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a b s t r a c t

Real applications in shift scheduling often require handling rules such as multiple breaks, flexible shift

lengths, overtime, multiple activities, among others. Because these rules demand a high level of

flexibility, we model the problem as a Multi-Activity Shift Scheduling Problem (MASSP), where multiple

activities can be scheduled in a shift. To solve the MASSP, we propose a column generation-based

approach. The auxiliary problem is modeled as a Shortest Path Problem with Resource Constraints

(SPPRC), where most difficult constraints are embedded in the underlying graph. To illustrate the

solution approach, we present our experience solving a real-world problem from a large parking lot

operator that schedules security staff and cashiers among several parking lots in Bogotá (Colombia).

The results show a significant reduction on the staffing total costs and on man-hours used.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

The Shift Scheduling Problem (SSP) is the problem of selecting a
set of shifts to satisfy a daily demand for staff requirements. This
problem was first introduced by Edie (1954) to schedule toll
booth operators. Later, Dantzig (1954) proposed the first integer
programming model to solve the SSP. This pioneering work has
led to a vast body of research on more realistic variations of the
original model and their solution methods.

Current solution methods for the SSP include: enumeration
techniques (Klabjan et al., 2001; C- ezik et al., 2001), which explore
a complete or partial set of solutions; constraint programming
(CP) (Côté et al., 2009), often useful when shift rules are complex;
local search (Curtis et al., 2000; Bennett and Potts, 1968) or
constructive heuristics (Dijkstra et al., 1991), which provide good
feasible solutions quickly; simulation (Zülch et al., 2004), which
allows rich models full of detail and exploits the flexibility of
human resources; and column generation (CG) combined with
heuristic methods (Alefragis et al., 2000; Chu et al., 1997), with
dynamic programming (Desrochers and Soumis, 1989), and with

CP (Demassey et al., 2006; Yunes et al., 2000, 2005). For a survey
of solution methods for the SSP, the reader is referred to Ernst
et al. (2004a, 2004b).

Despite of the advances on the methods to solve the SSP, in
real-world problems it is often necessary to include complex rules
that increase the problem complexity (Quimper and Rousseau,
2010) and give rise to several extensions of the original problem.
The Multi-Activity Shift Scheduling Problem (MASSP) is a relevant
extension of the SSP where each employee may perform several
work activities in the same shift and the assignment of activities
to a shift may be restricted by work rules, including activity
length, number of breaks, shift starting time, shift length, and
maximum number of activities, among others. In the MASSP the
shift schedule spans over a planning horizon of one or more days.
When longer horizons are involved, this gives rise to the problem
known as the Tour Scheduling Problem.

Given that the mathematical programming approach to the
MASSP yields very large mixed-integer programming formula-
tions (MIP), several researchers have proposed heuristics.
Ritzman et al. (1971) proposed an strategy with heuristic assign-
ment rules and a simulation component to schedule workers in a
post office over a planning horizon of one week. In their work,
they did not consider breaks nor rules related with switching
between activities. Loucks and Jacobs (1991), followed by Brusco
and Jacobs (1998), proposed a two-stage heuristic strategy to
schedule, over one week, employees in fast food restaurants and
an airline. However, similar to Ritzman et al. (1971), their work
did not consider breaks, rules related with switching between
activities, or different shift starting times. Finally, Quimper and
Rousseau (2010) took advantage of the rich expressivity provided
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by regular or context-free languages to model complex schedul-
ing rules. They derived specialized graph structures and used a
Large Neighborhood Search (LNS) procedure to generate feasible
shifts. They were able to provide near-optimal solutions for
single-activity instances and their methodology scales well for
instances with up to 10 work activities.

