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The Evasive Flow Capturing Problem (EFCP) is defined as the problem of locating a set of law enforcement

facilities on the arcs of a road network to intercept unlawful vehicle flows traveling between origin-destination

pairs, who in turn deviate from their route to avoid any encounter with such facilities. Such deviations are

bounded by a given tolerance. We first propose a bilevel program which, in contrast to previous studies, does

not require a priori route generation. We then transform this bilevel model into a single-stage equivalent

model using duality theory to yield a compact formulation. We finally reformulate the problem by describing

the extreme rays of the polyhedral cone of the compact formulation and by projecting out the auxiliary

variables, which leads to facet-defining inequalities and a cut formulation with an exponential number of

constraints. We develop a branch-and-cut algorithm for the resulting model, as well as two separation

algorithms to solve the cut formulation. Through extensive experiments on real and randomly generated

networks, we demonstrate that our best model and algorithm accelerate the solution process by at least two

orders of magnitude compared with the best published algorithm. Furthermore, our best model significantly

increases the size of the instances that can be solved optimally.
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1. Introduction

The purpose of this paper is to present an exact algorithm for the Evasive Flow Capturing

Problem (EFCP), defined as follows. In a transportation network, the regulatory authority

locates law enforcement facilities to intercept unlawful vehicles, while these vehicles may

deviate from their routes to avoid encountering these facilities. Taking this non-cooperative

behavior into account, the objective of the EFCP is to determine the location of such law

enforcement facilities. The problem has applications in transportation, revenue manage-

ment and security management.

The EFCP belongs to a wider class of flow capturing problems (FCPs), which are rooted

in the work of Hodgson (1981). The main difference between FCPs and classical facility

location problem lies in the definition of demands. In classical facility location problems,

demand is usually concentrated at nodes of a network. Applications in which the demand

is non-stationary and the movement of vehicles is to be modeled require a different demand

definition. To this end, Hodgson (1990) and Berman, Larson, and Fouska (1992) defined

the demand as vehicle flows between origin-destination (OD) pairs. This definition is par-

ticularly suitable for transportation applications in which the vehicle trips or path choices

need to be taken into account. There exist several motives for intercepting vehicle flows: to

provide the drivers with an opportunity to visit discretionary service facilities such as day-

care centers, automated teller machines, convenience stores or gasoline stations (Berman,

Larson, and Fouska 1992), to intercept law breakers such as overweight trucks or drunk

drivers (Hodgson, Rosing, and Zhang 1996, Gendreau, Laporte, and Parent 2000), or to

prevent transportation of unlawful or dangerous materials such as explosives or hazardous

materials (Mirchandani, Rebello, and Agnetis 1995). The objective of FCPs is to locate

facilities such that the intercepted vehicle flow is maximized or that the reduction in risk

is maximized, the former objective being a special case of the latter (Gendreau, Laporte,

and Parent 2000).

There exist three main categories of flow capturing problems characterized by different

driver behaviors. In the first category, the drivers are neutral to facility locations and use

predetermined fixed paths. They are assumed to receive service if there exists a facility

on their fixed path and the demand is covered. There are no routing decisions in this first



Arslan, Jabali, and Laporte: Exact Solution of the EFCP
Article submitted to Operations Research; manuscript no. OPRE-2017-08-434 3

category. Examples include locating billboards (Averbakh and Berman 1996) or traffic

counting stations (Yang and Zhou 1998). In the second category, the fixed path assumption

is relaxed and the drivers are willing to multiply the length of their path by a deviation

tolerance λ ≥ 1.0 to visit a station. Note that the problems of the first category can be

interpreted as having a deviation tolerance λ = 1.0. An example arises in the context of

alternative fuel vehicles (AFV), where the facilities to be located are alternative refueling

stations (AFS). The objective is to capture as many AFV travelers as possible in order

to encourage AFV usage. To this end, Kuby and Lim (2005) introduced the flow refueling

location problem (FRLP) as an extension of FCPs in which the coverage of a vehicle

flow possibly requires multiple stops at an AFS on its path. The deviation flow capturing

problem introduced by Kim and Kuby (2012) is an extension of FRLP in which the vehicles

change their routes to get serviced at refueling facilities. Under this behavior, the problem is

effectively transformed into a location-routing problem. A heuristic (Kim and Kuby 2013),

a branch-and-price algorithm (Yıldız, Arslan, and Karaşan 2016) and a branch-and-cut

algorithm (Arslan et al. 2017) have been developed for this problem. In the third category,

which is the topic of this paper, the drivers non-cooperatively modify their route within a

deviation tolerance λ. They exhibit an evasive behavior and try to avoid stations in order

not to be intercepted. Examples include location of tollbooths or security checkpoints.

In transportation settings, one particular application, which motivated our work, is the

location of weigh-in-motion (WIM) systems that are used to enforce weight limits. In

transportation networks, the regulatory authority imposes strict truck weight rules in order

to prevent excessive damage on roads. To enforce these rules, WIM facilities are located

to intercept overweight trucks. The location optimization of such facilities has typically

been studied by assuming that the truck drivers travel on fixed paths (Hodgson, Rosing,

and Zhang 1996). However, there is empirical evidence that the drivers of overweight

trucks learn the location of WIM facilities and change their path between their origin and

destination accordingly (Cottrell 1992, Cunagin, Mickler, and Wright 1997). Therefore,

the fixed path assumption was relaxed by Marković, Ryzhov, and Schonfeld (2015), who

presented the Evasive Flow Capturing Problem. The problem is defined as locating a

set of law enforcement facilities on a road network in order to capture the vehicle flows
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trying to avoid the facilities in such a way that the total cost of facility location and

the cost of damage on the roads due to overweight transportation by non-intercepted

vehicles is minimized. Note that the road damage component does not appear in all EFCP

applications but is specific to the WIM station location problem, which is therefore more

general.

To capture a flow between an OD pair, all paths within the deviation tolerance of the

drivers must be intercepted. The underlying logic is that if the stations are located so that

all paths within the drivers’ deviation tolerance are covered, then the law-breaking truck

drivers are deterred from overweight transportation and they abide by the law because

overloading trucks and taking excessive detours would represent a costlier alternative.

There also exists a stream of literature on fare evasion of travelers in transit networks.

Borndörfer et al. (2012) consider a problem, in which the regulatory authority determines

probabilities for inspecting passengers at different locations. The fare-evading travelers

prefer either to travel without buying a ticket, or to buy a ticket to avoid being intercepted

and paying excessive fines. The travelers in their application are non-adaptive and follow

fixed routes. Correa et al. (2017) relax the fixed path assumption and consider a variant

with adaptive followers while accounting for the traveled distance as a cost component

for the travelers. The authors further consider a fixed-fee policy in which the fees are

exogenously determined, and a flexible-fee policy in which setting the fees as well as the

inspection probabilities is an instrument for the regulatory authority to maximize revenues.

The non-intercepted evaders do not contribute to the objective function, and the number

of agents are assumed to be limited by a given budget. In the EFCP, on the other hand,

the regulatory authority minimizes the cost of damage caused by non-intercepted evaders.

There is also no fine associated with interception, the global objective being to deter the

travelers from illegal weights transportation. Furthermore, there is a cost associated with

opening a station in the EFCP.

In order to solve the EFCP, Marković, Ryzhov, and Schonfeld (2015) pregenerated routes

up to the drivers’ deviation tolerance, and presented a binary integer program as the basis

for an exact solution methodology. This model is further elaborated in the following section.

The technical details of WIM systems can be found in the same paper. More recently,
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Marković, Ryzhov, and Schonfeld (2017) considered a multi-period EFCP, and Lu et al.

(2017) developed a heuristic for this problem.

Our aim is to propose new models for the EFCP, study their theoretical properties, and

ultimately devise efficient solution algorithms. Our scientific contributions are as follows:

• We present a novel bilevel model that does not require the pregeneration of routes

and that is applicable in a more generic cost setting.

