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Abstract

Given a directed graph whose arcs have an associated cost, and associated weight, the weight constrained shortest

path problem (WCSPP) consists of ®nding a least-cost path between two speci®ed nodes, such that the total weight

along the path is less than a speci®ed value. We will consider the case of the WCSPP de®ned on a graph without

cycles. Even in this case, the problem is NP-hard, unless all weights are equal or all costs are equal, however

pseudopolynomial time algorithms are known. The WCSPP applies to a number of real-world problems. Tradition-

ally, dynamic programming approaches were most commonly used, but in recent times other methods have been

developed, including exact approaches based on Lagrangean relaxation, and fully polynomial approximation

schemes. We will review the area and present a new exact algorithm, based on scaling and rounding of weights.

Keywords: combinatorial optimization, networks, routing

1. Introduction

Given a directed graph which has a cost, and a weight associated with each arc, the weight constrained

shortest path problem (WCSPP) consists of ®nding the least-cost route between two speci®ed nodes,

such that the total weight is less than a speci®ed value. We note that the WCSPP can also be de®ned

with weight on nodes rather than on arcs: it is not hard to show that the two problems are equivalent.

The WCSPP is an NP-hard problem, even if we consider the case when the graph is acyclic and all

weights and costs are positive (Garey and Johnson, 1979, p. 214).

Throughout this paper G � (V , A) will be a directed acyclic graph, where V � f1, . . ., ng is the set

of nodes, jV j � n, and A is the set of arcs. Each arc (i, j) 2 A has an associated weight wij which is a

non-negative integer, and an associated cost cij which is a non-negative integer. A path in the graph is a

sequence of nodes (i0, i1, . . ., ip) such that (ikÿ1, ik) 2 A for all k from 1 to p. Let W , a positive

integer, be the weight limit. We say that the path is weight feasible if and only if the total weight

accumulated along the path is at most W , ie,
P p

k�1wikÿ1 i k
< W . Let s be a given source node, and t a

given destination node. The WCSPP consists of ®nding a minimum cost weight feasible path in G from

s to t.
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An integer formulation of the WCSPP is given as follows:

min
X
a2A

caxa

s:t:
X

a2ä�(i)

xa ÿ
X

a2äÿ(i)

xa �
1, if i � s

ÿ1, if i � t

0, if i 2 Vnfs, tg

8<: 8i 2 V (1)

X
a2A

waxa < W (2)

xa 2 f0, 1g, 8a 2 A (3)

where ä�(i) denotes the set of arcs leaving node i, ie, ä�(i) � f(i, j) 2 Ag, and äÿ(i) denotes the set of

arcs entering node i, ie, äÿ(i) � f( j, i) 2 Ag, for each i 2 V .

We give an example of WCSPP: consider the graph in Figure 1, where s � 1, t � 5 and W � 6, and

the values associated with each arc represent the cost and the weight respectively. The paths from node

1 to node 5 are (1, 2, 3, 5), (1, 2, 5), (1, 2, 4, 5) and (1, 4, 5). The optimal solution of WCSPP is the

path (1, 2, 3, 5), of cost 8, and total weight 4. Although the paths (1, 2, 4, 5), and (1, 4, 5) are

`cheaper', they are not weight feasible, so they are not solutions of WCSPP.

The WCSPP is closely related to other problems that have appeared in the literature. For example, it

is a special case of the shortest path problem with time windows (SPPTW), and also of the resource

constrained shortest path problem (RCSPP), which uses a vector of weights, or resources, rather than a

scalar. The WCSPP is also closely related to the multi-objective shortest path problem (MOSPP),

which seeks all Pareto optimal solutions. When there are only two objectives, the MOSPP is known as

the bi-criteria shortest path problem. Clearly for any WCSPP there exists an optimal solution which is

Pareto optimal for the bi-criteria shortest problem with two criteria, minimizing cost and weight, so

any method which generates all Pareto optimal solutions to this bi-criteria problem also generates an

optimal solution to the WCSPP. Although this approach is unlikely to be as ef®cient as solving the

WCSPP directly, ef®cient specializations of methods ®rst developed for multi-objective problems have

proved useful.

Fig. 1. An example of a WCSPP, s � 1, t � 5, W � 6.
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The WCSPP, and closely related problems such as the SPPTW, RCSPP and MOSPP, apply to a

number of real-world situations, (for example Halpern and Priess (1974) describe an application to

railroad management), and also arise in practice as subproblems of some well-known problems, for

example in the case of column generation approaches to vehicle routing problems with time windows

(Desrochers, Desrosiers and Solomon, 1992), or to long-haul aircraft routing problems (Barnhart et al.,

1998). In the latter case, the column generation subproblem involves a graph in which nodes represent

¯ights. Paths must start with a ¯ight which can follow aircraft maintenance, and end with a ¯ight which

can be followed by maintenance. Weights represent ¯ying hours in each ¯ight or indicate date lines

crossed, and the maximum weight models a regulated maximum on ¯ying hours or days between

maintenance. For long-haul ¯ying, the graphs will not naturally have weight feasible cycles.