As an alternative to heuristic techniques, Brusco and Jacobs
(2000) proposed a compact integer program that allows flexible
shift starting times, shift lengths, and breaks placement. Rekik
et al. (2004) used Benders decomposition to consider, similar to
Brusco and Jacobs (2000), work rules that allow more modeling
flexibility in the shifts. Although these authors provided the basis
to solve more complex shift scheduling problems, they did not
considered the multi-activity context (they solved instances with
only one activity over a planning horizon of one week). Recently,
Demassey et al. (2006) proposed a CP-based column generation
approach to solve the shift scheduling problem in the multi-
activity context. In their work, they considered regulation con-
cerning the breaks and switching between activities. Their
method is efficient for the linear relaxation of the problem, but
when integrality is imposed, their approach only succeeds for
small instances of up to three activities. Finally, Côté et al. (2011)
developed a new implicit formulation to solve the MASSP and to
overcome the scalability and performance problems of the
approaches presented in Côté et al. (2007, 2009). They used
context-free grammars to model work rules and solved to
optimality instances of up to ten work activities defined over a
one-day planning horizon.

To solve the MASSP, we propose a column generation approach
coupled with a Shortest Path Problem with Resource Constraints
(SPPRC) as auxiliary problem. Some of the most difficult constraints
(work rules) such as multiple work activities and breaks, different
break types, and irregular shift lengths, are tackled while building the
underlying graph of the auxiliary problem. We extended an exact
algorithm for the Constrained Shortest Path (CSP) to efficiently solve
the SPPRC. Our approach solves real-world large-scale instances of up
to 16 work activities over a one-week planning horizon, achieving
provably near-optimal solutions compared against the bounds
obtained from the linear relaxation.

Finally, the paper is organized as follows. In Section 2, we present
the definition of the MASSP. Section 3 describes the column genera-
tion approach to solve the MASSP. Section 4 defines the underlying
network used in the auxiliary problem and describes the core of the
shift generation algorithm. In Section 5 we present the case study and
the computational experiments. Finally, Section 6 concludes the
paper and outlines the future work.

2. The multi-activity shift scheduling problem

Given a planning horizon discretized into time intervals of equal
length, a set of work activities, and a set of feasible shifts, the MASSP
assigns a number of employees to each shift, minimizes the staffing
total cost, and meets the staff requirements for every work activity
over the planning horizon. In the MASSP the shifts may include
several work activities and breaks. Fig. 1 shows a snapshot of a
schedule over a 12-time interval planning horizon with four shifts,
three work activities (labeled A1, A2 and A3), multiple breaks, and
overtime.

In the MASSP the feasibility of the shifts is usually specified by
some work rules. In our particular case, these rules include: (1) the
regular time shift length should fall between a minimum and max-
imum number of time intervals; (2) the overtime shift length should
not be longer than a maximum number of time intervals; (3) it is
possible to work overtime only after regular time has been
exhausted; (4) there is a minimum and a maximum number of work
activities per shift; (5) there is a minimum and maximum number of
breaks per shift; (6) a shift may not start nor end with a break; (7) the
length of the work activities in the shift should fall between a
minimum and a maximum number of time intervals; (8) a shift
may start at any time interval of the day allowing enough time to
complete its minimum length; (9) a break is required to switch
between work activities; (10) the break length should fall between a
minimum and maximum number of time intervals; (11) it is possible
to have a break within a work activity, yet the break must be
scheduled after a minimum number of time intervals.

3. Column generation scheme for the MASSP

Let O, T , and K be the sets of feasible shifts, time intervals, and
work activities, respectively. Let atlj be a binary parameter that
takes the value of 1 if time interval t and work activity l are
covered by shift j; it takes the value of 0, otherwise. Let dtl be the
staff requirements of work activity l at time interval t. Let cj be the
labor cost of shift j. The integer variable xj represents the number
of employees assigned to shift j. The master problem – MPðOÞ –
for the MASSP follows:

min ZMPðOÞ ¼
X
jAO

cjxj ð1Þ

subject toX
jAO

atljxjZdtl; tAT , lAK ð2Þ

Fig. 1. Example of a multi-activity schedule with breaks and overtime.
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xjAZ1
þ , jAO ð3Þ