• We linearize the model to obtain an equivalent single-state formulation by using a

constraint transformation and the duality theory. This compact formulation accelerates

the solution process and extends the size of the instances that can be solved to optimality.

• Furthermore, we describe the extreme rays of the polyhedral cone of the compact for-

mulation and obtain a formulation with an exponential number of constraints by projecting

out the auxiliary variables from the compact formulation.

• We further investigate the obtained inequality to arrive at another facet-defining cut

inequality.

• We devise a branch-and-cut algorithm based on the cut inequality. The separation

problem is a shortest path problem in the case of integer solutions and a resource con-

strained shortest path problem in the case of fractional solutions.

• Through extensive computational experiments, we demonstrate the effectiveness of our

methodology and its marked superiority over an existing algorithm for the same problem.

In the following section, we formally present the problem. The methodology and com-

putational study are presented in Sections 3 and 4, respectively. We conclude in Section

5.

2. Formal Problem Definition

Consider a network G= (N,A) where N and A are the sets of nodes and arcs, respectively.

A vehicle flow f is defined as quadruple 〈sf , tf , qf , λf 〉, where sf and tf are the origin

and destination nodes, respectively, qf is the vehicle flow, and λf is the value of deviation

tolerance. Let F be the set of all vehicle flows in the network. The drivers minimize their

travel distance and attempt to avoid any encounter with stations on their paths. If the

stations are located such that all paths between an OD pair within the deviation tolerance
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are intercepted, then this flow is assumed to be covered. The objective of the EFCP is to

determine the location of stations in such a way that the total cost of opening stations

and the cost of damage due to non-intercepted vehicle flows is minimized.

For completeness, we start our discussion by presenting the model by Marković, Ryzhov,

and Schonfeld (2015), which we refer to as the MRS model. This model requires the

enumeration of all paths within the deviation tolerance value of λf and requires successively

solving k shortest path problems, where the (k+ 1)st shortest path is the first to exceed

the tolerance. Let Pf be the set of all paths from sf to tf within the deviation tolerance

λf . We refer to the set of arcs in path p as Ap. The parameter cpf represents the damage

produced by vehicle flow f ∈ F on path p ∈ Pf . The damage changes linearly with the

distance traveled. Since the paths are assumed to be known before solving the model, cpf

can be calculated as cpf =
∑

(i,j)∈Ap dijcf , where dij and cf are the length of arc (i, j) ∈A

and the damage coefficient of vehicles of flow f ∈ F , respectively. Lastly, wij is the cost of

opening a station on arc (i, j)∈A. We need the following decision variables:

xij =

{
1 if a station is located on arc (i, j)∈A
0 otherwise

ypf =

{
1 if at least one station is located on path p∈ Pf of flow f ∈ F
0 otherwise

yf =

{
1 if at least one station is located on all paths p∈ Pf of flow f ∈ F
0 otherwise

zpf =

{
1 if flow f ∈ F travels non-intercepted on path p∈ Pf

0 otherwise.

The MRS model is as follows:

(MRS) minimize
∑

(i,j)∈A

xijwij +
∑
f∈F

∑
p∈Pf

zpfc
p
f (1)

subject to

ypf ≤
∑

(i,j)∈Ap

xij f ∈ F,p∈ Pf (2)

xij ≤ ypf f ∈ F,p∈ Pf , (i, j)∈Ap (3)

yf ≤ ypf f ∈ F,p∈ Pf (4)
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zpf ≤ 1− ypf f ∈ F,p∈ Pf (5)

1− yf ≤
∑
p∈Pf

zpf f ∈ F (6)

xij ∈ {0,1} (i, j)∈A (7)

yf , y
p
f , z

p
f ∈ {0,1} f ∈ F,p∈ Pf . (8)

The objective function minimizes the total station setup cost and the cost of damage on

roads due to unintercepted vehicle flows. Constraints (2) and (3) enforce ypf = 1 if at least

one station is located on path p∈ Pf of flow f ∈ F . Due to Constraints (4), yf = 1 if at least

one station is located on all paths p ∈ Pf . Constraints (5) ensure that vehicle flows only

travel on non-intercepted paths. If not all paths of a flow f ∈ F are intercepted, then the

vehicle flow travels on the shortest non-intercepted path due to Constraints (6). Finally

(7)–(8) are the integrality constraints. Note that the variables yf , ypf and zpf assume binary

values when their integrality constraints are relaxed (Marković, Ryzhov, and Schonfeld

2015).

Even though the EFCP is similar to the flow capturing problems (FCP) in a broad sense,

it differs substantially from it since the behavior of the drivers is to avoid visiting the facil-

ities. The main challenge arising in the EFCP is to determine the non-intercepted vehicle

flows. Marković, Ryzhov, and Schonfeld (2015) tackle this challenge in their model by

introducing binary variables ypf and zpf for each possible path, which introduces additional

computational complexities, compared to the FCP. Furthermore, the way the deviation

tolerance is handled is not applicable to problem instances of moderate sizes, since it is

almost impossible to a priori enumerate all paths up to even very small deviation tolerance

values for networks of practical sizes.

The following assumptions were made by Marković, Ryzhov, and Schonfeld (2015), which

enabled them to model EFCP as a single-level mathematical program:

(a) the damage by overweight trucks increases linearly with the distance traveled;

(b) truckers seek to minimize their travel distance on non-intercepted paths.

Therefore, the minimization of the travel distance coincides with the minimization of the

damage costs. Relaxing (b) yields a more general cost and damage setting and requires
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the problem to be tackled by a bilevel program. In our study, we also adopt the same

assumptions, but our bilevel model, proposed in the following section, can be extended to

more general cost settings.

3. Methodology

In this section, we present alternative models for the EFCP. We start by formulating

a bilevel program in Section 3.1 to solve EFCP which does not require a priori route

generation. In Section 3.2, we transform it into a single-stage equivalent formulation in

compact form using constraint transformation and duality theory. We then reformulate

the problem by projection in Section 3.3 and obtain a model with an exponential number

of constraints in Section 3.4. We analyze the polyhedral properties of the model in Section

3.5 to show that the cut inequality is facet defining. Finally, in Section 3.6, we devise an

exact branch-and-cut algorithm and present separation problems for integer and fractional

solutions.

3.1. A Bilevel Program

There exist various network optimization problems for which bilevel programs have been

developed, such as design (Kara and Verter 2004, Brotcorne et al. 2008), pricing (Labbé,

Marcotte, and Savard 1998, Brotcorne et al. 2001, Kuiteing, Marcotte, and Savard 2017),

and fare evasion (Correa et al. 2017) problems. The EFCP is also a bilevel problem in which

two sets of players have different objectives: the law enforcement authority (the leader)

locates the stations, and the unlawful drivers (the followers) attempt to drive by avoiding

stations on their paths. The objective of the leader is to minimize the cost of setting up

new stations and the total cost due to damage on roads caused by non-intercepted vehicle

flows. The followers’ objective, on the other hand, is to travel on their OD pairs by means

of shortest non-intercepted paths.