Our purpose in this paper is partly expository: we give a review of the area, highlighting common

features and differences between approaches to the WCSPP and closely related problems seen in the

literature. We then propose a new exact algorithm which we believe overcomes some of the shortfalls

of existing approaches. We begin with a brief overview of the methods for solving the WCSPP. Then

we focus on three particular methods, which may be viewed as representative of the different

approaches which have appeared in the literature. We ®rst extend the pre-processing methods existing

in literature. We describe in some detail a dynamic programming approach, in the form of a label

setting algorithm, an approach using Lagrangean relaxation, and a fully polynomial approximation

scheme, based on cost scaling. In the next section we present a new exact algorithm, using weight

scaling. Advantages of our algorithm are that it can be applied to problems having costs of large

magnitude, and that it yields a sequence of tighter lower bounds, whilst still enjoying a worst-case

complexity guarantee. Finally, we summarize and suggest directions for further research.

2. An overview of methods in the literature

Methods appearing in the literature that apply to the WCSPP can be divided into those based on k-

shortest paths, node labelling methods derived from dynamic programming equations, Lagrangean

relaxation, and approximation algorithms, although some work combines these approaches. Pre-

processing can also be important.

It was observed early that k-shortest path methods could solve the WCSPP: paths are generated in

increasing order of cost, and the method stopped as soon as a weight feasible path is found. Whilst

many k-shortest path methods have been developed, their complexity when applied to solving the

WCSPP is exponential. Little computational experience is available: Handler and Zang (1980) imple-

ment the k-shortest path method of Yen (1971) and compare it with their Lagrangean relaxation

approach. They report the latter to be substantially faster, in some cases by orders of magnitude. (Note

that Handler and Zang's method in fact closes the duality gap by using Yen's method; this an example

of work which combines approaches.)

A number of early papers gave dynamic programming formulations, for example Joksch (1966), and

Lawler (1976, Chapter 3). A variety of algorithms based on these dynamic programming formulations,

all using some kind of node labelling approach, have been developed since. Examples are the methods

of Aneja et al. (1983), Desrosiers, Pelletier and Soumis (1983), Desrochers and Soumis (1988a), and,

more recently, Jaumard, Semet and Vovor (1996). A good exposition of some of these approaches can

also be found in Desrosiers et al. (1995). The label setting algorithm of Desrochers and Soumis
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(1988a) appears to have been widely regarded as the most effective for the WCSPP. (See for example

the comments in Jaumard et al., 1996.) With appropriate data structures, when the weights are positive,

its worst-case complexity is reported in Desrochers and Soumis (1988a) to be O (jAjW ), with results

given showing problems with up to 2500 nodes and 250 000 arcs solved in a matter of seconds. Because

of its pseudopolynomial time complexity, the label setting algorithm is also very useful as a

subprocedure in approximation algorithms. We describe the label setting algorithm in some detail, and

discuss its use in a fully polynomial approximation scheme. In the context of column generation,

Desrochers and Soumis (1988b) develop a re-optimization algorithm based on label setting, designed

especially to re-solve problems after a subset of the nodes has been removed. For re-solution, they

report a 2±10 times speed-up over label setting.

Lagrangean relaxation of the weight constraint is another approach that has appeared widely in the

literature. Handler and Zang (1980) gave such an algorithm. They solve the Lagrangean dual problem

using a specialization of Kelley's cutting plane method (Kelley, 1960), and close the duality gap, if

there is one, by applying the kth shortest path algorithm of Yen (1971), with lengths set to the reduced

costs arising from the optimal Lagrangean dual solution. On randomly generated problems with up

to approximately 200 nodes and 1100 arcs, they report solution times of a few seconds, in many cases

two orders of magnitude faster than the method of Yen applied to the original costs. Beasley and

Christo®des (1989) solve the same Lagrangean dual problem, generalized to the RCSPP, using

subgradient optimization, and apply a branch and bound procedure to close the duality gap (Lagran-

gean dual values are used as lower bounds at each node of the tree). With 10 resources and on problems

with up to 500 nodes and 5000 arcs, they report solution times of within 30 seconds. In other work

making use of this Lagrangean relaxation, Ribeiro and Minoux (1985) propose a heuristic algorithm

for a slight generalization of the WCSPP. They solve the Lagrangean dual problem, but only on a

`partial' graph, with a parametric approach. Interestingly, it can be seen from their results that the

Lagrangean dual can be solved with worst-case complexity O (njAjW ) using the parametric approach.

They test their method on 10 transformed (hard) knapsack problems, having up to 50 000 nodes, and

100 000 arcs. For one version of the method they are able to obtain optimal solutions for all 10

instances; however they recommend a different version, which achieved a 9 out of 10 rate, but took less

time. They do not report actual running times.