The objective in the MPðOÞ is to minimize the total staffing cost
(1). The set of constraints (2) enforces the staff requirements per
time interval t and work activity l. The set of constraints (3)
defines the integrality (and nonnegativity) of the decision vari-
ables xj. Note that in the MPðOÞ, defined by (1)–(3), the set of all
feasible shifts O is known. However, O is often very large in
practical settings, so we define a reduced set of shifts O0DO that
gives rise to the restricted master problem RMPðO0Þ:

min ZRMPðO0 Þ ¼
X
jAO0

cjxj ð4Þ

subject toX
jAO0

atljxjZdtl; tAT , lAK ð5Þ

xjZ0, jAO0 ð6Þ

Note that in the RMPðO0Þ, aside from defining the variables
over the reduced set O0DO, the integrality constraints (3) over
the variables are now relaxed in (6).

Let x and p be the primal and dual variables associated with
the RMPðO0Þ, respectively. The reduced cost cj of any given column
aj is:

cj ¼ cj�p � aj ð7Þ

Under a column generation scheme, the auxiliary problem
uses the dual variables p to find the minimum reduced cost
column at every iteration. If a new column aj with negative
reduced cost cj is found, the column is added to the RMPðO0Þ. Also,
note that the coefficients of the newly generated column aj define
a new shift. On the other hand, if the minimal reduced cost of a
newly generated column (shift) is at least zero, the optimal
solution of the RMPðO0Þ has been found. To obtain an integer
solution to the MASSP we solve the RMPðO0Þ forcing the inte-
grality constraints on x. If an integer solution is found, the
solution may still not be optimal because only a reduced set of
shifts O0DO has been considered. However, the quality of the
near-optimal (integer) solution can be measured against the
lower bound achieved with the relaxed solution of RMPðO0Þ. As
it will be seen in Section 5.2, our approach works remarkably
well, even when compared against this strict (lower) bound.

4. The constrained-network auxiliary problem

To find good shifts – columns for RMPðO0Þ – that meet the work
rules presented in Section 2, we propose an auxiliary problem for the
MASSP based on a Shortest Path Problem with Resource Constraints
(SPPRC), where a path corresponds to a feasible shift. The time shift
lengths (both regular and overtime), the number of work activities,
and the number of breaks are modeled as resources. The regular time
shift length leads to local resource constraints defined over each node,
while the other resources define global resource constraints.

Formally, let G¼ ðN ,AÞ be a directed acyclic graph with a set of
nodes N ¼ fvðt,lÞ9tAT ,lAKg [ fvs,veg, where vs and ve are the
source and sink nodes, respectively. The set of arcs A¼A1 [A2 [

A3 [A4 is divided into four subsets depending on the type of the
arc, namely: shift start A1 ¼ fðvs,vðt,lÞÞ9vðt,lÞAN g; work activity
A2 ¼ fðvðt,lÞ,vðt0 ,lÞÞ9vðt,lÞ,vðt0 ,lÞAN ,t04tg; break or work activity
switch A3 ¼ fðvðt,lÞ,vðt0 ,l0 ÞÞ9vðt,lÞ,vðt0 ,l0 ÞAN ,t0Ztg; and shift end
A4 ¼ fðvðt,lÞ,veÞ9vðt,lÞAN g. Fig. 2 shows the graph’s general form
including the sets of arcs A1, A2, A3 and A4, a planning horizon
9T 9, and 9K9 different work activities.

The size of graph G depends on 9T 9, 9K9, and the set of work rules
defined. In the worst-case scenario, where the set of work rules is

very permissive, the number of arcs can be calculated as: 9A19¼ 9T 9 �
9K9 considering a start arc for every activity and time interval;
9A29¼ ððð9T 9�1Þ � 9T 9Þ=2Þ � 9K9 � 2 considering both regular and over-
time arcs for all work activities; 9A39¼ ðð9T 9 � ð9T 9þ1ÞÞ=2Þ � 9K92

� 2
considering switches between all activities; and 9A49¼ 9T 9 � 9K9 � 2
considering both regular and overtime shift end arcs for every activity
and time interval. In the graph, every combination of time interval
and work activity is represented by a node vðt,lÞAN , thus the number
of nodes is 9N 9¼ 9T 9 � 9K9þ2. In summary, the number of arcs
dominates the size of the graph, which ends having a storage
requirement of Oð9T 92

� 9K92
Þ.