Let uf be an indicator variable equal to one if flow f ∈ F is not intercepted, and zero

otherwise. A flow f is intercepted if all paths between sf and tf within the deviation

tolerance are intercepted. Hence, uf +yf = 1. Let ξij be the shortest path distance between

nodes i, j ∈N and λ̄f = λfξsf tf . For a given arc (i, j) ∈ A and flow f ∈ F , if ξsf ,i + dij +
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ξj,tf > λ̄f , then arc (i, j) is dominated for flow f . In other words, it is not possible for

flow f to traverse arc (i, j) ∈A even when the vehicle travels on the shortest of all paths

between nodes sf and tf using arc (i, j). For f ∈ F , let Af ⊂A be the set of non-dominated

arcs, Nf ∈N be the set of nodes induced by Af and graph Gf = (Nf ,Af ). We define flow

variables rfij to equal one if arc (i, j) ∈ Af is traveled by vehicle flow f ∈ F . When the

context is clear, we use rf to refer to set of rfij variables for all (i, j)∈Af , and r to refer to

all rfij variables in the model. The other variables and parameters used in our model are as

previously introduced. We refer to x,u and r variables as location, flow and arc variables,

respectively. The new formulation, which we refer to as the ‘Bilevel Model’ (BM), is as

follows:

(BM) minimize
x,r

∑
(i,j)∈A

wijxij +
∑
f∈F

∑
(i,j)∈Af

cfdijr
f
ij (9)

subject to

xij ∈ {0,1} (i, j)∈A (10)

where rf solves the model of follower f , which we refer to as FMf , for all f ∈ F :

maximize
u,r

(λ̄f + ε)uf −
∑

(i,j)∈Af

dijr
f
ij (11)

subject to
∑

(i,j)∈Af

rfij −
∑

(j,i)∈Af

rfji =


uf if i= sf
−uf if i= tf
0 otherwise

i∈Nf (12)

rfij ≤ 1−xij (i, j)∈Af (13)

uf , r
f
ij ∈ {0,1} (i, j)∈Af , (14)

where ε is a very small value which can be taken as half the length of the shortest arc in G.

The leader’s objective is to minimize the total cost of setting up new stations and the cost

of damage due to non-intercepted flows. There is a separate model for each follower f ∈ F

and the arc variables solve the followers’ problems. The followers’ objective in FMf is to

drive on a shortest non-intercepted path. Therefore, the objective is twofold: the primary

objective is to drive without being intercepted between sf and tf on a path of length at
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most λ̄f . If this is achieved, then the secondary objective is to minimize the total traveled

distance. In (11), we combine these two objectives into one. Constraints (12) ensure flow

conservation, and Constraints (13) restrict the arcs with a station. Note that there is no

additional constraint to enforce the deviation tolerance. The objective function ensures

that if the shortest non-intercepted distance is longer than the tolerance value, then the

flow variable and all arc variables will equal zero.

In the BM model, the non-intercepted flow f ∈ F is indicated by the binary variable

uf . An alternative way of modeling this is to add a dummy arc (sf , tf ) of length λf + ε to

graph Gf for all f ∈ F , in which case the corresponding arc variable rsf ,tf = 1−uf .

3.2. Linearization of the Bilevel Program

The general idea of using strong duality conditions for the followers’ problem to convert a

bilevel problem to a single level one can be traced back to Labbé, Marcotte, and Savard

(1998). Building on the same idea, we first show that FMf can be solved as a linear

program (LP). Considering the fact that xij is a parameter in the followers’ models, 1−xij

can be considered as the capacity of arc (i, j) ∈Af . It follows that, the constraint matrix

of the FMf formulation is the same as that of the classical maximum flow formulation

(Ahuja, Magnanti, and Orlin 1993). Therefore the matrix defined by (12)–(14) is totally

unimodular, and the followers’ problems can be solved as LPs. Furthermore, for reasons

that will become clearer in the following parts of the text, we replace (13) with an equivalent

inequality:

xijr
f
ij ≤ 0 (i, j)∈Af .

This substitution preserves the linearity of the model and the integrality property of

the LP solutions. Without loss of generality, we also change the equalities in (12) into

inequalities. The final version of FMf is as follows:

(FMf ) maximize
u,r

(λ̄f + ε)uf −
∑

(i,j)∈Af

dijr
f
ij (15)

subject to
∑

(i,j)∈Af

rfij −
∑

(j,i)∈Af

rfji ≤


uf if i= sf
−uf if i= tf
0 otherwise

i∈Nf (16)
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xijr
f
ij ≤ 0 (i, j)∈Af (17)

uf ≤ 1 (18)

uf , r
f
ij ≥ 0 (i, j)∈Af . (19)

Let πf
i , µ

f
ij and ηf be dual variables associated with Constraints (16), (17) and (18),

respectively. Then the dual problem is

minimize ηf (20)

subject to πf
i −π

f
j +µf

ijxij + dij ≥ 0 (i, j)∈Af (21)

πf
tf
−πf

sf
+ ηf ≥ λ̄f + ε (22)

ηf , πf
k , µ

f
ij ≥ 0 k ∈Nf , (i, j)∈Af . (23)

Remark 1. For f ∈ F , we define the ‘non-intercepted shortest path’ to be the shortest

path on the subgraph of Gf induced by the arcs on which no station exists. For a given

solution (u∗, r∗) of the FMf formulation, if u∗f = 1, then a non-intercepted shortest path

can be extracted from the r∗ variables. Therefore, the πi variable in the dual formulation

has a very natural interpretation: it is a label for the non-intercepted shortest path from

node sf to node i∈Nf . �

At this point, the objective is to bring the primal and the dual formulations together

to form a single-stage equivalent formulation. Note that due to multiplication of the µ

and x variables in Constraints (21), the single-stage formulation contains non-linearities.

However, these can be eliminated without introducing additional variables or constraints

as a result of Constraints (13) being replaced with Constraints (17):

Proposition 1. For f ∈ F , there exists an optimal solution of formulation (20)–(23) with

µf
ij = λ̄f + ε, for all (i, j)∈Af .

Proof At any optimal solution, we have ηf = max{λ̄f + ε− πf
tf

+ πf
sf
,0} due to Con-

straint (22). We can therefore reformulate the problem as

maximize πf
tf
−πf

sf

subject to (21), (23).
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Without loss of generality, set πf
sf

= 0. The xij and µf
ij variables do not directly contribute

to the objective function. However their product µf
ijxij can be set arbitrarily large to relax

Constraints (21) in order to possibly increase the value of πf
tf

in the objective function. It

is therefore straightforward to see that the variable µf
ij enforces a constraint when xij = 0

and relaxes it when xij = 1. This line of logic is in accordance with the interpretation of

the π variables as labels to keep the non-intercepted shortest path from node sf to node

i (Remark 1). Since the path between sf and tf can at most be λ̄f , we have the desired

result. �

A similar transformation was also applied by Amaldi, Bruglieri, and Fortz (2011). We

now transform the BM into a single-stage model. Instead of using the standard Karush-

Kuhn-Tucker conditions, we reformulate the model by appending the primal constraints,

dual constraints and the so-called reverse weak duality inequality, which states that the

objective function value of the primal maximization problem is at least equal to the objec-

tive function value of the dual minimization problem. Observe that, due to strong duality

in LPs, only an optimal solution satisfies these conditions. The same conditions were also

used by Fontaine and Minner (2014), Amaldi, Bruglieri, and Fortz (2011), Cao and Chen

(2006) to transform bilevel programs into single stage in different applications. We further

eliminate the uf ≤ 1 constraints for all f ∈ F since they are implied. We have now con-

verted the BM into a single-stage mixed integer linear programming model, which we refer

to as the single-stage model (SM):

(SM) minimize
∑

(i,j)∈A

wijxij +
∑
f∈F

∑
(i,j)∈Af

cfdijr
f
ij (24)

subject to πf
j ≤ π

f
i + dij + (λ̄f + ε)xij f ∈ F, (i, j)∈Af (25)

(λ̄f + ε)(1−uf ) +
∑

(i,j)∈Af

dijr
f
ij ≤ π

f
tf
−πf

sf
f ∈ F (26)

∑
(i,j)∈Af

rfij −
∑

(j,i)∈Af

rfji ≤


uf if i= sf
−uf if i= tf
0 otherwise

f ∈ F, i∈Nf (27)

rfij ≤ 1−xij f ∈ F, (i, j)∈Af (28)

xij ∈ {0,1} (i, j)∈A (29)

uf , π
f
k , r

f
ij ≥ 0 f ∈ F,k ∈Nf , (i, j)∈Af . (30)
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Constraints (25) are imposed for dual feasibility. Constraints (26) are the reverse weak

duality inequality, enforcing uf = 1 if the non-intercepted shortest path length from the

origin to the destination does not exceed the tolerance λ̄f , for all f ∈ F . Constraints (27)–

(28) are imposed for primal feasibility. Finally, Constraints (29) and (30) are the integrality

requirements and the non-negativity constraints, respectively. Note that when uf = 1, the

existence of a path with a length at most λ̄f is ensured by (25)–(26). Therefore, we do not

explicitly force a path expressed by arc variables to have a length of at most λ̄f .