A third approach to solving the WCSPP is to use approximation. This approach was ®rst developed

in the context of bi-criteria problems, and multi-objective problems, and later specialized to WCSPP. In

early work on bi-criteria problems, Hansen (1979) took advantage of the pseudopolynomial time

algorithms available for WCSPP, combining with scaling and rounding to produce a fully polynomial

approximation scheme with complexity O (jAj2 n2(log (n2=E))(1=E)). Later, Warburton (1987) developed

a similar idea for multi-objective problems. Warburton also described a simple application to the

WCSPP, in which costs are scaled and rounded, and sub-intervals of the cost range systematically

searched, to yield a fully polynomial approximation algorithm with complexity

O ((log U )n3(log n)1=E), where U is an upper bound on the cost of the optimal path and E is the

required accuracy. The ®rst direct approximation approach to WCSPP was developed by Hassin

(1992): two fully polynomial approximation schemes for WCSPP based on cost scaling and rounding

are given. The ®rst uses a kind of geometric bisection search whilst the second iteratively extends paths

which are in some sense approximately ef®cient. The ®rst has a reported complexity of

O (log log U (jAjn(1=E)� log log U )), while the second has a complexity of O (jAjn2(log (n=E))1=E).
(Note this is a clear improvement over the method of Hansen (1979).) The advantage of the latter is
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that it is independent of cost data (the bound depends on cost data); however, if U is relatively modest,

the former will have a better complexity. In this paper we present the former method in some detail. As

far as we are aware, no computational experience has been reported for any approximation algorithm.

Finally, we note that good pre-processing techniques can reduce the size of the problem, and also

detect infeasibility. In some cases a problem may even be solved in pre-processing. However only a

few authors discuss it. Aneja et al. (1983) give a thorough discussion, which we repeat here, but do not

report the effects of these techniques on computation. However, Beasley and Christo®des (1989) use

similar techniques and report typical reductions in graph size of 10±20%. They also give a specialized

form of reduced cost variable ®xing: they show, using reduced costs based on their optimal Lagrangean

dual values, that some arcs can be eliminated from consideration, since any path using them must have

cost greater than the cost of a known feasible path.

3. A review of representative methods

In this section we give a more detailed review of methods that appear to be representative of the

literature. We begin by describing pre-processing ideas, including some put forward by Aneja et al.

(1983). We then describe the label setting method of Desrochers and Soumis (1988a), the Lagrangean

relaxation approach taken by Handler and Zang (1980), and conclude with the fully polynomial

approximation scheme of Hassin (1992).

3.1. Pre-processing and problem simpli®cation

A given WCSPP may be simpli®ed in a number of ways. One of the few papers in the literature to

discuss problem simpli®cation and pre-processing techniques is that of Aneja et al. (1983). They

present their techniques in the context of a RCSPP; here we will discuss their procedure in the special

case that there is only one resource, ie, the problem is a WCSPP. We also suggest a slight extension to

their procedure.

These pre-processing ideas exploit the fact that ®nding the shortest path from s to every node i 2 V

requires no more computational effort than ®nding the shortest path from s to t, and that ®nding the

shortest path from every node i 2 V to t likewise requires no more computation than ®nding the shor-

test path from s to t. So with only four shortest path calculations we can obtain for each node i 2 V :

ó w
i � length of shortest path from s to i with arc lengths given by weights w,

ôw
i � length of shortest path from i to t with arc lengths given by weights w,

ó c
i � length of shortest path from s to i with arc lengths given by costs c, and

ôc
i � length of shortest path from i to t with arc lengths given by costs c.

In addition, we ask that the shortest path procedure record a shortest path tree in each case.

Clearly if there is no path from s to t in the graph, or if ó w
t . W then the WCSPP must be infeasible.

Also it is clear that if the path from s to t in the shortest path tree which yields ó c
t is weight feasible

then it must be an optimal solution to the WCSPP. In either case the WCSPP is solved. Otherwise we

proceed with the pre-processing steps outlined below.

For each i 2 Vnfs, tg Aneja et al. observe that if ó w
i � ôw

i . W then i cannot appear in any weight

feasible path from s to t, so i and all arcs incident to it may be removed from the graph. Furthermore,
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for each arc (i, j) 2 A they observe that if ó w
i � wij � ôw

j . W , then arc (i, j) cannot appear in any

weight feasible path from s to t, so it may be removed from the graph. We extend this idea to costs. We

note that if U denotes the cost of the path that yielded ó w
t , and if ó c

i � cij � ôc
j > U for some arc (i, j),

then using arc (i, j) cannot yield a better solution than a known feasible solution, so (i, j) can be

deleted from the graph.

If at least one node or arc has been removed from the graph, the shortest paths may have changed, so

the entire procedure is repeated. Obviously this pre-processing procedure cannot be repeated more than

jAj times.

3.2. The label setting algorithm

Here we describe the label setting method of Desrochers and Soumis (1988a). The algorithm uses a set

of labels for each node. Each label on a node corresponds to a different path from node s to that node,

and consists of a pair of numbers representing the cost and the weight of the corresponding path. No

labels having the same cost are stored, and for each label on a node, any other label on that node with

lower cost must have a greater weight. We formalize these ideas below, where Ii is the index set of

labels on node i and for each k 2 Ii there is a corresponding path Pk
i from s to i having weight W k

i and

cost C k
i . We note that path weights and costs can easily be calculated for path Pk

i � (s � j0,

j1, . . ., jnk
i
�1) by W k

i � w(Pk
i ) �Pnk

i

m�1w jmÿ1 j m
and C k

i � c(Pk
i ) �Pnk

i

m�1c jmÿ1 j m
. We commonly refer

to (W k
i , C k

i ) as the label and to Pk
i as the corresponding path.