Let cvðt,lÞ
be the regular labor cost of working at node vðt,lÞ and

bvðt,lÞ
be the regular cost of assigning a break at node vðt,lÞ; likewise,

co
vðt,lÞ

and bo
vðt,lÞ

are the corresponding costs for overtime work. Let
pvðt,lÞ

be the dual variable associated to the staff requirements
constraints (5) and node vðt,lÞ. Each arc has a four-dimensional
vector of attributes defined based on its type. The first attribute
bðvðt,lÞ,vðt0 ,l0 ÞÞ is a binary parameter that takes the value of 1 if the
arc represents a break; and takes the value of 0 if the arc
represents a work activity. The second attribute, denoted by
gðvðt,lÞ,vðt0 ,l0 ÞÞ, takes the value of 1 if the arc covers overtime
intervals; and takes the value of 0 if the arc covers regular time
intervals. The third attribute denoted by dðvðt,lÞ,vðt0 ,l0 ÞÞ represents
the number of nodes (time intervals) covered by the arc. The
fourth and last attribute aðvðt,lÞ,vðt0 ,l0 ÞÞ represents the reduced cost
contribution resulting from traversing the arc. Note that graph
G¼ ðN ,AÞ allows multiarcs, that is, arcs with different attribute
values, but sharing the same tail and head nodes.

For shift-start arcs ðvs,vðt,lÞÞAA1, the attributes are defined as
follows. Attribute bðvs,vðt,lÞÞ ¼ 1 because these arcs do not repre-
sent a work activity, just the beginning of a shift. Attribute
gðvs,vðt,lÞÞ ¼ 0 because overtime arcs from node vs to any node
ðvðt,lÞÞ do not exist. Attribute dðvs,vðt,lÞÞ ¼ 1 because these arcs
cover just the first time interval of the shift. Finally, the reduced
cost contribution aðvs,vðt,lÞÞ is calculated as

aðvs,vðt,lÞÞ9cvðt,lÞ
�pvðt,lÞ

ð8Þ

For work-activity arcs ðvðt,lÞ,vðt0 ,lÞÞAA2, that is, arcs going from
node vðt,lÞ to node vðt0 ,lÞ in the same work activity, the attributes
are defined as follows. The attribute bðvðt,lÞ,vðt0 ,lÞÞ ¼ 0 because these
arcs represent always a work activity, not a break. Because arc
ðvðt,lÞ,vðt0 ,lÞÞ can represent work on regular time or overtime,
gðvðt,lÞ,vðt0 ,lÞÞ can be either 0 or 1. These arcs cover the time
intervals from vðtþ1,lÞ to vðt0 ,lÞ, thus the value of the attribute
dðvðt,lÞ,vðt0 ,lÞÞ ¼ t0�ðtþ1Þ is equivalent to the number of nodes
covered by the arc. Finally, the reduced cost contribution
aðvðt,lÞ,vðt0 ,lÞÞ depends on gðvðt,lÞ,vðt0 ,lÞÞ and is defined by

aðvðt,lÞ,vðt0 ,lÞÞ9

Xt0

k ¼ tþ1

ðcvðk,lÞ
�pvðk,lÞ

Þ, if gðvðt,lÞ,vðt0 ,lÞÞ ¼ 0

Xt0

k ¼ tþ1

ðco
vðk,lÞ
�pvðk,lÞ

Þ, if gðvðt,lÞ,vðt0 ,lÞÞ ¼ 1

8>>>>><
>>>>>:

ð9Þ

Arcs ðvðt,lÞ,vðt0 ,l0 ÞÞAA3 represent either a switch between work
activities or a break within a work activity. The attributes
bðvðt,lÞ,vðt0 ,l0 ÞÞ ¼ 1 and, similar to the latter case (arcs in A2),
gðvðt,lÞ,vðt0 ,l0 ÞÞ can be either 0 or 1. Attribute dðvðt,lÞ,vðt0 ,l0 ÞÞ ¼ t0�ðtþ1Þ
(number of nodes covered by the arc). The reduced cost contribution
aðvðt,lÞ,vðt0 ,l0 ÞÞ depends on gðvðt,lÞ,vðt0 ,l0 ÞÞ and is defined by

aðvðt,lÞ,vðt0 ,l0 ÞÞ9

Xt0

k ¼ tþ1

bvðk,lÞ
, if gðvðt,lÞ,vðt0 ,l0 ÞÞ ¼ 0

Xt0

k ¼ tþ1

bo
vðk,lÞ

, if gðvðt,lÞ,vðt0 ,l0 ÞÞ ¼ 1

8>>>>><
>>>>>:

ð10Þ
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For shift-end arcs ðvðt,lÞ,veÞAA4 the attributes are defined as
follows. The attribute bðvðt,lÞ,veÞ ¼ 0 because the arc represents the
end of a shift. Attribute gðvðt,lÞ,veÞ can be either 0 or 1 depending
on whether the shift uses overtime or not. Finally, these arcs do
not cover any time interval, therefore dðvðt,lÞ,veÞ ¼ aðvðt,lÞ,veÞ ¼ 0.

To solve the auxiliary problem we extended an specialized
algorithm for the Constrained Shortest Path (CSP) proposed by
Lozano and Medaglia (in press) to the SPPRC. The algorithm
consists of a depth-first search exploration of the graph with
additional pruning strategies, which are rules that avoid exploring
a vast number of paths based on the constraints. Similar to branch
and bound, optimality is guaranteed because a complete enu-
meration of all possible paths is done implicitly. Because the
strength of the algorithm relies on the pruning strategies, we
devised several strategies on the following constraints: the mini-
mum and maximum shift length for regular time over each node,
the maximum shift length for overtime, the minimum and
maximum number of work activities and breaks allowed in the
shift, overtime can be assigned only after regular time, and shifts
may not start nor end with a break. These constraints are
modeled as resources that are consumed by the paths (shifts),
in such a way that as the graph is being explored, the algorithm
checks for the feasibility of the partial path. If the path (or all
possible extensions) is proved to be infeasible, it is pruned. The
algorithm is extremely fast and it is able to solve the auxiliary
problem for the case study described in Section 5 in a fraction of a
second.

5. Case study

We applied our approach to solve the MASSP in one of the
largest parking operators in Bogotá, Colombia. The company has
more than 400 employees spread over 120 parking lots, grouped
by areas according to their proximity. Aside from using the
proposed approach to schedule security staff and cashiers a key
objective of the case study was to evaluate the impact of a new
policy that allows staff movements between parking lots on the

staffing cost and in the man-hours required. The current staff
scheduling policy (baseline) does not allow staff movements and
is planned over a week and updated every four months.

5.1. Problem description

In the case study, we model the parking lots as work activities
and the staff movements between parking lots as changes
between work activities. The planning horizon is defined over
seven days (one week), where each day is divided into 48 periods
of 30 min. Each shift may cover more than one parking lot,
meaning that, staff movements between parking lots are allowed
during the same shift. Every shift follows the work rules pre-
sented in Section 2, more specifically: all shifts have the same
regular time length of 8 h; overtime is allowed and its maximum
length is 4 h; the shifts must cover at least 3 h at one parking lot
before switching to another parking lot; if a shift only covers one
parking lot, the shift does not have a break, but if a shift covers
more than one parking lot, there must be a break representing the
switching between parking lots (the break length depends on the
distance between parking lots); any given shift involves working
in at most two parking lots; the shifts may start at any time
interval of the day; and, finally, the shifts span over a maximum
of two consecutive days. The latter has the important implication
that the auxiliary problem is separable into seven different
subproblems considering each pair of consecutive days (i.e.,
Monday–Tuesday, Tuesday–Wednesday, and so forth).