3.3. Reformulation by Projection

We now project SM onto a subspace in order to obtain an alternative formulation. Let

SMR be the linear relaxation of SM. For f ∈ F , we define QSM
f to be the projection

of the SMR polytope onto the space spanned by the variables x, u and r. More for-

mally, QSM
f = {(u,x, r) ∈ R|F |+|A|+

∑
f∈F |Af || there exists π ∈ R|F | such that (π,u,x, r) ≥

0 satisfies (25) and (26)}. To describe this set by means of linear functions, we first inves-

tigate the projection cone and its extreme rays. Let αf
ij and βf be the dual variables

associated with Constraints (25) and (26), respectively. When the context is clear, we refer

to the vector of αf
ij for all (i, j) ∈Af as αf , to the vector of αf for all f ∈ F as α and to

the vector of βf for all f ∈ F as β.

By the Farkas lemma (see, e.g., Conforti, Cornuéjols, and Zambelli 2010), we have the

following result: Given a solution (x,u, r), there exists a vector π satisfying (25) and (26)

if and only if

0≤
∑
f∈F

[ ∑
(i,j)∈Af

(dij + (λ̄f + ε)xij)α
f
ij + (λ̄f + ε)(uf − 1)βf −

∑
(i,j)∈Af

dijr
f
ijβf

]
(31)

for all (α,β)≥ 0 such that

∑
j:(i,j)∈Af

αf
ij −

∑
j:(j,i)∈Af

αf
ji =


βf if i= sf
−βf if i= tf
0 otherwise

f ∈ F, i∈Nf . (32)

Let Cf be the cone of (αf , βf )≥ 0 satisfying inequalities (32) for f ∈ F and C =∪f∈FCf .

Note that C is a pointed cone with apex at 0. Non-dominated projection inequalities of

type (31) are defined by the extreme rays of C, which we characterize in the following

proposition:



Arslan, Jabali, and Laporte: Exact Solution of the EFCP
14 Article submitted to Operations Research; manuscript no. OPRE-2017-08-434

Proposition 2. For f ∈ F , a vector (αf , βf )∈ Cf of size |Af |+ 1 defines an extreme ray

if and only if βf = ε and

αf
ij =

{
ε if (i, j)∈Ap

0 otherwise
(i, j)∈Af , (33)

where ε≥ 0 and p is a directed path in Gf .

Proof Let (αf , βf ) ∈ Cf be a vector where αf is defined as in (33) and βf = ε. Now,

suppose that αf =∇υ1 + (1−∇)υ2 for some (υ1,ψ1), (υ2,ψ2) ∈ Cf and 0 <∇ < 1. Then

∇υ1
ij + (1 −∇)υ2

ij = 0 for (i, j) ∈ Af \ Ap. This implies that υ1
ij = υ2

ij = 0 for all (i, j) ∈
Af \ Ap. If there exists (k, l) ∈ Ap such that υ1

kl = 0, we have υ1
ij = 0, for all (i, j) ∈ Ap

due to (32). It then follows that υ2 is a positive multiple of αf , which is a contradiction.

Therefore, suppose υ1
ij > 0 and υ2

ij > 0 for all (i, j) ∈ Ap. But then, due to (32), υ1 is a

positive multiple of υ2. Hence (αf , βf ) defines an extreme ray.

Let (υ,ψ)∈ Cf be an extreme ray. Then υ satisfies (32). If ψ= 0, then υ= 0 due to (32)

and we get the apex of the cone. Let ε > 0 and ψ = ε. Then, (32) enforces υ to define a

path q from sf to tf and the value of υij =ψ= ε, for all (i, j)∈Aq. Thus any extreme ray

is a path in Gf and the proposition follows. �

Let Pf be the set of all paths from sf to tf in Gf . Consider a vehicle flow f ∈ F , a

path p ∈ Pf and the (αf , βf ) setting in Proposition 2 for ε =
1

(λ̄f + ε)
> 0. Then, (31) is

transformed into the following inequality:

1−
∑

(i,j)∈Ap

xij ≤ uf +
∑

(i,j)∈Ap

dij
(λ̄f + ε)

−
∑

(i,j)∈Af

dijr
f
ij

(λ̄f + ε)
. (34)

We refer to length of path p as L(p) =
∑

(i,j)∈Ap dij. Rewriting (34) for all f ∈ F and p∈ Pf ,

we have the following projection inequality :

1−
∑

(i,j)∈Ap

xij ≤ uf +
L(p)−

∑
(i,j)∈Af

(dijr
f
ij)

(λ̄f + ε)
f ∈ F,p∈ Pf . (35)

With this projection, we now have a linear description of the QSM
f . We can remove

Constraints (25) and (26) from the SM formulation and append (35) to it to yield an

equivalent formulation. We refer to this formulation as the Projection Model (ProjM).

At this point we further investigate the projection inequality. A few remarks are in order.
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Remark 2. Preliminary computational experiments with the Porta software (Christof,

Löbel, and Stoer 1997) have shown that the extreme points of the ProjM formulation are

generally fractional, due to the fractional term in the projection inequality.

Remark 3. The projection inequality (35) is valid for all paths in Gf . However, for both

intercepted and non-intercepted paths with L(p)> λ̄f , the inequality can be satisfied by

setting the flow and arc variables trivially equal to zero. Hence, we consider paths of length

L(p)≤ λ̄f , depending on the following two cases:

(a) Consider an intercepted path p of length L(p)≤ λ̄f . Since p is intercepted, we have∑
(i,j)∈Ap xij ≥ 1. Therefore the projection inequality can be satisfied by setting the flow

and arc variables trivially equal to zero.

(b) Consider the only non-trivial case when a path p of length L(p) ≤ λ̄f is non-

intercepted. Then, we have
∑

(i,j)∈Ap xij = 0 and the projection inequality can be rewritten

as

1 +

∑
(i,j)∈Af

(dijr
f
ij)

(λ̄f + ε)
≤ uf +

L(p)

(λ̄f + ε)
.

The inequality L(p) ≤ λ̄f implies that uf > 0. Since this is a binary variable, we have

uf = 1. Furthermore, uf cancels out with 1 on the left-hand side, and the inequality states

that the arc variables cannot exceed the length of path p:

∑
(i,j)∈Af

(dijr
f
ij)≤L(p).

This is true for all unintercepted paths p ∈ Pf . Therefore the length of the unintercepted

path that trucks travel (identified by the arc variables) is the shortest of all unintercepted

paths. This is valuable information, but it is not required for the correctness of the model

since the path identified by arc variables is the shortest of all unintercepted paths due to

Constraints (27), (28) and the objective function.

Remark 4. For all the cases we considered, the fractional term in the projection inequality

lies in the half-closed [0,1) interval. Having the location and flow variables as binary allows
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us to omit the fractional term, and we obtain the following inequality, which we refer to

as cut inequality:

1−
∑

(i,j)∈Ap

xij ≤ uf f ∈ F,p∈ Pf .

The following observations are due to the cut inequality:

(a) For f ∈ F and a path p ∈ Pf with L(p) ≤ λ̄f , having no station on p (i.e.∑
(i,j)∈Ap xij = 0) implies that p is non-intercepted.

(b) The existence of at least one such non-intercepted path with L(p)≤ λ̄f implies that

the overweight trucks can travel non-intercepted (i.e. uf = 1).