De®nition 1. Let (W k
i , C k

i ) and (W l
i , C l

i) be two labels at node i, corresponding to two different

paths Pk
i , and Pl

i . Then we say that (W k
i , C k

i ) dominates (W l
i , C l

i) if and only if W k
i < W l

i , C k
i < C l

i ,

and the labels are not equal.

De®nition 2. A label (W k
i , C k

i ) is said to be ef®cient if it is not dominated by any other label at node

i, ie, if (w(P), c(P)) does not dominate (W k
i , C k

i ) for any path P from s to i. A path is said to be

ef®cient if the label it corresponds to is ef®cient.

The label setting algorithm ®nds all ef®cient labels on every node. Starting with no labels on any

node, except for the label (0, 0) on node s, the algorithm extends the set of all labels by treating an

existing label on a node, that is, by extending the corresponding path along all outgoing arcs. More

formally, the treatment of a label (W k
i , C k

i ) considers each arc (i, j) 2 ä�(i) such that W k
i � wij < W :

if (W k
i � wij, C k

i � cij) is not dominated by any label on node j, then it is added to the set of labels on

node j, with corresponding path Pk
i extended by arc (i, j). The label setting algorithm, as it applies to

the WCSPP, is given in Algorithm 1. We use Li to denote the set of labels on node i and Ti � Ii to

index the labels on node i which have been treated.

Once all ef®cient labels have been generated, and the algorithm stops, the solution to the WCSPP is

given by Pk
t for k 2 It having minimal cost C k

t .

We note that this algorithm could be improved somewhat by integrating some pre-processing

techniques. For example, in Step 1, instead of the test W k
i � wij < W , the test W k

i � wij � ôw
j < W

could be used instead. We also note that with the use of appropriate data structures, the complexity of

this algorithm can be bounded by O (jAjW ) (Desrochers and Soumis, 1988a). If there are zero weights,
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then the complexity is actually O (n2W ) (one approach in this case is to treat labels with identical

weight in increasing order of cost).

Algorithm 1. The label setting algorithm

Step 0: Initialization

Set Ls � f(0, 0)g and Li � Æ for all i 2 Vnfsg.
Initialize Ii accordingly for each i 2 V .

Set Ti � Æ for each i 2 V .

Step 1: Selection of the label to be treated

if
S

i2V (IinTi) � Æ then STOP; all ef®cient labels have been generated

else choose i 2 V and k 2 IinTi so that W k
i is minimal.

Step 2: Treatment of label (W k
i , C k

i )

for all (i, j) 2 ä�(i) with W k
i � wij < W do

if (W k
i � wij, C k

i � cij) is not dominated

by (W l
j, C l

j) for any l 2 Ij

then

Set Lj � Lj [ f(W k
i � wij, C k

i � cij)g.
Update Ij accordingly.

Set Ti :� Ti [ fkg.
go to Step 1.

3.3. A Lagrangean relaxation approach

In this section we consider a Lagrangean relaxation approach to the WCSPP in which the weight

constraint (2) is relaxed. Handler and Zang (1980) and Beasley and Christo®des (1989) both give

algorithms based on this relaxation, although the latter was given in the context of the RCSPP. In

Handler (1980), Kelley's cutting plane method (1960) is specialized to solve the Lagrangean dual

problem, while in Beasley (1989), subgradient optimization is used. As we will see, for the WCSPP, the

Lagrangean dual can be solved to optimality very ef®ciently, so there would be little point in using

subgradient optimization in the case of only one resource; here we focus on the cutting plane method

used by Handler and Zang. (From results in Ribeiro (1985) we observe that a parametric solution of this

Lagrangean dual takes O (njAjW ) time, but it is not known which approach performs best in practice.)

We de®ne P to be the set of all x 2 f0, 1gjAj that induce paths in G from s to t, ie, the set of all

binary vectors satisfying (1). The Lagrangean relaxation we consider, denoted by LR(ë), is zLR(ë) �
minx2P

P
a2A(ca � ëwa)xa ÿ Wë. The Lagrangean dual, LD, is zLD � maxë>0 zLR(ë). Kelley's cutting

plane method applied to this Lagrangean dual would begin with an initial set of paths, Q � P , chosen

so that the problem KCP(Q ) de®ned by

zQ � max
ë>0

min
x2Q

X
a2A

(ca � ëwa)xa ÿ Wë

 !
was bounded above. Let ëQ denote the optimal solution to KCP(Q ). Then an optimal solution xQ for

LR(ëQ ) would be chosen. If zLR(ëQ ) , zQ then xQ would be added to Q , KCP(Q ) re-solved, and the whole

I. Dumitrescu and N. Boland / Intl. Trans. in Op. Res. 8 (2001) 15±29 21



procedure repeated; otherwise the method would stop with the observation that zQ � zP � zLD, so the

Lagrangean dual has been solved as required. In most applications of Kelley's cutting plane method,

KCP(Q ) is solved by solving a linear program (note that Q is a ®nite set). However Handler and Zang

(1980) show how Kelley's cutting plane method can be ef®ciently specialized to this WCSPP Lagrangean

dual, so that no linear programs need to be solved. We discuss this further below. Here we note that the only

other computational requirement is the solution of LR(ëQ ): this is simply the problem of ®nding a shortest

path from s to t in G with arc lengths given by c� ëQ w and so can be solved very ef®ciently.