5.2. Computational experiments

We tested our approach on several real instances with data
provided by the company. The instances are labeled following the
format AX-TILX-DX-VX where A, TIL, D and V are the prefixes for
the number of activities (parking lots), the time interval length in
minutes, the planning horizon in days, the instance’s version
depending on whether overtime work is allowed (value of 1) or
not (value of 2), respectively. We also measured the effect of the
size of the time intervals on the performance of our approach.

Fig. 2. Generic graph behind the MASSP auxiliary problem.
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The experiments were performed on a DELL Precision 7400 with
8 GB of RAM, two processors Intels Xeons X5450 running at 3 GHz,
on a 64-bit Windows Vista Ultimate operating system. Both the
algorithm by Lozano and Medaglia (in press) and the column
generation logic were coded in Java using the compiler on Eclipse
SDK version 3.4.0, while the set covering and its relaxation were
solved using Xpress-MP Optimizer version 19.00.00.

Table 1 reports the computational effort of the proposed
column-generation scheme on ten one-day planning horizon
instances with up to 21 different work activities. We report the
name of the instance, the number of nodes and arcs in the graph
of the auxiliary problem, the time (in seconds) required to solve
the linear relaxation of the restricted master problem (LR-RMP),
the total execution time (including column generation) to find the
best integer solution (IP-RMP) from the generated columns for
LR-RMP, the gap between the relaxed solution and the integer
solution, the total number of calls to the auxiliary problem
(column labeled Iter.), and the total number of columns generated
in the problem. We set a time limit of 8 h to solve the LR-RMP.

With the one-day planning horizon, our approach solved to
optimality (zero gap) all instances (ten out of ten). More precisely,
six out of ten instances were solved in less than 1 min; three out
of ten instances were solved in less than 7 min; and just one
barely exceeded 1 h. It is noteworthy that the time needed to
solve the set covering problem is almost negligible (under 4 s).

We also wanted to explore the performance of our approach
over instances with a longer one-week planning horizon. Table 2
reports the computational effort on eight long-horizon instances
with up to 16 different work activities. Note that for these
instances solving the auxiliary problem generates multiple col-
umns at each iteration.

As noted in Table 2, our approach was able to solve six out of
eight instances near to optimality. Even for the two instances that
reached the 8-h limit, we were able to find integer feasible
solutions, but we were not able to assess its quality (gap). For
the case where overtime is not allowed, we found the solution for

all instances in less than 11 min; solving even large-scale
instances with up to 16 different work activities over a planning
horizon of one week. In the case where overtime is allowed, we
were able to consistently solve instances with up to seven
different work activities over a planning horizon of one week.
These (overtime) instances are more difficult because the number
of overtime arcs increases the size of the network in the auxiliary
problem. Regardless of the instance, the quality of the solutions
found is consistently high, as the small gap (always under 0.3%)
guarantees nearly optimal solutions.

In our last experiment, we tested the effect of the time interval
lengths on the performance of our approach. We derived new
instances with different time interval lengths ranging from 15 to
60 min from a medium-sized instance with seven work activities.
Table 3 reports the effect of the granularity of the time intervals
on the computational effort.

Our approach was able to solve to optimality the instance with
time interval length of 60 min in less than 3 min. For the
instances with time interval length of 45 and 30 min, we found
near optimal solutions with gaps under 0.3%. Although the
instance with the 15-min time interval reached the time limit,
we still found an integer feasible solution in this case. As
expected, by the theoretical analysis outlined in Section 4, the
size of the underlying network of the auxiliary problem is
bounded by a polynomial which depends quadratically on the
number of time intervals 9T 9. The longer the time interval
lengths, the smaller the network, thus the auxiliary problem
becomes easier to solve.