3.4. Pathcut Formulation

In this section, we present an alternative formulation based on the cut inequality. We refer

to the following as the pathcut model (PM):

(PM) minimize
∑

(i,j)∈A

wijxij +
∑
f∈F

∑
(i,j)∈Af

cfdijr
f
ij (36)

subject to

1−
∑

(i,j)∈Ap

xij ≤ uf f ∈ F,p∈ Pf (37)

∑
(i,j)∈Af

rfij −
∑

(j,i)∈Af

rfji =


uf if i= sf
−uf if i= tf
0 otherwise

f ∈ F, i∈Nf (38)

rfij ≤ 1−xij f ∈ F, (i, j)∈Af (39)

xij ∈ {0,1} (i, j)∈A (40)

uf , r
f
ij ≥ 0 f ∈ F, (i, j)∈Af . (41)

The objective function is the same as that of the SM formulation. Constraints (37) ensure

that uf equals one if there exists at least one non-intercepted path between sf and tf in Gf .

Constraints (38)–(41) are the same in SM. Even though there is an exponential number of

constraints in the PM formulation, we eliminate the need to use big-M type constraints.

Furthermore, observe that there is no constraint explicitly handling the λf parameter. The
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deviation tolerance is implicitly taken into account by the definition of path p ∈ Pf . Also

note that the cut inequality can also be used to model the multi-period EFCP (Marković,

Ryzhov, and Schonfeld 2017). In the following section, we investigate the strength of the

cut inequality and then discuss effective separation algorithms for Constraints (37).

3.5. Polyhedral Analysis

Let X be the set of feasible solutions in formulation PM, and P = conv(X) be the convex

hull of X. In this section, we prove that the cut inequality defines a facet of P. For f ∈ F ,

we assume that graph Gf is connected (if not, then without loss of generality, f can be

removed from the set F ).

Let eij be the unit vector of size |A| corresponding to arc (i, j)∈A, hf be the unit vector

of size |F | corresponding to flow f ∈ F , pf be a path in Gf , vpf =
∑

(i,j)∈Apf

eij be the vector

corresponding to path pf (in the domain of location variables), wpf ∈ {0,1}
∑

g∈F |Ag | be the

vector corresponding to f ∈ F and path pf (in the domain of arc variables) and F (S)⊂ F

be the set of vehicle flows, that can travel from their origins to their destinations in the

graph induced by the arcs in S. In the following, we refer to a solution in P as (x,u,r). In

order to determine the dimension of P, we start by presenting a graph theoretical notion,

the number of linearly independent paths, which is usually used as a complexity measure

in software source codes (McCabe 1976).

Definition 1. For f ∈ F , a set of paths P is referred to as linearly independent if the set

of corresponding vectors vp, p∈ P is linearly independent.

Lemma 1. (McCabe 1976) In a connected graph G= (N,A), the number of linearly inde-

pendent paths between a source s∈N and a destination t∈N is equal to |A| − |N |+ 2.

The proof is by induction, see McCabe (1976) and Berge and Minieka (1973). Let Yf be a

set of linearly independent paths in Gf .

To avoid considering single-arc paths, we introduce, without loss of generality, a dummy

node on all such arcs. We are now ready to discuss the dimension of P.

Proposition 3. dim(P) = |A|+
∑

f∈F (|Af | − |Nf |+ 2).
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Proof The number of variables in PM is |A|+ |F |+
∑
f∈F

|Af |. In all solutions of PM,

Constraints (38) are satisfied at equality. Since they express node balance equations in

graphs, the rank of the corresponding matrix is
∑
f∈F

(|Nf |−1). Therefore |A|+
∑

f∈F (|Af |−

|Nf |+ 2) is an upper bound on the dimension. Now, consider the following solutions: 1
0
0

 ,

 1− eij
0
0

 (i, j)∈A,

 κpf

φpf

πpf

 pf ∈Yf , f ∈ F,

where κpf = 1 − vpf , φpf =
∑

g∈F (A
pf )

hg and πpf =
∑

pg :g∈F (A
pf ),

Apg⊂Apf

wpg . Having these |A| +

∑
f∈F

(|Af | − |Nf |+ 2) + 1 number of affinely independent solutions gives a lower bound on

the dimension and the proposition follows. �

Proposition 4. For f ∈ F and p∈ Pf , the inequality 1−
∑

(i,j)∈Ap

xij ≤ uf is facet-defining

for P if and only if no subpath of p constitutes a complete path between sf̂ and tf̂ for a

vehicle flow f̂ ∈ F \ {f}.

Proof In a solution with xij = 1 for all (i, j) ∈ Ap, the cut inequality strictly holds.

Since P is not full dimensional, this establishes that it is not an implicit equation. Let

R = {(x,u, r)∈P :
∑

(i,j)∈Ap

xij +uf = 1}. Suppose that all solutions (x,u, r)∈R also satisfy

ax+ bu+ cr=ϕ, (42)

where a, b and c are coefficient vectors of appropriate sizes. Consider an arc (i, j)∈Ap and

a solution (
∑

(k,l)∈Sij

ekl,0,0) ∈R, where Sij is a minimal cut in G with Sij ∩Ap = {(i, j)},

disconnecting (sg, tg) OD pairs for all g ∈ F . Since no subpath of p is a path for another

OD pair, the existence of Sij is well defined. Then, (42) implies
∑

(k,l)∈Sij

akl = ϕ. Now,

consider another solution (
∑

(k,l)∈A\Ap

ekl +eij,0,0)∈R, which implies
∑

(k,l)∈A\Ap

akl +aij =ϕ.

Therefore, akl = 0 for all (k, l)∈A \ (Ap ∪Sij). If Sij = {(i, j)}, then we have aij =ϕ. Else,
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consider another arc (m,n) ∈ Sij \ {(i, j)}. Observe that there exists another minimal cut

S̄ij in G, disconnecting all OD pairs:

S̄ij =

{
Sij \ {(m,n)}∪ {(n, l)∈ δ+(n)} if m= sf ,

Sij \ {(m,n)}∪ {(k,m)∈ δ−(m)} otherwise

where δ+(n) and δ−(m) are the emanating arcs from node n and entering arcs into node

m, respectively. Similar to the previous argument with arc (i, j), considering solutions

(
∑

(k,l)∈S̄ij

ekl,0,0) and (
∑

(k,l)∈A\Ap

ekl + eij,0,0)∈R yields akl = 0 for all (k, l)∈A\ (Ap∪ S̄ij),

which implies that amn = 0. Iterating over all arcs (m,n) ∈ Sij \ {(i, j)}, we obtain the

following result: aij =ϕ and akl = 0 for all (k, l)∈A \Ap. Iterating over all arcs (i, j)∈Ap

yields

aij =

{
ϕ if (i, j)∈Ap,

0 otherwise.

Then inequality (42) becomes
∑

(i,j)∈Ap

ϕxij +
∑
g∈F

bgug +
∑
g∈F

(i,j)∈Ag

cijr
g
ij = ϕ. Next, consider a

solution (
∑

(k,l)∈A\Ap

ekl, hf ,wp)∈R, which gives bf +
∑

(i,j)∈Ap

cij =ϕ. Let Q be a set of paths

with a single path from each vehicle flow’s set of linearly independent paths, except flow f .

Observe that there exist
∏

g∈F\{f}

|Yf |=
∏

g∈F\{f}

(|Ag| − |Ng|+ 2) alternative ways of forming

the set Q. Consider all such sets and the corresponding solutions (0,
∑
g∈F

hg,
∑
q∈Q

wq +wp)∈

R. We then obtain
∑

g∈F\{f}

bg +
∑

g∈F\{f}
(i,j)∈Ag

cij = 0. This implies bg = 0 for all g ∈ F \{f}, cij = 0

for all g ∈ F \ {f}, (i, j)∈Ag. Then (42) becomes∑
(i,j)∈Ap

ϕxij + bfuf +
∑

(i,j)∈Af

cijr
f
ij =ϕ. (43)

Now consider path q ∈ Yf and solution (
∑

(k,l)∈A\(Ap∪Aq)

ekl, hf ,wq) ∈R. This gives the fol-

lowing equations:

bf +
∑

(i,j)∈Aq

cij =ϕ q ∈Yf . (44)
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For the considered solution corresponding to path q, we have rqij = uf , for all (i, j) ∈ Aq

due to node balance constraints in PM. Therefore, (43) can be rewritten as∑
(i,j)∈Ap

ϕxij + bfuf +
∑

(i,j)∈Aq

cijuf =
∑

(i,j)∈Ap

ϕxij + (bf +
∑

(i,j)∈Aq

cij)uf =ϕ.

