O coincidente con el de una corona esférica, también uniformemente cargada, con densidad volumétrica de carga ρ_2 . Los radios interior y exterior de la corona son a y 2a. ¿Cuál debe ser el valor de ρ_1 , en función de ρ_2 , para que el campo eléctrico debido a ambas distribuciones de carga sea nulo a una distancia 3a/2 de O?

Ejercicio 14 Considere una carga puntual Q colocada sobre el vértice de un cubo de lado a. Calcular el flujo total del campo eléctrico producido por la carga sobre las 3 caras del cubo que no están en contacto con el vértice donde se encuentra Q.

Ejercicio 15 Considere el sistema que se muestra en la figura, formado por dos cascarones esféricos metálicos concéntricos, de espesor finito. El cascarón interno tiene radio interior a_1 y radio exterior a_2 , el cascarón externo tiene radio interior b_1 y radio exterior b_2 .

Una carga Q_1 es puesta en el cascarón interno y una carga Q_2 en el cascarón externo. Encuentre la densidad superficial de carga en cada una de las cuatro superficies.