Handler and Zang specialize Kelley's cutting plane method as follows. They begin by ®nding a

shortest path from s to t with arc lengths given by c, and a shortest path from s to t with arc lengths

given by w; we let x1 denote the indicator vector of former path and x2 denote the indicator vector of

latter path. Note that x1 also solves zLR(0). As was observed in our discussion of pre-processing, if

wx1 < W then x1 must be an optimal solution of the WCSPP while if wx2 . W the WCSPP must be

infeasible; in either case the problem is solved. Note also that if wx2 < W and cx2 � cx1 then x2 must

be an optimal solution. So we assume otherwise, and have wx1 . W , wx2 < W and cx1 , cx2. Writing

zq(ë) � (wxq ÿ W )ë� cxq for q � 1, 2, and initializing Q to fx1, x2g, we see that KCP(Q ) is the

problem of maximizing the minimum of two linear functions of ë, z1(ë) and z2(ë), where one passes

through (0, cx1) and has positive slope, and the other passes through (0, cx2) and has negative slope.

Clearly an optimal solution of KCP(Q ) is given by the intersection of the two lines, at

ëQ � (cx2 ÿ cx1)=(wx1 ÿ wx2) . 0. Now assuming we have not yet solved LD, so zLD(ëQ ) , zQ , then

if wxQ . W , we can see that for any Q 9 containing fx1, x2, xQ g, the optimal solution to KCP(Q 9) will

never have z1(ë) active at the solution. Thus we may simply replace x1 in Q with xQ . Similarly if

wxQ < W , xQ may simply replace x2 in Q . So Kelley's cutting plane method becomes a simple matter

of iteratively ®nding the intersections of pairs of linear functions of a single variable.

At the end of the Kelley's cutting plane method, the ®nal value of zQ is precisely zLD and so provides

a lower bound on the value of the WCSPP. Furthermore, x2 is feasible, and so provides an upper bound;

each time a new feasible solution is found in the course of the cutting plane method, this upper bound

may be updated. Let ë� denote the value of the optimal solution to LD, L denote the value of the lower

bound and U denote the value of the upper bound at the end of the cutting plane method. Clearly if

U � L then we are done. Otherwise, there is a duality gap.

Handler and Zang (1980) close the duality gap by generating kth-shortest paths from s to t with arc

lengths given by c� ë�w. They observe that the two paths in Q at the end of the cutting plane method

are shortest paths, and that a third may have been obtained in the last solution of LR(ë). For larger k,

they use the method of Yen (1971). Consider the sequence of paths generated in this way:

x1, x2, x3, . . .. Now for each x k in the sequence which is not weight feasible, (c� ë�w)x k ÿ Wë�
provides a lower bound on the value of cx j for all j . k with x j weight feasible. This is obvious: j . k

so x j is `longer' than x k , ie;

(c� ë�w)x k < (c� ë�w)x j

) (c� ë�w)x k ÿ Wë� < (c� ë�w)x j ÿ Wë�

� cxj � ë�(wxj ÿ W )

< cxj
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since ë� > 0 and x j is weight feasible. So for each k in turn, if x k is not weight feasible, we can update

L � (c� ë�w)x k ÿ Wë� and get an increasing sequence of lower bounds. Clearly whenever x k is

weight feasible and cxk , U we can update U � cxk . The procedure ®nishes when either L > U, or all

paths have been exhausted.

3.4. An approximation scheme based on cost scaling

In this section we consider the fully polynomial approximation scheme of Hassin (1992). We ®rst

introduce the notion of approximation algorithms and approximation schemes.

Let P be a minimization problem. Given E. 0, algorithm A is called an E-approximation algorithm

for P if it ®nds a feasible solution to any instance I of P with value

OPT (I) < A(I) < (1� E)OPT (I),

where OPT (I) is the optimal cost of instance I. An approximation scheme for P is a sequence of

algorithms AE such that for all E. 0, AE is an E-approximation algorithm for P. We say that AE is a fully

polynomial approximation scheme (FPAS) if its complexity is a polynomial function of the length of

the instance data and 1=E.
Fully polynomial approximation schemes have been developed for many NP-hard problems which

are solvable in pseudopolynomial time. Scaling and rounding techniques are used in most of these

cases. For example, if an exact algorithm is available which is polynomial in the costs, but not the

length of the cost data, and polynomial in the length of all other data, then the costs may be scaled and

rounded down, so that they become `small', ie, are polynomial in the length of the other data, and in

1=E. The exact algorithm applied to these new costs will thus run in time polynomial in the length of

the problem data. However the solution obtained will not necessarily be a solution to the original

problem, it will be an `approximate' one, with an error which can be bounded.