From (44), we have
∑

(i,j)∈Ap

ϕxij +ϕuf =ϕ, which is a positive multiple of the cut inequality.

Now assume that the condition does not hold, that is, there exists a vehicle flow f̄

such that path p has a subpath sp from sf̄ to tf̄ . Then, 1 −
∑

(i,j)∈Asp

xij ≤ uf̄ and uf̄ ≤

uf +
∑

(i,j)∈Ap\Asp

xij are valid, they imply the cut inequality and therefore the cut inequality

cannot be facet defining. �

Remark 5. For any 0≤ χ≤ 1, equation (44) can be satisfied by:

bf = χϕ and cij =

{
(1−χ)ϕ if (i, j)∈ S
0 otherwise,

where S is an sf -tf minimum cut in Gf . This implies that the family of inequalities

1−
∑

(i,j)∈Ap

xij ≤ χuf + (1− χ)
∑

(i,j)∈S

rfij are valid for P for 0 ≤ χ ≤ 1. However, all these

inequalities are equivalent since uf =
∑

(i,j)∈S

rfij due to the flow balance equations in PM.

3.6. Separation Problem

For a given solution (x∗, u∗, r∗) and a vehicle flow f∗ with u∗f < 1, the separation problem

is to identify a path p ∈ Pf such that 1−
∑

(i,j)∈Ap

x∗ij >u∗f , or to conclude that none exists.

Note that by definition, we have L(p)≤ λ̄f . In the following, we present an exact separation

algorithm for integer solutions by solving a shortest path problem, and an exact separation

algorithm for fractional solutions by solving a resource constrained shortest path problem.

3.6.1. Exact separation algorithm for integer solutions. When the solution

(x∗, u∗, r∗) is integer, we construct graph G∗Int induced by arcs with x∗ij = 0. Any path in

this graph is a non-intercepted path. For a vehicle flow f ∈ F with u∗f = 0, if the length of

the shortest path between sf and tf is at most λ̄f , then we have identified a path p∗ with∑
(i,j)∈Ap∗

x∗ij = 0, separating the current solution. If the length is greater than λ̄f or nodes

sf and tf are disconnected, then the solution does not need to be separated.
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3.6.2. Exact separation algorithm for fractional solutions. When the solution

(x∗, u∗, r∗) is fractional, we construct the graph G∗Frac = (N, ÂFrac) where ÂFrac = {(i, j)∈

A} with the weight of arc (i, j) ∈ ÂFrac equals x∗ij. We consider actual path lengths as

resource in the transformed graph. For a vehicle flow with u∗f < 1, we compute a resource-

constrained elementary shortest path p∗ between sf and tf with a total resource of λ̄f . If

1−
∑

(i,j)∈Ap∗

x∗ij >u
∗
f , we separate the solution. If not, we conclude that no such path exists.

3.6.3. Branching. The branching rules are applied with the default settings of

CPLEX.

3.6.4. Initial set of rows. For each OD pair f ∈ F , we add Constraint of type (37)

for the shortest path between sf and tf .

3.6.5. Feasibility heuristic. Consider an integral solution (x∗, u∗, r∗) and let F ∗ =

{f ∈ F : u∗f = 0 and L(p∗f ) ≤ λ̄f} where p∗f is the shortest path in Gf between sf and

tf with
∑

(i,j)∈A
p∗
f

x∗ij = 0. Note that the infeasibility stems from the vehicle flows f ∈ F ∗,

and we identify set F ∗ when separating integer solutions as in Section 3.6.1. Using this

information, a feasible solution can readily be constructed by setting uf = 1 and the arc

variables corresponding to path p∗f equal to 1, rfij = 1, for all (i, j) ∈ Ap∗f and leaving all

remaining variables unaltered. Note that such a feasible solution can be obtained at no

cost at every integer separation iteration.

4. Computational Study

We now present the experimental setup and the computations to assess the efficiency of

the proposed solution methodologies: the Marković, Ryzhov, and Schonfeld model (MRS),

our single-stage model (SM) and our pathcut model (PM). We have implemented the algo-

rithms using Java under Linux and CPLEX 12.6.1, and all experiments were conducted

on a cluster of 27 machines each having two Intel(R) Xeon(R) X5675 3.07 GHz processors

with 96 GB of RAM running on Linux. Each machine has 12 cores and each experiment

was run using a single thread. The time limit for all experiments is 3600 seconds. For

graph representations, we use JGraphT Java Library (Sichi and Contributors 2017). For
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the shortest path problem, we use the Dijkstra’s algorithm with Fibonacci heap implemen-

tation of JGraphT. To solve the resource constrained shortest path problem, we use the

pulse algorithm introduced by Lozano and Medaglia (2013). The Java code of the algo-

rithms is available as an online supplement. In the following, we discuss the data needed

for our experiments, the implementation details of the algorithms, and the results. In all

experiments, we use a common λ value, independent of the vehicle flow.

4.1. Data

To test our algorithms, we use WIM station location instances of the EFCP. The pavement

damage caused by trucks depends on several parameters such as axle weights, pavement

structure and climate and the environmental damage includes accidents, emissions and

noise (Marković, Ryzhov, and Schonfeld 2015). For a given truck class, the regulations

impose an upper bound on the total transportation weight. Provided with the class of

a truck and the excessive weight, there are methods to estimate the total damage. This

estimation provides a cents per kilometer value for a given truck. There are several types

of trucks traveling between a given OD pair with varying overweights. Marković et. al

assume that the percent of total flow by a specific truck type can be estimated. Therefore,

all calculations boil down to a single parameter cf , which is the excessive damage cost per

mile for vehicles traveling between OD pair f ∈ F . This parameter is calculated using OD

pair specific data for various truck classes and overweight loads. Once an estimate is made,

it is multiplied by the number of vehicles traveling yearly between an OD pair and the

distance of the road to find the annual cost of damage due to transportation of overweight

trucks between the OD pairs. For further details on the comprehensive calculation of these

values, we refer the reader to Marković, Ryzhov, and Schonfeld (2015). As in Marković

et. al, we conducted experiments for various realistic values of cf ∈ {0.025,0.05,0.10,0.20}
in dollars per kilometer and wi ∈ {10,60,110,160,260,360} in thousands of dollars. As in

Hodgson (1990), we calculate the vehicle flows between OD pairs based on a gravity model.

According to this model, the flow is directly proportional to the total population of the

origin and destination nodes, and inversely proportional to the shortest distance of the OD

pair. We additionally assume that for every 1000 people at origin and destination nodes,

one truck travels between this OD pair.



In their experiments, Marković, Ryzhov, and Schonfeld (2015) solved a 205-node instance

with an average node degree of 1.078, which corresponds to the road network of Nevada

with state-designated links for large commercial vehicles. This network is used to show

that the FCP model performs very poorly even when there are very few alternative paths.

Instances with better connected networks are also solved. In our experiments, we con-

sider three network topologies (Table 1): a 25-node network (Figure 4.1) used by Hodg-

son (1990), Kuby and Lim (2005), Lim and Kuby (2010), MirHassani and Ebrazi (2013)

and Capar et al. (2013), the 339-node California road network (CA) (Figure 4.1) used

by Arslan, Yıldız, and Karaşan (2014), Yıldız, Arslan, and Karaşan (2016), Arslan and

Karaşan (2016), and three 500-node randomly generated road networks (see Section 4.4).