5.3. Comparing the new and current staffing policies

We compared the results allowing staff movements between
parking lots in the same shift against the current policy (where
movements are not allowed) on the long-horizon instances. We
measured the improvement on total staffing cost ðTSCÞ given by
(4) and the improvement on the man-hours required ðMHRÞ

Table 1
Computational performance on instances with a one-day planning horizon.

Instance 9N 9 9A9 LR-RMP (s) IP-RMP (s) Gap (%) Iter. Columns

A5-TIL30-D1-V1 242 3087 2.39 2.41 0 123 123

A5-TIL30-D1-V2 242 2247 0.42 0.44 0 17 17

A7-TIL30-D1-V1 338 5047 16.61 16.67 0 388 388

A7-TIL30-D1-V2 338 3815 2.81 2.88 0 96 96

A13-TIL30-D1-V1 626 14,704 404.47 404.70 0 1909 1909

A13-TIL30-D1-V2 626 12,359 38.52 38.61 0 396 396

A16-TIL30-D1-V1 770 12,516 131.56 131.70 0 997 997

A16-TIL30-D1-V2 770 10,205 13.53 13.59 0 200 200

A21-TIL30-D1-V1 1010 28,447 3650.10 3654.83 0 3776 3776

A21-TIL30-D1-V2 1010 24,639 200.42 202.31 0 727 727

Table 2
Computational performance on instances with a one-week planning horizon.

Instance 9N 9 9A9 LR-RMP (s) IP-RMP (s) Gap (%) Iter. Columns

A5-TIL30-D7-V1 482 6589 2629.15 2634.43 0.01 1517 10,619

A5-TIL30-D7-V2 482 4270 16.54 17.05 0.00 81 567

A7-TIL30-D7-V1 674 5180 4471.20 4476.43 0.02 1812 12,684

A7-TIL30-D7-V2 674 3661 81.90 83.08 0.00 154 1078

A13-TIL30-D7-V1a 1250 21,542 28,807.95 28,878.46 – 2120 14,840

A13-TIL30-D7-V2 1250 17,293 1749.50 1755.79 0.00 605 4235

A16-TIL30-D7-V1a 1538 19,784 28,805.60 28,861.84 – 3199 22,393

A16-TIL30-D7-V2 1538 15,507 624.12 628.29 0.21 363 2541

a8-h limit reached solving the LR-RMP.
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calculated as follows:
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Note that in (11), the ideal case has a limit value of MHR¼1.
Table 4 summarizes the reduction on total staffing cost and on
man-hours required resulting from allowing staff movements
between parking lots.

In most cases we achieved a significant reduction on both
measures, improving up to 16% on TSC and 20.8% on MHR. Note
that one of the instances without a provable optimality gap (A16-
TIL30-D7-V1) according to Table 1, reduces significantly both
TSC and MHR (16% and 18.7%, respectively).

6. Concluding remarks

In this paper we propose an approach based on column
generation to solve multi-activity shift scheduling problems.
Within the column generation scheme we define an auxiliary
problem based on a constrained network. The network structure
of the auxiliary problem allows us to incorporate some of the
most difficult constraints while building the graph and to gen-
erate shifts (columns) using an extension of an specialized
algorithm for the constrained shortest path problem. The flex-
ibility of the approach allows us to incorporate different work
rules depending on problem specific information. We were able to
efficiently achieve provably near-optimal solutions in instances of
up to 16 work activities over a one-week planning horizon; and
provably optimal solutions in instances of up to 21 work activities
over a one-day planning horizon. Based on a theoretical and
experimental analysis, we show that our approach is sensitive to
the time interval length; as we increase the length of the time
intervals, the size of the auxiliary problem reduces and the overall
performance of the algorithm increases.

We tested our approach in a real application from a parking lot
operator that schedules security staff and cashiers over one
hundred parking lots in the city of Bogotá. We found that by

allowing staff movements between parking lots in the same shift
the company is able to reduce the staffing total costs and the
man-hours required. Also, our approach significantly reduces the
time to build the staff schedule and allows the company to
evaluate several what-if scenarios aimed to improve their staffing
policies.
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