The exact algorithm used by Hassin in his FPAS is a dynamic programming algorithm, which takes

as input an upper limit C on the cost of the path and calculates the minimum weight path from s to t

with cost at most C. In fact the dynamic program given by Hassin can be seen to be equivalent to the

label setting algorithm given in Algorithm 1, with costs and weights exchanged. Note that Hassin's

algorithm is restricted to WCSPP's having positive costs.

Hassin's method begins by determining simple upper and lower bounds, U and L, on the value of the

optimal solution. It then carries out a kind of geometric bisection search on the value of the optimal

solution: taking M � �������
UL
p

it seeks to determine whether or not there is a weight feasible path with

cost no greater than M . This is done approximately: costs are scaled and rounded according to

ca � bca(nÿ 1)=(EM)c for all a 2 A, and a minimum weight path having cost no more than scaled

upper bound, C � b(nÿ 1)=Ec, is sought, using the label setting algorithm with costs and weights

exchanged. Because of the scaling, this will run in time polynomial in jAjC < jAjn1=E if there are no

zero scaled costs, or n2C < n31=E otherwise, which is polynomial in the length of the original problem

data and 1=E. Also because of the scaling, the result will be approximate: it is not dif®cult to show that

if a weight feasible path with scaled cost no more than the (scaled) upper bound is found, then this path

has original cost no more than M(1� E), so the upper bound may be updated, U � M(1� E).
Furthermore, if there is no weight feasible path with scaled cost no more than the (scaled) upper bound,

then there is no feasible path with original cost less than M , so the lower bound may be updated,

L � M . Hassin suggests stopping when U=L < 2. At this point, costs are scaled and rounded

I. Dumitrescu and N. Boland / Intl. Trans. in Op. Res. 8 (2001) 15±29 23



according to ca � bca(nÿ 1)=(EL)c for all a 2 A, and the label setting algorithm is run with weights,

and costs exchanged, and weight limit C � b2(nÿ 1)=Ec. From all the ef®cient labels at the destination

node output by the label setting algorithm the one of minimum scaled cost and weight at most W is

chosen. This label will correspond to an E-optimal solution.

Algorithm 2 gives a slightly simpli®ed form of Hassin's algorithm. Note that when the label setting

algorithm is used in Step 1, with costs and weights exchanged, it can be stopped early, in fact it can be

stopped as soon as a label with `cost' no more than W has been generated on node t, since its purpose

is only to determine if there exists a weight feasible path with cost no more than C. Also note that U

and L may be initialized in a variety of ways: we suggest starting with U and L obtained in pre-

processing. (Note we assume that pre-processing steps have determined that the problem is feasible, ie,

that ó w
t < W .)

It is not hard to determine that Steps 1 and 2 will be repeated no more than log log(U=L) times.

The dominant operations in Steps 1 and 2 are calculating
�������
UL
p

and running the label setting algori-

thm. Hassin observes that the former can be approximated in O (log log U=L) steps, without affect-

ing the complexity of the outer loop, while the latter requires O (jAjn1=E) steps to be performed,

if there are no zero scaled costs, or O (n31=E), otherwise. Thus Algorithm 2 has time

complexity O (log log (U=L)(jAjn(1=E)� log log(U=L))), if there are no zero scaled costs, or

O (log log (U=L)(n3(1=E)� log log (U=L))), otherwise.

Algorithm 2. A fully polynomial approximation scheme based on cost scaling

Step 0: Initialize a lower bound L and an upper bound U on the optimum cost

Set C � bnÿ 1=Ec.
Step 1: if (U=L) < 2 then go to Step 3.

Set M � �������
UL
p

.

for each a 2 A do set ca � bca(nÿ 1)=(EM)c.
Run the label setting algorithm with weights c, costs w and weight limit C.

Step 2: if there exists a feasible path with cost < C then set U � M(1� E)
else set L � M .

go to Step 1.

Step 3: for each a 2 A do set ca � bca(nÿ 1)=(EL)c.
Set C � b2(nÿ 1)=Ec.
Run the label setting algorithm with weights c, costs w and weight limit C.

Choose k 2 It so that c(Pk
t ) is minim and w(Pk

t ) < W .

Pk
t is an E-approximate solution.

4. An exact algorithm using weight scaling

In the previous sections we have seen that Hassin's approximation algorithm suffers from a complexity

dependent on the magnitude of the costs, the label setting algorithm, while coping with costs of large

magnitude without affecting its complexity, does not provide lower bounds, and the Lagrangean

relaxation approach of Handler and Zang, while it does provide consistently improving lower bounds,

does not have any complexity guarantees and may have to resort to an exponential algorithm to close
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the duality gap. An effective method would be one which could handle costs which may have large

magnitude, and provided good lower bounds in modest time.