The average node degrees of these networks vary between 3.44 and 3.64. We consider three

deviation tolerances: 1.0, 1.5 and 2.0.

Table 1 Network characteristics

Node degree OD Pairs
Network # nodes # arcs min avg max # OD pairs min dist avg dist max dist

25-node 25 86 1 3.44 6 300 20.00 142.33 380.00
CA 339 1234 1 3.64 7 1167 30.06 153.37 463.50

N500-50 500 1820 1 3.64 11 500 30.6 61.89 108.65
N500-75 500 1820 1 3.64 11 1000 30.18 60.95 106.82
N500-100 500 1820 1 3.64 11 2000 30.02 59.37 123.38
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4.2. The 25-node Network

Figure 4.2(a) displays the total cost as a function of the WIM station cost (wij) and of

the damage coefficient of vehicles of flows (cf ) in the 25-node network for λ= 2.0. Figure

4.2(b) plots the corresponding number of opened WIM stations as a function of wij and cf .

We only present results for λ= 2.0 since other deviation tolerance values exhibit similar

trends, but the change is more pronounced for higher tolerances.
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The costs gradually increase with larger station costs. The concave shape is due to the

fact that increasing costs imply opening fewer stations to intercept the flows. Conversely,

Figure 4.2(b) shows that the number of open stations is quite high when the station costs

are low at $10K, but the numbers show a steep decent for increasing station costs.

Table 2 displays the solution times in seconds for MRS, SM and PM. All instances are

solved to optimality by all three solution techniques. When generating paths as an input for

the MRS, we used the Carlyle and Wood (2005) path enumeration algorithm for loopless

paths rather than solve k shortest path problems successively, since the ranking of paths

is not required in the problem. All path enumerations in the 25-node network for MRS

take less than one second. We also tested the MRS version in which only location variables

are binary and the integrality conditions on all remaining variables are relaxed, since it

provides a tighter LP-relaxation. However, as reported in Marković, Ryzhov, and Schonfeld

(2015), the model with fewer constraints and some binary flow-based variables provides

shorter run times with respect to the version tested here. Regarding the PM, we only

implemented the integer separation in the 25-node network. The performance comparison

of alternative separation procedures is carried out in the experiments on larger networks.

One of the most important results that can be observed from this table is the exponen-

tial rate of increase in MRS solution times for increasing deviation tolerance values. The

average runtimes when λ= 1.0 are 0.46, 0.58 and 1.17 for MRS, SM and PM, respectively.

However when λ= 2.0, the solution times of MRS become prohibitive whereas the SM and

PM can still solve the instances within an average of 3.41 and 1.96 seconds, respectively.

This shows that even though all paths can be generated and used as an input to MRS, the

performance of MRS is still inferior to those of SM and PM.

4.3. The CA Network



Table 2 Solution times with three models for the 25-node network

MRS CPU time (s) SM CPU time (s) PM CPU time (s)
we($) cf ($) λ = 1.0 λ = 1.5 λ = 2.0 λ = 1.0 λ = 1.5 λ = 2.0 λ = 1.0 λ = 1.5 λ = 2.0

10K 0.025 0.4 12.6 854.9 0.6 4.2 7.1 0.5 2.7 3.1
0.05 0.3 7.6 392.4 0.6 1.7 2.7 1.5 1.7 1.4
0.10 0.4 7.1 466.7 0.5 1.8 2.4 1.0 1.7 1.5
0.20 0.3 6.6 531.8 0.5 1.3 3.2 0.9 1.6 1.3

60K 0.025 0.5 9.6 298.5 0.6 1.4 2.4 1.1 2.0 2.1
0.05 0.5 10.9 308.9 0.6 2.9 4.1 1.3 1.7 2.2
0.10 0.4 10.3 1066.5 0.6 2.3 6.0 0.8 1.3 2.1
0.20 0.4 7.7 515.1 0.6 2.3 3.3 0.7 1.3 1.7

110K 0.025 0.4 13.7 373.1 0.6 1.7 5.3 1.7 1.9 1.7
0.05 0.4 8.8 284.1 0.5 1.6 2.4 0.9 1.6 1.8
0.10 0.5 11.6 332.1 0.6 3.3 5.7 1.4 1.3 1.8
0.20 0.2 7.9 617.3 0.6 2.6 4.5 1.4 1.0 2.3

160K 0.025 0.5 11.8 285.8 0.6 1.6 2.6 1.7 2.0 1.9
0.05 0.6 10.1 307.4 0.5 1.7 2.2 1.3 1.8 1.8
0.10 0.4 11.8 370.7 0.6 1.4 3.1 1.3 1.8 2.0
0.20 0.5 16.7 894.7 0.6 4.1 4.6 1.3 1.9 2.2

260K 0.025 0.5 12.8 303.1 0.5 1.3 1.8 1.0 1.7 2.0
0.05 0.5 9.0 319.7 0.6 1.7 2.4 1.3 1.4 1.9
0.10 0.8 6.9 235.3 0.5 2.0 2.4 1.2 1.2 2.2
0.20 0.3 8.4 321.3 0.6 2.5 4.0 1.0 1.0 2.4

360K 0.025 0.8 12.9 315.4 0.5 1.3 1.9 1.0 1.4 2.1
0.05 0.5 13.8 296.2 0.5 1.5 2.5 1.2 1.7 2.1
0.10 0.4 11.8 239.8 0.5 1.6 2.8 1.3 1.0 2.0
0.20 0.4 9.7 318.4 0.5 1.5 2.3 1.4 1.5 1.3

Average 0.5 10.4 427.1 0.6 2.1 3.4 1.2 1.6 2.0
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We now present the results of the SM and PM models. Note that the MRS model does

not scale up to the size of the CA network. This can be understood from Figure 1 which

plots the number of paths for deviation tolerances of 1.00 to 1.08 of 0.01 increments in

the CA network. For a deviation of 1.08, there exist almost 100 million paths within the

deviation tolerance, which makes it impossible to solve the corresponding MRS model.

Figure ?? plots the total costs and number of open stations in the CA network against

varying wij, cf and λ values. These plots exhibit patterns similar to those of Figures 4.2(a)

and 4.2(b) for the 25-node network.

An important result is the actual savings yielded by the location of WIM stations. In the

CA network, when there are no stations and all overweight trucks drive on their shortest

paths, the total annual cost is $5.84 million for each cent of damage coefficient. In other

words, if one kilometer of damaged road can be repaired by only spending one cent, then

the cost is still excessive. When a realistic value of five to ten cents is used, then the

total annual cost of not intercepting overweight trucks varies between $29.2M and $58.4M,

which is three to six times higher than the largest cost appearing in Figure ??.

A final remark regarding the figure is related to the number of open stations in the

optimal solutions. Observe that some of the curves are not convex. This is basically due to

the indivisibility of the number of stations. The marginal contribution of the last station

opened depends on the vehicle flow structure in the road network.
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λ Method # opt.sol. avg.gap (%) CPU time(s) nNodes nIntCuts nFracCuts

1.0 SM 24 0 72.0 1037.88 N/A N/A
PM-00 24 0 12.7 0 0 0
PM-01 24 0 14.5 0 0 0
PM-10 24 0 13.9 0 0 0
PM-11 24 0 16.0 0 0 0

1.1 SM 1 23.13 3610.9 856.71 N/A N/A
PM-00 24 0 151.2 47.38 1436.13 0
PM-01 24 0 158.0 45.79 1419.50 0
PM-10 24 0 130.0 13.25 746.33 597.88
PM-11 24 0 144.0 12.13 698.25 647.88

1.2 SM 0 84.53 3614.0 N/A N/A N/A
PM-00 20 3.02 1886.7 366.21 5005.08 0
PM-01 20 10.99 1996.2 336.75 5305.29 0
PM-10 24 0 703.6 39.29 1625.75 2418.17
PM-11 24 0 785.9 64.58 1613.54 2431.33



Computational results for the CA network are presented in Table 4.3. The first column

provide the deviation tolerance (λ), the second column indicates which model is used. The

two-digit in the PM version identifies the settings: if the first digit is 1, then the exact

fractional separation is implemented; if the second digit is 1, then the feasibility heuristic

is used. The exact fractional separation is only implemented at the root node, since this

is already another NP-hard problem. The third column, ‘# opt.sol.’ is the number of

instances solved to optimality. Each line corresponds to an average of a total of 24 runs,

corresponding to the combinations of cf and wi. The fourth column, ‘avg.gap’ displays

the percent average gap. The CPU times in seconds are presented in the fifth column.