Here we develop an exact algorithm which consistently improves the lower bound, and can handle

costs of large magnitude without effect on its complexity. The core of our algorithm is weight scaling:

we scale the weights and then apply the label setting algorithm. The paths generated may not be weight

feasible, but any weight infeasible path found provides a lower bound, and any feasible path found

provides an upper bound. Unfortunately, it is not possible to guarantee that any weight feasible path

will be found, nor is it possible to bound the deviation of the lower bound from the optimal cost, unless

the scaling factor is suf®ciently small. Thus we propose to systematically reduce the scaling factor, and

repeat the procedure, until either our bounds are tight, or the scaling factor has reached the critical size.

In the latter case we are guaranteed to ®nd the optimal solution, since we have basically reverted to

solving the original problem by label setting. However we hope that in practice, and on average, good

lower bounds and even optimal solutions can be found well before this point is reached.

We specify our method in Algorithm 3. Here we use the notation d(P), where d 2 RjAj is any

function on the arcs and P � (s � i0, i1, . . ., im � t) is any path from s to t, to give the sum of d

values on the arcs of the path, ie, d(P) �Pm
l�1dilÿ1 i l

. We will make particular use of the weight of a

path, w(P), and the cost of a path, c(P). We assume that pre-processing steps have been performed, so

that WCSPP is known to be feasible.

Before demonstrating correctness of our algorithm and discussing its complexity, we illustrate, with

a small example, why it is necessary to consider E as small as 1=W , and why the deviation of the lower

bound from the optimal cost cannot be meaningfully bounded otherwise. Consider the graph with

n � 3, A � f(1, 2), (1, 3), (2, 3)g, s � 1, t � 3, W odd, W > 3, w � ((W � 1)=2, W , (W � 1)=2) and

c � (0, M , 0) for M . 0 large. For any E.(1=W ), w12 � w23 < 1
2
W , so the path (1, 2, 3) is feasible for

the scaled problem. Furthermore w13 � W , so the label (w12 � w23, 0) for path (1, 2, 3) dominates the

label (W , M) for the path (1, 3): the label setting algorithm cannot return a weight feasible path, and

cannot return a lower bound of value any closer to the optimal value M , than 0.

Algorithm 3. An exact algorithm using weight scaling

Initialize a lower bound L and an upper bound U on the optimal cost

Set r � blog Wc ÿ 1.

while U . L and r > 0 do

Set E � (2r=W ).

for each a 2 A do set wa � bwa=(EW )c.
Set W � b1=Ec.
Run the label setting algorithm with weights w, costs c and weight limit W .

Let It index the ®nal set of labels on node t generated by the label setting algorithm.

if w(Pk
t ) < W for all k 2 It then

Output the path Pk
t with least cost C k

t of any k 2 It and STOP.

Set L9 � minfC k
t jk 2 Itg.

Update L � max(L, L9g.
if w(Pk

t ) < W for some k 2 It then

Set U 9 � minfC k
t jk 2 It and w(Pk

t ) < Wg.
Update U � minfU , U 9g.

I. Dumitrescu and N. Boland / Intl. Trans. in Op. Res. 8 (2001) 15±29 25



Set r � r ÿ 1.

if U � L then output the path that gave rise to U and STOP.

We now prove the correctness of our algorithm. First we show that if at some iteration, we ®nd

w(Pk
t ) < W for all k 2 It then the path Pk

t with least cost C k
t of any k 2 It is an optimal path for the

WCSPP.

We use the fact that the scaling and rounding operation preserves weight feasibility.

Lemma 1. If P is a path from s to t in G with w(P) < W then w(P) < W, where w and W are as

de®ned in Algorithm 3.

Proof. Let A(P) denote the arcs in path P, so if P � (s � i0, i1, . . ., im � t) then

A(P) � f(i lÿ1, i l)jl � 1, . . ., mg. Then for P with w(P) < W ,

w(P) �
X

a2A(P)

�
wa

EW

�
<

�
1

EW

X
a2A(P)

wa

�
�
�

1

EW
w(P)

�
<

�
1

E

�
� W

and the result is proved. j

We also use the following observation which follows from the previous lemma.

Lemma 2. Let It index the set of labels on node t generated by the label setting algorithm for a

WCSPP. Then for P any path from s to t in G with w(P) < W, either (W k
t , C k

t ) � (w(P), c(P)) for

some k 2 It, or (W k
t , C k

t ) dominates (w(P), c(P)) for some k 2 It.

We can now prove that if Algorithm 3 terminates in the `while' loop then the path output must be an

optimal path.

Proposition 1. If w(Pk
t ) < W for all k 2 It, where It indexes the ®nal set of labels on node t

generated by the label setting algorithm applied with weights w and weight limit W, then Pk�
t is an

optimal path for the WCSPP, for some k� 2 arg mink2 I t
C k

t .