Next, ‘nNodes’, average number of nodes in the branch-and-cut tree is presented. The last

two columns, ‘nIntCuts’ and ‘nFracCuts’, are the number of cuts added by integer and

fractional separation algorithms, respectively.

The results show that SM does not scale up well for large-size networks. All instances

with λ = 1.0 are solved, but only one instance can be solved for the larger deviation

tolerance values. Furthermore, the average number of nodes explored with SM is very large

compared with the other methods. Note that the average number of nodes is not reported

when λ= 1.2. This is due to SM not being able to solve the root node relaxation within the

time limit. The feasibility heuristic provides several good upper bounds, but significantly

increased the runtimes on average. This is mainly related to the inner dynamics of CPLEX.

Our feasibility heuristic usually provided several feasible solutions before CPLEX did, but

CPLEX’s own heuristics for the generation of feasible solutions provided better solutions

than ours.

Out of the four PM implementations, the exact fractional separation algorithm proved

to be highly effective in providing better bounds. It performed the best among all imple-

mentations with an average solution time of 703.6 seconds and an average of 39.29 nodes

explored. Without fractional separation, both the PM-00 and PM-01 implementations were

unable to solve four of the 24 instances for λ = 1.2. Even though there is no significant

reduction in the number of total cuts added in the implementations with and without frac-

tional separation, the average number of nodes explored and the runtimes are significantly

lower.



One final important observation concerning SM and PM regards the node domination in

the transformed graphs. When we generate the graphs for each OD pair, we only consider

non-dominated nodes as presented in the Section 3.1. This turns out to be highly effective

when solving the models. In the CA network, there are in total of 1,440,078 dominated

and undominated arc variables; however, the proportions of undominated nodes are only

1.25%, 8.5% and 16.1% for λ= 1.0,1.1 and 1.2, respectively.

4.4. The Three 500-node Networks

We generated 500 random nodes on a 1000 × 1000 km2 region and assigned a population

number according to Pareto distribution with scale parameter of 5000 and shape parameter

of 0.9. Each node is connected to other nodes in the network within 100 kilometers and

the arc lengths are Euclidian distances. We thus obtained 23 disconnected node clusters.

Randomly selecting a node from each cluster and connecting it to the cluster having the

largest number of nodes, we ensured strong connectivity of the graph. We then selected 50,

75 and 100 most densely populated nodes as OD pair nodes. We refer to these networks

as N500-50, N500-75 and N500-100. Using the shortest path distances and population

numbers, we generated vehicle flows between the nodes. We selected 500, 1000 and 2000

most dense vehicle flows for N500-50, N500-75 and N500-100, respectively. Further details

of these graphs are presented in Table 1.

Table 3 reports the results of experiments for various wij, cf and λ settings. All instances

are solved to optimality. We observe very similar results to the CA network. Again, PM-10

performs the best among four implementations for all λ values. For all experiments with

non-zero deviations from the shortest paths, it always outperforms the other implementa-

tions in terms of solution time.

5. Conclusions

We have modeled and solved the Evasive Flow Capturing Problem (EFCP) (Marković,

Ryzhov, and Schonfeld 2015), which consists of optimally locating law enforcement facilities

to intercept non-cooperative vehicle flows in a transportation network. The EFCP adds an

important dimension to the flow capturing location problem literature by accounting for the



Table 3 Computational results for 500-node networks

Network λ Method CPU time (s) nNodes nIntCuts nFracCuts

N500-50 1.0 PM-00 9.8 0 0 0
PM-01 11.6 0 0 0
PM-10 10.6 0 0 0
PM-11 11.7 0 0 0

1.1 PM-00 107.9 7.04 460.00 0
PM-01 128.4 8.42 448.08 0
PM-10 82.5 0.75 306.21 91.00
PM-11 86.1 0.25 299.21 96.92

1.2 PM-00 215.4 11.79 527.63 0
PM-01 234.5 13.58 549.04 0
PM-10 177.2 5.00 396.88 92.83
PM-11 180.1 3.79 397.71 121.83

N500-75 1.0 PM-00 17.8 0 0 0
PM-01 20.2 0 0 0
PM-10 18.6 0 0 0
PM-11 21.8 0 0 0

1.1 PM-00 231.1 4.63 897.79 0
PM-01 304.6 8.50 1042.38 0
PM-10 246.1 2.46 767.42 201.96
PM-11 248.9 1.08 693.96 244.04

1.2 PM-00 586.1 20.88 1494.13 0
PM-01 593.7 16.79 1403.92 0
PM-10 481.1 5.50 978.54 427.04
PM-11 562.1 8.08 1025.88 429.96

N500-100 1.0 PM-00 34.5 0 0 0
PM-01 38.8 0 0 0
PM-10 35.7 0 0 0
PM-11 42.2 0 0 0

1.1 PM-00 965.3 25.04 2535.54 0
PM-01 1155.9 27.88 2735.79 0
PM-10 750.2 6.13 1029.17 1130.42
PM-11 794.7 5.92 1078.67 1072.25

1.2 PM-00 2241.1 39.22 3338.22 0
PM-01 2299.2 35.00 3235.67 0
PM-10 1515.7 6.25 1276.96 1452.25
PM-11 1550.3 6.50 1365.83 1452.46



fact that the unlawful vehicle drivers may change their routes in order not to be intercepted.

The previous available models for the EFCP worked with an exhaustive pregeneration of

all routes, but this soon becomes prohibitive when the instance size increases, especially

when non-cooperative drivers are willing to significantly deviate from their shortest paths.

One of the major challenges results from the presence of the conflicting aims of the law

enforcement body and of the unlawful drivers, which we have tackled by developing a

bilevel model. Another challenge stems from the transformation of the two-stage model

into a single-stage model, which we have handled by transforming a constraint and by

using duality theory. Furthermore, we have applied a polyhedral study on this compact

single-stage model and we have projected out auxiliary variables to arrive at a formulation

with an exponential number of constraints, associated with the paths in the network. We

have proved that the projection inequality yields a facet-defining cut inequality. This final

model was solved by branch-and-cut. The solutions were separated by solving resource

constrained shortest path problem. When the solutions are integral, the separation problem

further reduces to a shortest path problem. Extensive numerical experiments on networks

containing up to 500 nodes and a deviation tolerance λ= 1.2 have confirmed the efficacy

of our methodology. In particular, we have shown that solving our best model by branch-

and-cut yielded a CPU time reduction of at least two orders of magnitude on the 25-node

instances with respect to the best published algorithm. We have significantly increased the

size of the instances that can be solved to optimality.
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du Québec-Nature et technologies under grant NC-198837. The authors thank the associate editor

and two referees whose comments helped improve the quality of this paper.

References

Ahuja RK, Magnanti TL, Orlin JB, 1993 Network Flows: Theory, Algorithms, and Applications

(Prentice Hall, Upper Saddle River, New Jersey).



Amaldi E, Bruglieri M, Fortz B, 2011 On the hazmat transport network design problem. Pahl J,

Reiners T, Voß S, eds., Network Optimization, 327–338 (Springer, Berlin Heidelberg).
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Research Chair in Distribution Management. He is the former editor-in-chief of Trans-

portation Science and Computers & Operations Research. He is a member of the Royal

Society of Canada, from which he received the Innis-Gérin Medal. In 2009 he received
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