Proof. Let P� be an optimal path for the WCSPP. Then for all k 2 It, since Pk
t is weight feasible, it

must be that c(Pk
t ) > c(P�). Now by Lemma 1, w(P�) < W , so by Lemma 2, either

(W
k

t , C k
t ) � (w(P�), c(P�)) for some k 2 It, or (W

k

t , C k
t ) dominates (w(P�), c(P�)) for some k 2 It.

In either case there exists k 2 It with C k
t < c(P�), so there must exist k� 2 arg mink2 I t

C k
t with

C k� � c(P�), ie, with Pk�
t optimal for the WCSPP. j

We now prove the validity of our lower bound. We use the following property of the label setting

algorithm.

Proposition 2. If It indexes the ®nal set of labels on node t generated by the label setting algorithm

applied with weights w and weight limit W, and k 2 It is the index of the path of minimum cost

corresponding to a label in It, then C k
t is a lower bound on the optimal value of the WCSPP.
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Proof. Let P� be an optimal path for the WCSPP. From Lemma 2 it follows that either

(W l
t, C l

t) � (w(P�), c(P�)) for some k 2 It, or (W l
t, C l

t) dominates (w(P�), c(P�)) for some l 2 It.

In either case, there is l 2 It such that C l
t < c(P�). Hence C k

t < C l
t < c(P�).

Therefore C k
t is a lower bound on the optimal solution. j

From Proposition 2 it follows immediately that the lower bound de®ned in the weight scaling

algorithm is valid: it is the maximum of two valid lower bounds.

It is obvious that our upper bound is valid: it is the cost of some weight feasible path. So to prove

correctness of our method, it remains only to prove that when r � 0, ie, E � (1=W ), that w(Pk
t ) < W

for all k 2 It and so by Proposition 1, the algorithm must terminate with the optimal path. But this is

obvious, as w and W are integer, so wa � bwa=(EW )c � bwac � wa for all a 2 A, and W �
b1=Ec � bWc � W , so the label setting algorithm is run on the original problem data, and must

generate the optimal path. We have thus proved the following theorem.

Theorem 1. Algorithm 3 terminates with the optimal solution to the WCSPP.

The worst-case complexity of Algorithm 3 is not hard to determine. The dominant operation is

running the label setting algorithm at each iteration of the `while' loop: this requires O (jAjW )

� O (jAjW=2r) calculations, if there are no zero scaled weights, or O (n2W ) � O (n2(W=2r))

calculations, otherwise. In the worst case, we perform all R� 1 iterations, where R � blog Wc ÿ 1,

giving a complexity of order

jAjW
2R
� � � � � jAjW

4
� jAjW

2
� jAjW � jAjW 1� 1

2
� 1

4
� � � � � 1

2R

� �
< 2jAjW ,

if there are no zero scaled weights, or

n2 W

2R
� � � � � n2 W

4
� n2 W

2
� n2W � n2W 1� 1

2
� 1

4
� � � � � 1

2R

� �
< 2n2W ,

otherwise.

Thus the worst-case complexity is O (jAjW ), if there are no zero scaled weights, or O (n2W ),

otherwise. We note that in fact other choices of R are possible. It is our intention in future research to

experiment with this algorithm numerically; ®nding effective choices for R will be one subject of our

investigation. We also note that it is possible to take E � ( âr=W ) for any â. 1, (in this case we would

take R � b(log W=log â)c), although as â decreases from 2, the complexity will worsen. We will also

investigate `jumping over' small values of r: we will include a threshold T so that if r falls below T, r

is immediately set to 0, ie, we will replace the statement decrementing r with

if r � T then set r � 0 else set r � r ÿ 1

immediately before the end of the `while' loop. Effective choices of T , as well as â, will also be a

subject of future investigation.
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5. Conclusions and further research

We have presented a review of methods for solving the WCSPP, including methods for solving closely

related problems that can be applied to the WCSPP. The three most prevalent classes of method

appearing in the literature are labelling-based, or dynamic programming, methods; methods based on

Lagrangean relaxation of the weight constraint; and polynomial approximation algorithms based on

cost scaling and rounding. The ®rst and third classes enjoy worst-case complexity guarantees (of course

these are pseudopolynomial for the former). The last two classes generate successively better lower

bounds as the algorithm proceeds. Experimental results have been reported for the ®rst two classes, for

a variety of different generalizations of WCSPP, which makes comparison dif®cult. However it is clear

that labelling methods, in particular, are effective for very large problems.

We have discussed in detail three representative approaches, as well as some pre-processing

techniques, and have indicated some of the common threads underlying the different approaches.

We note that none of the exact methods we are aware of in the literature have pseudopolynomial

worst-case complexity guarantees and generate steadily improving lower bounds.

In future work, we would like to see a comprehensive numerical comparison of the different

approaches conducted, on the same class of base problems, in particular on the WCSPP. We also intend

to experiment numerically with the algorithm we propose here, to determine effective parameter

settings. Finally, we observe that both Hassin's approximation scheme given in Section 3.4, and our

exact algorithm, employ Algorithm 1 many times in succession, each time with different weights. Thus

ef®cient re-solution could substantially improve the running times of both methods, in practice. We

intend to investigate this in future research.
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